ON ABSOLUTE CONTINUITY OF INHOMOGENEOUS AND
CONTRACTING ON AVERAGE SELF-SIMILAR MEASURES
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ABSTRACT. We give a condition for absolute continuity of self-similar measures
in arbitrary dimensions. This allows us to construct the first explicit absolutely
continuous examples of inhomogeneous self-similar measures in dimension one
and two. In fact, for d > 1 and any given rotations in O(d) acting irreducibly
on R% as well as any distinct translations, all having algebraic coefficients, we
construct absolutely continuous self-similar measures with the given rotations
and translations. We furthermore strengthen Varji’s result for Bernoulli con-
volutions, treat complex Bernoulli convolutions and in dimension > 3 improve
the condition on absolute continuity by Lindenstrauss-Varji. Moreover, self-
similar measures of contracting on average measures are studied, which may
include expanding similarities in their support.
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1. INTRODUCTION

In the study of self-similar measures it is fundamental to determine their dimen-
sion and to find conditions for absolute continuity. For the former problem progress
was made by Hochman ([Hoc14], [Hoc17]), relating the dimension of a self-similar
measure to the entropy and Lyapunov exponent provided the generating measure
satisfies a mild separation condition. While it was shown by Saglietti-Shmerkin-
Solomyak , building on methods pioneered by Solomyak , that, under
suitable assumptions, generic one-dimensional self-similar measures are absolutely
continuous, finding explicit examples remains challenging. It was shown by Varju
that Bernoulli convolution are absolutely continuous if their defining pa-
rameter is sufficiently close to 1 in terms of the Mahler measure. In dimension
d > 3, assuming that the rotation part of the self-similar measure is fixed and has
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an L? spectral gap on O(d), Lindenstrauss-Varji [LV16] showed absolute continuity
if all of the contraction rates are sufficiently close to 1. In this paper we strengthen
and vastly generalise these two results. Moreover, we give the first explicit exam-
ples of absolutely continuous self-similar measures in dimension one and two with
non-uniform contraction rates. For instance consider for x € R the similarities

q

o pry 23: + 2.

We then show that the self-similar measure of 14y, + 8,4, is absolutely continuous
on R for any sufficiently large prime q. Furthermore, our methods allow to construct
several classes of explicit absolutely continuous examples for g;(x) = p;U;x + b; for
x € R? in any dimension d > 1 as well as for every collection of orthogonal matrices
U; acting irreducibly on R? and distinct vectors b; € R?, provided they all have
algebraic entries.

Let G = Sim(R?) be the group of similarities on R? and let O(d) be the group
of orthogonal d x d matrices. For each g € G there exists a scalar p(g) > 0,
an orthogonal matrix U(g) € O(d) and a vector b(g) € R? such that g(x) =
p(9)U(g)x + b(g) for all x € R%. A similarity is called contracting if p(g) < 1 and
expanding when p(g) > 1.

Given a probability measure p supported on finitely many contracting similarities
of R%, there exists by Hutchinson’s theorem [Hut81] a unique compactly supported
p-stationary probability measure v on R? called the self-similar measure of u, i.e.
a measure satisfying u * v = v for u * v the convolution of u and v as defined in
. In this paper we study the larger class of self-similar measures that might
also be supported on expanding similarities and are only contacting on average.
The Lyapunov exponent of a probability measure p on G is defined, whenever it
exists, as

gi(z) = r+1 and go(z) =

Xu = Egop [log p(g)].

Definition 1.1. Ifx,, <0, we call i contracting on average. Moreover, if every
g € supp(u) is contracting, we say that v is contracting. When x,, < 0 and there
is g € supp(u) such that p(g) > 1, then we call p only contracting on average.

As follows from [BE8S§|, Hutchinson’s theorem generalises to contracting on aver-
age measures. If p is only contracting on average, the resulting self-similar measure
is usually not compactly supported, yet we show that their mass is concentrated
around the identity. Denote by | o | the euclidean norm on R?. For the asymptotic
notation used we refer to section 2

Theorem 1.2. (Generalisation of Hutchinson’s theorem) Let p be a finitely sup-
ported and contracting on average probability measure on G = Sim(R?). Then there
exists a unique probability measure v on RY such that p* v = v. Moreover, there
exists o = a(p) > 0 such that for R > 0,

v({z € R% : |z| > R}) <, R~ (1.1)

While fine estimates for v({x € R? : |z| > R}) have been established by various
authors under a range of assumptions (cf. [Kes73|, [Gol91|, [GP15],|GP16],[Kev16],
[K1o22]), the coarse bound does not appear in the literature to the authors
knowledge. We deduce in section M| from the large deviation principle.

When p is only contracting on average and not supported on a set of similarities
with a common fixed point, then we show in Lemma that v({z € R? : |z| >
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R}) >, R~ for some constant as = as(p) > 0. Moreover, we note that when v
is absolutely continuous, it can be shown using that v has finite differential
entropy (see the proof of Lemma. In similar vein, will be used in section
for the proof of our main result, Theorem to bound the entropy of a suitable
stopped random walk.

Throughout this paper we denote by v the self-similar measure associated to u.
If 11 is (only) contracting on average, we say that v is a (only) contracting on average
self-similar measure. Moreover, p or respectively v is called homogeneous if there
are r € Ry and U € O(d) such that r = p(g) and U = U(g) for all g € supp(u).
When this is not the case, we say that p and v are inhomogeneous. A particular
goal of this paper is to give explicit examples of inhomogeneous as well as only
contracting on average self-similar measures which are absolutely continuous.

To state our main result, we first discuss the Hausdorff dimension of v. Recall
that the Hausdorff dimension of v is defined as

dimv = inf{dim E : F C R? measurable and v(E) > 0},

where dim E' is the Hausdorff dimension of E. In order to state the landmark
results by Hochman [Hocl4], [Hocl7|, recall that the random walk entropy of a
finitely supported measure p is defined as
1 1
h,= lim —H(p"") = inf —H(u*"
p= N —H (™) = inf —H(u™),

where H(-) is the Shannon entropy. Observe that if supp(x) has no exact overlaps,
meaning that supp(u) generates a free semigroup, then h, = H(p) = — ) . p; logp;.

Moreover, as in [Hoc17], denote by d(-, -) the metric on G defined for g = p1U1+b;
and h = poUs + by as

d(g,h) = [log p1 — log pa| + ||[U1 — Ua|| + [b1 — b2

for || - || the operator norm.
To distinguish between the results for dimension and absolute continuity, denote

1
A, = ——logmin{d(g, h) for g, h € supp(p*") with g # h}
n
and

1 " ,
S, = —— log min {d(g7h) for g,h € U supp(p**) with g # h} .
n
i=1
The splitting rate of p is then defined as
Sy, = limsup S,.
n—oo
If S, < oo we say that p has exponential separation. For our purposes, it is
necessary to work with S,,, whereas Hochman’s dimension result just require

liminf A,, < oco.
n— oo

We call a subgroup H of O(d) irreducible if H acts irreducibly on R%, i.e. the
only H-invariant subspaces of R? are {0} and R?. Moreover we say that a mea-
sure u = Y. pidg, on G or O(d) C G irreducible if the group generated by
{U(g1),.--,U(gn)} is irreducible. When the elements in the support of p have a
common fixed point € R?, then 6, is the self-similar measure of y. To avoid the
latter case, we say that p has no common fixed point if the similarities in supp(u)
do not.
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It was shown by Hochman [Hocl7], generalizing [Hoc14], that if u is a finitely
supported, contracting and irreducible probability measure on G without a com-
mon fixed point such that liminf,, . A, < 0o, then dimv = min{d, \%:I} In the
accompaniment paper [KK24] we extend Hochman’s result to include contracting
on average measures.

Theorem 1.3. (Generalisation of Hochman’s theorem, |KK24]) Let u be a finitely
supported, contracting on average and irreducible probability measure on G without
a common fized point and satisfying iminf, o A, < co. Then

dimv = min{d, h“} .
|X,u|

Therefore v can only be absolutely continuous if h, > d|x,|. Moreover the
following general conjecture is expected to hold.

Conjecture 1.4. Let p be a finitely supported, contracting on average and irre-
ducible probability measure on G without a common fized point. Then v is absolutely
continuous if

L)

|Xu|

Our main result establishes a weakening of the latter conjecture. Indeed, when

the O(d)-part of our measure p is fixed, we show conjecture with the d being
replaced by a constant depending on the O(d)-part as well as the logarithmic sep-
aration rate log S,,. Given a measure 1 on G we denote by U(p) the pushforward
of 1 under the map g — U(g). We first state a version of our main theorem for
contracting measures.

Theorem 1.5. Let d > 1 and € € (0,1). Given an irreducible probability measure
puy on O(d) there exists a constant C > 1 and p € (0,1) depending on d,e and py
such that the following holds. Let y = Zle Dibg, be a contracting and exponentially
separated probability measure on G without a common fized point satisfying U(u) =
uy and p; > € as well as p(g;) € (p,1) for all 1 < ¢ < k. Then the self-similar

measure v is absolutely continuous if

2
e >C (max{l,logsu}) .
|Xu‘ hu

Theorem is a special case of the more general Theorem which requires a
few new definitions we state in section [2.1] When d = 1 we note that every prob-
ability measure on O(1) is irreducible. We further observe that while Theorem [1.5
applies in the case when the spectral gap of u is zero, the dependence of C' and p
can be made more explicit in the presence of a spectral gap. To introduce notation,
given a closed subgroup H C G and assuming that py is a probability measure on
O(d) with supp(uy) C H, we denote by gapy (uy) the L?-spectral gap of uy in H

as defined in (2.19).

Theorem 1.6. Let d,e,puy and p be as in Theorem [1.5.  Assume further that
gapy (uy) > € > 0 for H the closure of the subgroup generated by the support of

puy- Then there exists C > 1 and p € (0,1) only depending on d and € such that
the conclusion of Theorem[1.5 holds.
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We point out that in Theorem [I.6]the constants are independent of the subgroup
H and the statement applies when H is a finite irreducible subgroup of O(d) as well
as when H is a positive dimensional irreducible Lie subgroup of O(d). As is shown
in SectionE this observation relies on uniform convergence of u;7* towards the Haar
probability measure m g and on Schur’s lemma implying that Eppm,, [|2-hy|?] = 71
for any unit vectors z,y € R? and any irreducible subgroup H C O(d).

To construct explicit examples of absolutely continuous self-similar measures on
R?, Theorem requires us to estimate h, |x,| and S,. It is straightforward to
deal with |x,| as it can be explicitly computed. Lower bounds on the random
walk entropy follow in many cases (see section by the ping-pong lemma or
Breuillard’s strong Tits alternative [Bre08|. It also holds that hy(,) < hy, so when
hy(uy > 0, we only need to control |x,| and S,. With current methods we can
usually only bound S, if all of the coefficients of the elements in the support of
are algebraic. In the latter case, as shown in section when all of the coefficients
of elements in the support of p lie in a number field K and have logarithmic height
at most L, then S, <4 L-[K : Q. We observe that log S, is usually very small
as it is double logarithmic in the arithmetic complexity of the coefficients. All
this information makes it straightforward to find explicit examples of absolutely
continuous self-similar measures. The constants C' and p in Theorem [I.f] can be
computed from the involved terms, yet we do not make the dependence explicit in
this work.

The proof of Theorem [I.5]and Theorem [2.4] builds on new techniques initiated by
the first-named author in [Kit23| and further developed in this paper, while being
inspired by ideas from [Hocl4], [Hocl7], [Varl9] and [Kit21]. We give an outline
of our proof in section [2.2] and note that the main novelties exploited are strong
product bounds for detail at scale r (a notion introduced in [Kit21]) and a decom-
position theory for stopped random walks to capture the amount of variance we can
gain at a given scale. [Kit23| is concerned with constructing absolutely continuous
Furstenberg measures of SLa(R) on 1-dimensional projective space P*(R) = R?/ ~
and an analogue of Theorem is shown. However, we currently can’t deduce a re-
sult similar to Theoremfor Furstenberg measures as the dynamics of the SLy(R)
action on P!(R) are more difficult to control than the one of the Sim(R¢) action
on R?. Indeed, we exploit that one can rescale and translate self-similar measures
without changing the Lyapunov exponent, the separation rate, the random walk
entropy or the spectral gap of the generating measure.

To also treat contracting on average measures, we state the following version of
Theorem Our current methods require some control on the scaling rate of the
expanding similarities.

Theorem 1.7. Let d and py be as in Theorem[I.5 and let R > 1 and ¢ > 0. Let
= Zle pidg, be a contracting on average and exponentially separated probability
measure on G without a common fized point satisfying U(u) = py and p; > € as
well as p(g;) € [R™Y, R] for all 1 <i < k. Then there is some p € (0,1) and C > 1
depending on d, R,e and py such that the conclusion of Theorem[I.5 holds provided
that for some p € (p,1) we have

Eyenllp = p(]

|
I—E, o]
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In the presence of a spectral gap, the analogue of Theorem [I.6] also holds for
Theorem[1.7] Using Theorem|[L.5] Theorem[I.7]and Theorem[2.4]one can construct a
versatile collection of explicit absolutely continuous self-similar measures. We give a
few cases below and encourage the reader to find further examples. Indeed, as shown
in Corollary and Corollary for any given irreducible probability measure
py on O(d) supported on matrices with algebraic entries and algebraic vectors
b1, ...,b, with by # by, we can find explicit contracting as well as only contracting
on average measures [ = Zle pidg, on G with U(p) = py and b(g;) = b; for
1 < ¢ < k and having absolutely continuous self-similar measure.

Real and Complex Bernoulli Convolutions. While Theorem applies to
arbitrary self-similar measures, it gives new results for Bernoulli convolutions. Let
A € (1/2,1) and denote by v, the unbiased Bernoulli convolution of parameter A,
i.e. the law of the random variable ZZO:O &A™ with &, &1, . . . independent Bernoulli
random variables with P[¢; = 1] = P[§; = —1] = 1/2. Tt was shown by Solomyak
[Sol95] that for almost all A € (1/2,1) the Bernoulli convolution vy has a density
in L*(R), while Erdés [Erd39] proved that vy is singular whenever A~! is a Pisot
number.
The Mahler measure of an algebraic number A is defined as

My =lal IT Il

‘Zj‘>1

with a(z — 21) - - (x — z¢) the minimal polynomial of A over Z. We note that as in
Corollary 5.9 of [Kit23] it holds that

Sy, < log M. (1.2)

Garsia [Gar62, Theorem 1.8] showed that v is absolutely continuous for algebraic A
with M)y = 2, while the first-named author [Kit21] established that v, is absolutely
continuous if M, ~ 2. In landmark work, Varju [Varl9] proved for every ¢ > 0
there is a constant C' > 1 such that that v is absolutely continuous if

A > 1—C~ ' min{log My, (log My)~*~¢}. (1.3)

When applying Theorem to Bernoulli convolutions we deduce the following
strengthening of (1.3]), exploiting the comparison between the entropy and the
Mahler measure for Bernoulli convolution due to [BV20].

Corollary 1.8. There is an absolute constant C' > 1 such that the following holds.
Let X € (1/2,1) be a real algebraic number. Then the Bernoulli convolution vy is
absolutely continuous on R if

A > 1—C ' min{log My, (loglog My)?}. (1.4)

We estimate that a direct application of our method would lead to C ~ 109 in
Corollary [I.8] It would be an interesting further direction to try to optimise C' for
Bernoulli convolutions and in particular for the case A =1 — %

Our most general result, Theorem also applies to complex Bernoulli con-
volutions, which are defined analogously for A € D = {A € C : |\ < 1}. When
IA| € (0,271/2), then dim vy < |112§i\ < 2 and v, is singular to the Lebesgue mea-
sure on C. It was shown by Shmerkin-Solomyak [SS16a] that the set of A € C
with |[A\| € (27%/2,1) and v, is singular has Hausdorff dimension zero, whereas
Solomyak-Xu [SX03] showed that vy is absolutely continuous on C for a non-real
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algebraic A € D with My = 2 and [Kit21] applies as well. We extend Corollary
to complex parameters while assuming (1.5)) in order to ensure that the rotation
part of A mixes fast enough and so that our measure is sufficiently non-degenerate

(see section [2.1)).

Corollary 1.9. For every € > 0 there is a constant C > 1 such that the following
holds. Let A € C be a complex algebraic number such that |\ € (27Y/2,1) and

[Im(N)| > e. (1.5)
Then the Bernoulli convolution vy is absolutely continuous on C if
I\l > 1 — C~*min{log My, (loglog My)?}.

Self-similar measures on R?. With Theorem [L.5] and Theorem [1.7] numerous
explicit examples of absolutely continuous self-similar measures in R% can be con-
structed. In order to apply these results we need to estimate h,. In the following
examples we have used the ping-pong lemma (see section in two ways in order
to establish lower bounds on h,. For the first class of examples we have applied

p-adic ping-pong as in Lemma

Corollary 1.10. Let d > 1 and € > 0, let py = Zle pidy, be an irreducible
probability measure on O(d) with p; > & and let by,... by, € R? with by # by.

Assume that Uy, ..., U and by,. .., by have algebraic coefficients. Let q be a prime
number and for 1 <i <k consider

gi(z) = %Uix +b; for any integer aiq € [1,¢"7°).

i,
Assume that g1, . . ., g do not have a common fized point and consider y = Zle Didg, -
Then the self-similar measure of p is absolutely continuous for q sufficiently large
depending on d,e,Uy,..., Uy and by, ..., bg.

We point out that any choice of integers a; , works and that the necessary size
of ¢ to derive absolute continuity does not depend on this choice, leading to a vast
number of examples. Moreover, we can adapt Corollary [I.10] to give only contract-
ing on average examples. In order to satisfy the assumption from Theorem we
require that u = Zle p;idg, satisfies that p, < %. This nonetheless leads to abso-
lutely continuous examples with U(u) = py for any given irreducible probability
measure (g = Zle p:0y, on O(d) as we do not require that the U; are distinct.

Corollary 1.11. Letd,e and puy = Zle idy, as well as by, ..., by be as in Propo-
sition[1.10, Let q be a prime number and consider for 1 <i <k —1

gi(x) = ﬁwx +b  and  gla) = q%lka + by
Assume that g1, ...,gr do not have a common fized point and further that
pr < }
-3

Then the self-similar measure of p = Zle pidg, 1s absolutely continuous for q
sufficiently large depending on d,e,Uq,..., U and by, ..., bg.

We give a second class of examples that rely on Galois ping-pong in as Lemmal[10.4
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Corollary 1.12. Let d > 1 and € € (0,1) and py = Zf:l pidy, an irreducible
probability measure on O(d) with p; > € for all1 < i < k. Assume furthermore that
Ui,...,U have algebraic entries. Let p € (0,1) be sufficiently close to 1 in terms of
d,e and py and let C' > 1 be sufficiently large depending on the same parameters.

Suppose that g;(x) = %Uim—kdi with a;, by, c; € Zoandd; € Z¢ for1 <i <k
and a prime number q do not have a common fized point. Then the self-similar mea-
sure assoctated to p = Zle Dilg, 15 absolutely continuous if the following properties
are satisfied:

(i) “2VT e (5,1) for 1 < i<k,
(i) for j =1 and for j = 2 we have

a —biva| _1
Cj 3,

(iii) For L = max(\/q,|ail, |bi|,|ci|, |di|oo) we have
1
C <
"ol = oglos 17
As a particular case of Corollary we can consider as shown in Lemma |10.11
the maps

Val - 2
NG Uix + d;

for any m; 4 € Z and d; € Z* satisfying for some ¢ > 0 that
miq € [o’ql/z—s] and |di]oo < exp(exp(qg/?’)),

9i(z) =

Then the self-similar measure of y = Y7, p;d,, is absolutely continuous for suf-
ficiently large primes ¢ depending on d, uy and e, provided that gi,..., gx do not
have a common fixed point. We note that since we have a double exponential range
for d;, we get abundantly many examples.

Dimension d > 3. Finally we discuss the case when d > 3. Under this assumption,
O(d) is a simple non-abelian Lie group and therefore instead of using the entropy
and separation rate on G we can use the same quantities on O(d).

We recall that Lindenstrauss-Varji [LV16] proved the following. Given d > 3
and € € (0,1) as well as a finitely supported probability measure gy on SO(d),
generating a dense subgroup of SO(d) and with gapgo(q) (pu) > €, there exists
a constant p € (0,1) depending on d and e such that every finitely supported
contracting probability measure p = Zle pidg, on G with U(u) = py and

p; > aswellas p(g;) € (p,1) forall 1<i<k (1.6)

has absolutely continuous self-similar measure v. Moreover, [LV16] show that v has
a Ck-density if the constant p is in addition sufficiently close to 1 in terms of k.
The scalar p depends on the size of the spectral gap of U(u). By current methods
(IBGO8], [BdS16]) spectral gap of U(u) is only known when supp(U(u)) generates
a dense subgroup and all of the entries of elements in supp(U(u)) are algebraic.
We note that hU(M) < h, yet we do not have in general that SU(M) > S,. In the
case when Syy(,,y > S, which for example holds when the support of U () generates
a free group, follows from Theorem Moreover, our method can be adapted
to work with Sy (,) instead of S, and thereby we establish a generalisation of
that we state in Theorem We note that our method does not require that
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supp(uy) generates a dense subgroup of O(d) or SO(d) and we can also treat
contracting on average self-similar measures. Moreover, as shown in Corollary
and Corollary we can also give examples when supp(uy) generates a finite
irreducible subgroup of O(d).

Discussion of other work. In addition to the above discussed |Gar62|, [SX03],
[LV16], [Varl9] and [Kit21] there is very little known about explicit examples of
absolutely continuous self-similar measures. To the authors knowledge, the only
further papers addressing this topic are [DFWO07] and [Str24], which are concerned
with homogeneous self-similar measures on R whose contraction rate A satisfies that
all of its Galois conjugates have absolute value < 1.

A related problem is to study the Furstenberg measure of SLy(R) or of arbi-
trary simple non-compact Lie groups. The first examples of absolutely continuous
Furstenberg measures were established by [Boul2|, giving an intricate number the-
oretic construction and also providing examples with a C*-density for any k& > 1.
Bourgain’s methods were generalised and further used by [BISG17|, [Leq22] and
[Kog22|. Moreover, numerous new examples we recently given by [Kit23].

Returning to self-similar measures, we observe that the behavior of generic self-
similar measures on R or C is better understood. [Shm14] showed, thereby im-
proving the before mentioned [Sol95], that the set of A € (1/2,1) such that the
Bernoulli convolution vy is singular has Hausdorff dimension zero. In [SSS18] it was
shown that when the translation part (with distinct translations) and the proba-
bility vector is fixed, then generic one-dimensional self-similar measures on R are
almost surely absolutely continuous in the range where the similarity dimension
> 1. This was generalised to C by [SS23]. A further line of research is to show that
certain parametrized families of self-similar measures or other types of invariant
function systems are generically absolutely continuous, see for example [SS16b] and
[BSSS22|.

We finally mention that Fourier decay of self-similar measures was studied by
many authors recently. The interested reader is referred to |[LS20], [Bré21|, [LS22],
[Rap22|, [Sol22], [VY22] and [BKS24] and as well as [ARHW21| and [BS23| for
self-conformal measures.
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the Heilbronn Institute for Mathematical Research. This work is part of the second-
named author’s PhD thesis conducted at the University of Oxford. We furthermore
thank Emmanuel Breuillard and Péter Varji for comments on a preliminary draft.

2. MAIN RESULT AND OUTLINE

In this section we first state our main results and give an outline of the proof
of the main theorem in section 221 Then we collect for the convenience of the
reader some notation used throughout this paper in section [2.3| and comment on
the organisation of the paper in section [2:4]

2.1. Main Result. Let i be a probability measure on G = Sim(R?). To state
our main results in full generality we introduce notions that capture how well U(u)
mixes on O(d) and how degenerate v is.
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Denote by ~1,72,... independent samples from u, write g, := y172...7, and
given k > 0 let 7, be the stopping time defined by

T i=1nf{n > 1: p(¢qn) < K}
We then have the following definitions.

Definition 2.1. Let p be a probability measure on G generating a self-similar
measure v.
(i) We say that p is (ag,0, A)-non-degenerate for oy € (0,1) and 6,A > 0
if for any proper subspace W C R? and y € R?,

v({z €RY : |z — (y+W)| <0 or|z| > A}) < ap.

(i) We say that p is (¢, T)-well-mixing for ¢ € (0,1) and T > 0 if there is
some ko such that for any k < ko and any unit vectors x,y € R we have

Ellz - Ulgr,+r)y*] > ¢,

where F is a uniform random variable on [0, T] which is independent of the
Yi-

For d = 1 our measure p will always be (1,1)-well-mixing. As we show in
section [0.1] when U () is fixed there exists (c,T’) depending only on U () such that
w is (¢, T)-well-mixing. This follows as U(gr) — my in distribution as T — oo,
where H is the closure of the subgroup generated by supp(U(u)) and my the Haar
probability measure on H. The latter would not be true if we would fix F' to
be a deterministic random variable and therefore we have introduced the above
definition.

Dealing with non-degeneracy is more involved and uniform results for many
classes of self-similar measures do not hold. However, instead of our given measure
we can consider a conjugated measure to establish uniform non-degeneracy results.
Indeed, for p = Zle pibq, & measure on G and h € G we denote

k k
Hh = Zpiéhgih_l and ,U,;l = %56 + % Zpiéhgih—l.
i=1 =1
Then as we show in Lemma [0.5] absolute continuity of any of the self-similar mea-
sures of i, iy, or iy, is equivalent and all of relevant quantities such as h,, S, and
Ixu| are the same or comparable.

Towards Theorem [L.5] Theorem and Theorem as we state in Proposi-
tion and Proposition we have essentially uniform (¢, T')-mixing and uniform
(v, 6, A)-non-degeneracy as long as we fix U(u). We first state a uniform mixing
result adapted for Theorem and Theorem in the contracting case.

Proposition 2.2. Let d > 1, € € (0,1) and let py be an irreducible probability
measure on O(d). Then there exists p € (0,1), (¢,T) and (ap,8,A) depending on

d,e and py such that the following holds. Let u = Zle pidg, be a contracting
probability measure on G without a common fized point and with U(u) = py and

pi > aswellas p(g) € (p,1) forall 1<i<k.

Then there is h € G such that p) = %Je + %Zle Pidpg,n—1 15 (¢, T)-well-mizing
and (a, 8, A)-non-degenerate.
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Moreover, if gapy (uy) > € > 0 for H the closure of the subgroup generated by
the support of py, then there exist (¢, T) and (ag,0,A) depending only on d and
such that the above conclusion holds.

For Theorem we state a similar result for contracting on average measures.

Proposition 2.3. Let d and py be as in Theorem and let € > 0. Let pp =
Zle pidg, be a contracting on average probability measure on G without a common
fized point satisfying U(u) = py and p; > € for 1 < i < k. Then there is some
p€(0,1) and C > 1 depending on d,e and py such that the following holds.

The conclusion of Theorem holds provided that for some p € (p,1) we have

koo|a
2z 1P = plgi)]
k
k—22im1 p(9:)
Proposition [2.2] and Proposition [2.3] are proved in section 0] We are now in
a suitable position to state our main result. Theorem and Theorem [I.6] and

Theorem [I.7] follow from the main result Theorem [2.4] by applying Proposition [2:2]
and Proposition [2.3| as well as Lemma [9.5

<l-—=e.

Theorem 2.4. For every d € Z>1 and R,c,T, ag,0,A > 0 with ¢,a9 € (0,1) and
T > 0 there is a constant C = C(d, R,c,T, g, 0, A) depending on d, R, c,T, ag,0
and A such that the following holds. Let v be a finitely supported, contracting on
average, exponentially separated, (c,T)-well-mizing and (ao, 8, A)-non-degenerate
probability measure on G with supp(p) C {g € G : p(g) € [R™, R]} and satisfying

2
P >C (max{l,logs’i}) .
|Xu‘ hu

Then the associated self-similar measure v is absolutely continuous.

A similar result for Furstenberg measures of SLo(R) was established by the first-
named author [Kit23|. However in [Kit23] it is necessary to assume that ag €
(0,1/3) and we currently can’t prove an analogue of Proposition Therefore
in the case of self-similar measures we can deduce Theorem [1.5] and therefore
the examples of absolutely continuous Furstenberg measures in [Kit23] are more
intricate.

We next state a version of our main theorem for d > 3 that implies by

Proposition [2.2]

Theorem 2.5. Let d > 3 and R,c, T, 09,0, A > 0 with ¢,ap € (0,1) and T >
1. Then there is a constant C = C(d,R,¢,T,ap,0,A) such that the following
holds. Let p be a finitely supported, contracting on average, (c,T)-well-mizing
and (o, 0, A)-non-degenerate probability measure on G with supp(p) C {g € G :
p(g9) € [R7Y, R]}. Moreover assume that all of the coefficients of the matrices in
supp(U(u)) lie in the number field K and have logarithmic height at most L > 1.
Then v is absolutely continuous if

h : 2
hog Cmax{ljlog (L[K@]>} _
Xl am

As in (1.6) we do not assume in Theorem that all the entries of supp(u) are
algebraic and only require the latter for U(u). By the Tits alternative hg(,y > 0
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as long as supp(U(u)) generates a non virtually solvable semigroup and more-
over, Breuillard’s uniform Tits alternative [Bre08| results in uniform bounds for
hir(uy under suitable assumptions. The advantage of Theoremover is that
our result is particularly effective when U(u) has high entropy (for example when
supp(U(u)) generates a free semigroup) and is explicit in terms of the dependence
of the heights of the coefficients of supp(U(p)). In addition, Theorem applies to
only contracting on average measures and does not require supp(U(u)) to generate
a dense subgroup of SO(d).

2.2. Outline. We give a sketch for the proof of Theorem[2.4] Our proof extends the
strategy of [Kit23| to self-similar measures and generalises it to higher dimensions,
which in turn is inspired by ideas and techniques developed in [Hocl4], [Hocl7],
[Var19] and [Kit21].

Let u be a measure on G = Sim(R?) and let v;,72,... be independent s-
distributed random variables. For a stopping time 7 write ¢ = 71 ---v,. Note
that if x is a sample of v then so is ¢-z. The basic idea of our proof is to decom-
pose ¢-x as a sum

Gr=X1+ --+X, (2.1)

with X5, ..., X, independent random variables. We aim to show that for each scale
r > 0, a suitable stopping time 7 and an appropriately chosen integer k we can find
a decomposition (2.1)) such that for all ¢ € [n],

X, <C7'r and ) VarX; > Chr’l (2.2)

i=1

for a sufficiently large fixed constant C = C(d) > 0 only depending on d, where
Var X is the covariance matrix of X; and we denote by > the partial order defined
in The proof of Theorem comprises to establish and to deduce
from ([2.2)) that v is absolutely continuous. For the former we use adequate entropy
results and for the latter we work with the detail of a measure.

From Decomposition to Absolute Continuity. The notion of Detail s, (v) at
scale r > 0 of a measure v is a tool introduced in [Kit21] measuring how smooth
v is at scale r. Detail is an analogue of the entropy between scales 1 — H (v;r|2r)
used by [Var19], yet with better properties. Our goal is to deduce from that
our self-similar measure v satisfies for r sufficiently small,

sr(v) < (log 7’71)*2, (2.3)

which implies that v is absolutely continuous, as shown in [Kit21].

A novelty introduced in [Kit23] is a strong product bound for detail on R, which
we prove for R? in this paper. Indeed, if A1, ..., \; are measures on R?, a < b and
r > 0 with s,(\;) < a for some o > 0 and all » € [a,b] and 1 < i < k, then, as
shown in Corollary

S.yE(AL# % Ay) < Q(d)(F + Klka®b™?) (2.4)

for some constant @’(d) depending only on d. To prove (2.4), [Kit23|] introduced
k order detail, which we generalise to RY. We note that is stronger than the
product bounds [Kit21, Theorem 1.17] and [Varl9, Theorem 3] and is required in
our proof.
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To convert (2.2) into (2.3]), we first partition [n] as J; U ... U Jg such that the

random variables Y; = 3 jes, Xj satisty VarY; >4 C. Then we apply a Berry-

Essen type result to deduce that Y is well-approximated by a Gaussian random
variable and therefore that s,(Y;) < a for some constant o depending on C, with
a tending to zero as C' tends to co. Finally we conclude by that we roughly
get s, (v) < Q'(d)Fa = eFloe @ (d+loge)  We choose k = loglogr~! and therefore
show provided that « is sufficiently small in terms of d or equivalently C' is
sufficiently large. This proves that v is absolutely continuous.

From Decomposition on R¢ to Decomposition on G. It remains to explain
how to establish (2.2)) for k& < loglogr~!, which we first translate into an analogous
question on G. Indeed, we will make a decomposition of ¢, into

¢- = g1 exp(U1)g2 exp(U2) - - - gn exp(Up) (2.5)

for random variables g1,...,g9, on G and Uy, ..., U, on the Lie algebra g of G. In
order to express ¢,v as a sum of random variables using (2.5)), we apply Taylor’s
theorem in Proposition [3:4] to deduce

o g gav+ Y G, (2.6)
i=1

where
G = Du(g9192- - giexp(u)git19i+2 - * Gn?¥)|u=0-

For notational convenience we write in this outline of proofs

g =g1---9i and g =giy1-gn
and denote
pz = Dy (exp(u)r)|u=0-

Then by the chain rule, as shown in Lemma [3.3
Var(Gi(Uy)) = p(g5)? Ulgy) Var(pgr.(U:)U (g0)" .

We will use the (¢, T)-well-mixing and («pg, 6, A)-non-degeneracy condition to
ensure that

Var(G(Ui)) = erp(gh)*6r(Ui)1 = extr(p(gi)Usi)] (2.7)

for some constant ¢; > 0 depending on d, ¢, T, g, and A and where tr(U;) is the
trace of the covariance matrix of U;. This will be shown in Proposition [8:3] by
ensuring that each of the g; is a product of sufficiently many ~; such that we can
apply well-mixing and non-degeneracy as g;x is close in distribution to v. In fact,
we exploit suitable properties of the derivative of p,, and use a principal component
decomposition.

So in order to achieve (2.2)), we require that

Ul <p(g)~'r and > tr(p(g))Us) > CP¢i (loglogr™")r?  (2.8)
=1

for the constant C from (2.2). Note that to arrive at (2.2)) we replace U; by C~1U;
and use (2.7)).
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Entropy Gap and Trace Bounds for Stopped Random Walk. We prove
by establishing suitable entropy bounds on GG and then translate them to the
necessary trace bounds. We use the following notation. For a random variable g
on G and s > 0, we define tr(g; s) to be the supremum of all ¢ > 0 such that we can
find some c-algebra &/ and some /-measurable random variable h taking values
in G such that

|log(h™'g)| <s and E[tr(log(h'g)|e?)] > ts?,

where log : G — g is the Lie group logarithm and we assume that h~!g is supported
on a small ball around the identity. The reason we need to work with the conditional

trace is to use (2.12)).
To establish (2.8) we therefore need to find a collection of scales s; = p(gi)~r
such that

n
Ztr(qT; s;) > Cci'loglogr™! (2.9)
i=1
for C' an absolute constant depending only on d.
To show ([2.9) one converts entropy estimates for ¢, into trace estimates, using
in essence that for an absolutely continuous random variable Z on R? we have

H(Z) < glog (226 -tr(Z)) , (2.10)

where H is the differential entropy and tr(Z) is the trace of the covariance matrix
of Z. Equality holds in if and only if Z is a spherical Gaussian.

We will work with entropy between scales on G. Precise definitions are given
in section [f] For the purposes of this outline consider the entropy between scales
defined for a random variable g taking values in G, two scales r1,7o > 0 and a
parameter a > 0 as

Heo(g;r1|r2) = (H(98r1,0) — H(Sr1,a)) — (H(98rs,0) — H(Srs,0)),

where H(-) is the differential entropy and s, , is a smoothing function supported
on a ball of radius ar and satisfying for ¢ = dim g that

tr(log(s,q)) < &r* and  H(s.,.) = glog 2mer? + Od(e*‘lz/‘l) —Og,a(r). (2.11)

The function s, , is chosen such that H(s,,) is essentially maximal while being
compactly supported, which is necessary towards establishing . The parameter
a > 0 is useful as it gives us a uniform error bound in (2.11). By using moreover
, we relate in Proposition entropy between scales and the trace by

tr(g; 2ar) > a~2(Ha(g; 712r) — Oa(e™ /%) — Oy a(r)). (2.12)
For k > 0 denote by
Te=1nf{n >1: p(y1 - vn) < K}

S

It is then shown in Proposition for r1 < rq and with r; < mﬁ that as kK — 0
the following entropy gap holds:

h
Hey(qr,;r1lr2) > ( ”| — d) logk™ +€-logrs + 0,.44(logr™). (2.13)
X

We will give a sketch of the proof of (2.13) in the beginning of section [7] and just
note that the main point of ([2.13) is that most of the elements in the support of
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Su
g-, are separated by x™xT, which by standard properties of entropy implies that

H(qr, Sr1,0) ~ H(gr,) + H(Sp,,q). As we require to use a stopping time in (2.13)),
we will need to work with ¢, instead of a deterministic time throughout our proof.

By it follows, assuming h,/|x,| is sufficiently large and « is sufficiently
small, that

Spo h
Ho(qy, ;50T |KZT) >4 —log kL. (2.14)
|Xu|

Using and (2.12)), we show in Proposition|[7.5|with setting S = 2max{S,,, h,.}

that for a collection of scales

_S Py
s; € (Kxel | g2MxuT) with 1<i<m

and m being a fixed constant depending on S, and x,, that

™ A g !
g tr(qr,.; 8i) >a “max{l,log”} . (2.15)
im1 IXul hy
. o : R
As we explain at the beginning of section|7} the error term max {1, log h—”} arises
i

from the error Og(e=%"/4) in ([2.12).

Conclusion of Proof. The trace bound is not sufficient to establish
as we require a lower bound depending on loglogr—!. To achieve such a bound and
to conclude the proof, we concatenate several decompositions arising from
and therefore develop a suitable theory of such decompositions in section

It therefore remains to find sufficiently many parameters k1, ..., Ky, such that
the resulting intervals

s _ M s _Ptu s _PMp

( Xl n%\xu\)’ (Hlxu\ H22\X/_L|)’ (H\xm I{Zflxu\)

K1 sk 2 ke m

x|
are disjoint. As we require that all of the scales are > r, we set K1 = r ¥ On the

other hand, we want all scales to be sufficiently small. We for example therefore
m

L
require that kn ' < e 1% Thus setting Kit1 = K7, thereby ensuring that the

resulting intervals are disjoint (provided h,/x, is sufficiently large), a calculation
shows that the maximal m we can take is
113“_111—1 loglog 7"
max ,ogh— oglogr ~ <m <, loglogr ~.
o

Combining all of the above, it follows that when summing over all the scales

h S, 7° )
Ztr(qm1 $8i) > |XH‘ max {1,10g h#} loglogr™".
i 13 1

We therefore require in order to satisfy (2.9)) that

hy, Al
’max{l,logsl} 20361_1,
|Xu| hu

which leads us to the condition from Theorem [2.4]and concludes our sketch of proof.
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2.3. Notation. We use the asymptotic notation A < B or A = O(B) to denote
that |A] < CB for a constant C' > 0. If the constant C' depends on additional
parameters we add subscripts. Moreover, A < B denotes A < B and B < A.

For an integer n > 1 we abbreviate [n] = {1,2,...,n}.

Given two positive semi-definite symmetric real d x d matrices M; and Ms we
write

M, > M, if and only if 2T Mz > 2" Moz for all z € RY. (2.16)

For a random variable X on R? we denote by Var(X) the covariance matrix of
X and by tr(X) = tr Var(X) the trace of the covariance matrix.

Given a metric space (M, d), p € [1,00) and two probability measures A; and Ay
on M, we define

Wp(A1,A2) = inf </MXM d(x,y)? dy(z, y)) ' , (2.17)

YEL(A1,A2)

where T'(A1, A2) is the set of couplings of A; and \g, i.e. of probability measures ~y
on M x M whose projections to the first coordinate is A1 and to the second is As.

Throughout this paper we fix d > 1 and write G = Sim(R?), except in section |§|
where G is an arbitrary Lie group. The Lie algebra of G will be denoted g and
¢ = dim g. We usually consider a fixed probability measure y on G and independent
samples 71,72, ... of u. We write for kK > 0

Gn =71 Tn and 7. =1inf{n > 1; p(yn) < K}.

When p is a probability measure on G’ = Sim(R?) and v is a probability measure
R? we denote by p * v the probability measure uniquely characterized by

Gws)(h) = [ [ $g) dulg)ivia
for f € C.(RY). When p = >, Didg, is finitely supported, then

TESZES Zp,»giy, (2.18)

where g;v is the pushforward of v by g; defined by (g;v)(B) = v(g; ' B) for all Borel
sets B C R%.

Given a random variable g on G we denote, as defined in section[6] by H(g) the
Shannon entropy when g is discrete and the differential entropy when g is absolutely
continuous. The various notions of entropy between scales as well as tr(g,r) are
defined in section [6l

We will denote by m¢ a normalised Haar measure on Sim(R?). Moreover if
H C O(d) is a closed subgroup, we will denote by my the Haar probability measure
on H. For a probability measure j;; on H, the L2-spectral gap of iy in H is defined
as

gapH(MU) =1- HTMU|L3(G)H7 (219)

where (T}, f)(k) = [ f(hk)duu(h) for f € L?*(H) and L3(H) = {f € L*(H) :
mg(f) = 0} for || o || the operator norm.
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2.4. Organisation. In section [3| the Taylor expansion bound is proved and
we establish several probabilistic preliminaries. In section [ we prove and generalise
Theorem We discuss order k detail in section [5] establish as well as show
how to convert into suitable detail bounds. A theory of entropy on general
Lie groups suitable for our purposes is developed in section |§| and (2.12)) is shown.
In section 7 we prove and (2.15)). Finally, we deduce Theore% as well as
Theorem [2.5] in section [§] by developing a decomposition theory for stopped ran-
dom walks. We study (¢, T')-well-mixing and (ayg, 6, A)-non-degeneracy in section |§|
and prove Proposition and Proposition In section we discuss explicit
examples and in particular we prove Corollary Corollary Corollary
Corollary and Corollary

3. PRELIMINARIES

In this section we first study the derivatives of the G action on R? in section
As we want to work with conditional variance and entropy, we discuss regular
conditional distributions in section and then versions of the large deviation
principle in section [3.3]

3.1. Derivative Bounds.

3.1.1. Basic Properties. Let G = Sim(R?) with Lie algebra g = Lie(G). For z € R?
consider the map
wy 1 g — RY, u — exp(u)x.
Denote by 1, = Dow, : g — R? the differential at zero of w,.
Note that we can embed G = Sim(R?) into GL441(R) via the map

g <T(9)U(g) b(9)> .

0 1
Therefore we can write u € g as u = (2 ) with o € R-504(R) and 8 € R%. Thus it

follows that ¥, (u) = u(7) = ax + 5. With this viewpoint we also use the following
notation
ur =, (u) =ax+ (3.1)
The above embedding endows g with a coordinate system, a natural inner prod-
uct and denote by | o | the associated norm. We collect some properties about
the derivatives of w,,, and the map g. For notational convenience we denote
throughout this subsection by % the derivative D, f of a function f : R% — R
at a vector € R%. We furthermore write ¢ = dim g.

Lemma 3.1. The following properties hold:

(i) Let g = pU +b € G. Then for all x € R?, it holds that % = pU and all of
the second derivatives of g are zero.
(i) Whenever |u| <1 and 1 <1i,j <,

Ow,,
aui
(1ii) For any x1,x2 € g we have that
V21 — Ya, || <a |21 — 22|

(iv) Let u € g\{0}. Then there is a proper subspace W, C R? and a vector
up € R such that if 1, (u) = 0 then x € ug + W, for x € R4

Ow,,

aui ou j

<4 |z

L4 lz| and ‘
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(v) For all ,A > 0 there is § > 0 such that the following is true. Let v € g
be a unit vector. Then there is a proper subspace W, C R% and a vector
vo € R? such that if

z € RN\By(vg +W,) and |z|<A
for Bg(vg + Wy,) the 0-ball around vo + W, then
¢ (v)] = 6.

Proof. (i) follows by definition and (ii) by compactness. For (iii) using notation
(3.1)) it holds for u € g with |u| <1 that
[V, (1) = Y, (u)] = |y — awa| < [la] - 21 — x5
<4 |Oé| . |J)1 — $2| S \u| . |.T1 — .’IJ2|
using that the operator norm ||o|| is equivalent to the inner product norm on g. To
show (iv), we may assume that 5 € Im(«) as otherwise there is nothing to show.

Then set W, = ker(a) and uy € R? such that aug = —43, implying the claim. (v)
follows from (iv) by continuity. O

For u € g\{0} we define
Eo(u) = RN\ By(ug + Wy,).

Given a random variable U taking values in g, we say that u € g is a first
principal component if it is an eigenvector of its covariance matrix with maximal
eigenvalue. Set

Eo(U) = | Eolv),
veEP
where P is the set of first principal components of U. Similarly if ;1 is a probability
measure which is the law of a random variable U then we define Eg(u) = Eg(U).
Recall that given a random variable U in R¥, we denote by tr(U) the trace of the
covariance matrix of U.

Proposition 3.2. For all theta, A > 0 there is some § = 6(d, 0, A) > 0 such that
the following is true. Suppose that U is a random variable taking values in g and
that x € RY with |z| < A. Suppose that x € Eg(U). Then

tr(Uz) > ¢ - tr(U).

Proof. We used here the notation that 1, (U) = Uz. Write £ = dimg and
let wq,...,wy be an orthonormal basis of eigenvectors of the covariance matrix
Var(U). We may assume that U has mean zero. Denote by U; = (U, w;) = UTw;
for 1 <4 < ¢ and assume without loss of generality that Var(Uy) > ... > Var(Uy)
so that w; is a principal component. Then the (U;)1<i<¢ are uncorrelated since for
i FJ
cov(U;, U;) = E[U;U;] = E[{(UTw;, UTw;)]
=E[(UU w;, w;)] = (Var(U)w;, w;) = 0

and it holds that U = Zle Ujw; and that Var(Uy) > $tr(U). Also by Proposi-
tion (v) it holds that |4, (w1)| > §. We then compute

¢
> Ullpa(wi)?
i=1

tr(pa(U)) = Eflp,(U)2] = E > E[UFlpa(uwn)?] > St (U).
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O
Lemma 3.3. Let U be a random variable on g and let g € G and x € R?. Denote
¢ = Dygexp(u)z|u=o-
Then
Var(((U)) = p(9)* - U(g)th o Var(U) o 4 U(g)"
Proof. Note that by the chain rule ((U) = p(9)U(g)%.(U) and therefore

Var ((U) = p(g)*U(g) Var(4,(U))U (9)T

Viewing v, : g — R? as a matrix with our choice of coordinate system we write
Y2 (U) = 1, o U and the claim follows. O

3.1.2. Taylor Expansion Bound. The aim of this subsection is to prove the follow-
ing proposition, which crucially relies on the G action on R¢ having no second
derivatives.

Proposition 3.4. For every A > 0 there exists C = C(d, A) > 1 such that the
following holds. Letn > 1, r € (0,1) and let vV, ... u™ € g. Let g1,...,9, € G
with
plg) <1, (gl <A and  [uP| < plgr---gi) e < 1.
Let v € R? with |[v| < A and write
= grexp(u™) - g, exp(u™)v
and

Gi = Do(g192 - -~ gi exp(U)git1 " In—-19nV)
and let

S =g gav+ 3 GO,
=1

Then it holds that
|z — S| < C"plg1 -+ gn) "1

To prove Proposition [3.4] we use the following version of Taylor’s theorem.

Theorem 3.5. Let f : R* — R be a C?-function, let Ry,..., R, > 0 and write

2
U=[-Ri,Ri] X ... x[-Ry, R,]. Forintegersi,j € [1,n] let K;; = supy |$aj;j\
and let x € U. Then we have that

n

]f(x) -yt
i=1 v

n

1
S 5 Z xiKi,jxj~

i,7=1

=0
Lemma 3.6. Let

wigxg— R, (2,y) — exp(z)gexp(y)v
for fixed g,v. Then if |x|,|y| <1 it holds that

‘510(93, y)

m <a p(g)|v].
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v

Proof. Let © = exp(y)v and note that by compactness \%\ <4 |v|. Now let © = go.

Therefore by Lemma (i), 122 < p(g) and by compactness ||%|| <4 1. We
conclude therefore by the chain rule

ow
0x;0y;
Proposition 3.7. There exists a constants C = C(d) > 1 such that the following
holds. Suppose that n € Zwq, g1,42,---,9n € G and let M), ... u™ € g be such
that [u®] < 1.
Let v € R? and

z = g1 exp(uM)ga exp(u®) - - - g, exp(u™)w.

90
a0

ow

Oyi

.‘a@

<a p(g)|v].

(]

Then for any 1 <4,j < { and any integers k, ¢ € [1,n] with k < £ we have
0%z
oM gtV
i j
Proof. First we deal with the case k = £. Let

u ) gy exp(u™)o.

‘ < C"p(g1---ge)lges1 exp(

a=aq exp(u(l))92 eXp(u(z)) T exp(u(kfl))gk

and

(k+1)) (k+2))

b= gri1exp(u Gr+2 exp(u - gn exp(ul™ )

and let b = exp(u®)b. We have
oz 9z 0b
oul b guM’
Note that by Lemma (i) all of the second derivatives of x with respect to b are
zero and therefore

2 -
‘wﬁgiﬁg‘g'%gg;@- (32)
Thus by Lemma (i) and (ii) we conclude that
[)u(ffgu(k) <a pla)|b] < C™p(g1---ge)|b|
g J

for a suitable constant C' > 1 using that p(exp(u(?)) is bounded.
For the case k < £ we consider
a1 = gy exp(uM)gz exp(u®) - gi_1 exp(uV) gy
az = g1 exp(u ) gy o exp(ut?) .. g,
(+1)y 2y g, exp(u™)o.

b= gr+1exp(u get2 exp(u

Then we consider b = exp(u)ay exp(u®)b and as before we conclude
Pr  Ox 0%
auPou® b outM guth)
[ J 1 J

We again arrive at (3.2) and deduce the claim as in the case k = £ using Lemma
instead of Lemma (i). O
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Proof. (of Proposition We first show that there is a constant C; = Cy(A,d)
depending on A such that for all 1 < i < n we have that
|gi exp(ul?)) -+ g exp(u™)o] < CP7F1 (3.3)

Indeed, we note that for any u € g with |u| < 1 and vy € R? it holds that | exp(u)vo—
vo| < Ca(lve| + 1) for an absolute constant Cy = Ca(d). Without loss of generality
we assume that Cy(d) > 1. Therefore |exp(u(™)v| < Cy(2|v] + 1). Next note that

as p(gn) <1,
|gn exp(ul™)v] < |gn exp(u™)v — g, (0)] + |gn (0)]
< plgn) exp(u™)o] + [b(g. )|
< Ca(20v] + [blgn)| +1) < 4C2(A +1),

using that p(g,) < 1 and that |v| < A and [b(gn)| < A. Continuing this argument
inductively, we may conclude that

lgs exp(u®) -+~ g exp(u™)v| < 4"7HCFTHH A+ (n— i) + 1),

which implies (3.3]).
By applying Theorem [3.5|together with Proposition[3.7)and (3.3)) for a sufficiently
large constant C' depending on A and d in each of the coordinates of RY,
& — S| < dn®C"p(g1 -+~ ga) 11,
which implies the claim upon enlarging the constant C. (]

3.2. Regular Conditional Distributions. In this section we review the defi-
nition of regular conditional distributions that will be used in section [f} On a
probability space (2,.%,P), we denote the conditional expectation by E[f|</] for
f € LYQ, Z,P) and a o-algebra & C #. Given two measurable spaces (Q,.%%)
and (Qg,9%), recall that a Markov kernel on (Q1,4%) and (2, 9%) is a map
Ky X o — [0,1] if for any As € &7, the map k(-, A3) is o7-measurable and
for any wy the map Ay — x(wq, Az) is a probability measure.

Definition 3.8. Let (Q2,.7,P) be a probability space and let & C .F be a c-algebra.
Let (E,€) be a measurable space and let Y : (Q,.7) — (E, &) be a random variable.
Then we say that a Markov kernel
(Y|): Qx&—10,1]
on (Q,.F) and (E,§) is a regular conditional distribution if
(Y|e)(w,B) =PlY € B|#](w) = E[ly-1(p) | #](w).
In other words,
E[(Y[)(-, B)1a] = P[AN{Y € B}]

forall A € o .

Regular conditional distributions exists whenever (2, #,P) is a standard prob-

ability space. To give a construction, recall (c.f. section 3 of [EW11]) that there
exist conditional measures P< uniquely characterized by

B(flof)(w) = [ fap.
Then
(¥]a#)(w,) = Y.

w
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Indeed,
(Y|e)(w, B) = E[ly-1(p)|](w) = /1y—1(3) dP? =P (Y ~1(B)) = Y.P¥(B).

We denote by [Y'|</] a random variable defined on a separate probability space with
law (Y].<7).

We recall that given two further o-algebras ¢,% C %, we say that they are
independent given & if for all U € 4 and V € 4%,

P[U NV |«/] = P[U|</|P[V | /]

almost surely. Similarly, two random variables Y; and Y5 are independent given
& if the o-algebra they generate are. Note that if Y; is .@/-measurable, then it is
independent given &7 to every random variable Y5.

Given a topological group G and two measures p; and ps we recall that the
convolution g1 * po is defined as

(11 % p2)(B) = / / 15 (gh) dpus (g)dps (g)

for any measurable set B C G.

Lemma 3.9. Let (Q, #,P) be a probability space, G be a topological group and g, h
be G-valued random variables. Let of C F be a o-algebra and assume that g and
h are independent given <7 . Then the following properties hold:

(i) (gh|e?) = (g|<) = (h|<) almost surely.
(i) [ghle?] = [g|</] - [h|</] almost surely.

Proof. To show (i) we note that by assumption g and h are independent with respect
to P for almost all w € Q. This implies that

Eper [f(gh)] = Eper [Eper [f (gh)|D]] = Bz, 20y nper xpr [ (9(20) R(21))],
proving (i). (ii) follows from (i) on a suitable separate probability space. O
3.3. Large Deviation Principle. In this subsection we review various versions
of the large deviation principle. Applying the classical large deviation principle to

p, we can state the following. Throughout this section we denote by p a measure
on G and by 71,72, ... independent samples from pu.

Lemma 3.10. Let p be a contracting on average probability measure on G. Then
for every e > 0 there is § = 6(u,e) > 0 such that for all sufficiently large n,

n

IP’[ Inxu —log p(v1) -+ p(m)| > m] <enm
We generalise Lemma to stopping times.

Lemma 3.11. Let p be a compactly supported contracting on average probability
measure on G and let k > 0 and denote

7o =inf{n >1: p(y1...7) < K}
Then for every € > 0 there is 6 > 0 such that for sufficiently small k

Pl

log k1

|Xu|

—1
Tr ‘ > e¢log nfl} < g Ologn



INHOMOGENEOUS AND CONTRACTING ON AVERAGE SELF-SIMILAR MEASURES 23

Proof. If T, > 10@“? +elog k™! then

PO Vtoget g o)) 2

which by Lemma has probability at most e=%1er™" for some § > 0 and suffi-
ciently small .

Write R = inf{p(g) : ¢g € supp(u)} € (0,1), which is non-zero since y is com-
logk ™!

T elog k™! happens there must be
"

pactly supported. Therefore when 7, <

some integer

1

1

1 -1 -
{ogn og kK ~cloghm

| IOgR‘ ’ |Xu‘
such that
log p(71 -+ yk) < log k.

Note that for sufficiently small x we have k|y,| < logx™
fore

! —elx,||log R| and there-

log p(y1--- ) <logk < k(xu +¢ellog R|x,)- (3.4)

By Lemma the probability that (3.4) happens is < e~k = ¢=Oullogr™) fo;
some &’ > 0. Since there are at most O, (log x~*) many possibilities for k, the claim
follows by the union bound. O

From Lemma [3.10] and Theorem [1.2) we can deduce the following corollary.

Corollary 3.12. Let p be a contracting on average probability measure on G. Then
for every e > 0 there is 6 = 6(p, &) > 0 such that for all sufficiently large N

P[3n > N p(y1--9m) = exp((u +e)n)| < e (3.5)
and
B[ 3n,m > N : bl -+ ym) = by -+ )| = exp((xy, + ) min(m, n))| < e~

Proof. (3.5]) follows from Lemma and Borel-Cantelli. For (3.12]) note that when
m>n-+1,
b(v1 ) = b))l < p(yr - ) [b(ynr -+ )|
Therefore by (3.5) it suffices to show that for sufficiently large N we have that
PEk > 1 : [b(yr--ye)| > eV < eV,

which readily follows from Theorem [1.2| and Borel-Cantelli as b(y; - - - %) converges
exponentially fast in distribution to v. (I

The next lemma was proved in [Kit23].

Lemma 3.13. (Corollary 7.9 of [Kit23]) There is a constant ¢ > 0 such that the
following is true for all a € [0,1) and n > 1. Let Xq,...,X,, be random variables
taking values in [0,1] and let mq,...,m, > 0 be such that we have almost surely
E[X;|X1,...,Xi—1] > m; for 1 <i<n. Suppose that Z?zl m; = an. Then

1
logP | X7 +...+ X, < ina < —cna.

We generalise Lemma to higher dimensions.
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Lemma 3.14. There is some absolute constant ¢ > 0 such that the following is
true. Suppose that X1,..., X, are random d x d symmetric positive semi-definite
matrices such that X; < bl for some b >0 and

E[X”Xl, [N 7Xi—1] Z mlI

Suppose that Y, m; = an. Then there is some constant C' = C(a/b,d) depending
only on a/b and d such that

log]P’[Xl—i—-~-+Xn < %I] < —can+C
Here we are using the partial ordering (2.16).

Proof. For convenience write Y,, = X;+...4X,, and choose a set S of unit vectors in
R? such that if y is any unit vector in R? then there exists « € S with ||z —y|| < &.
Note that the size of S depends only on d and a/b.

By Lemma [3.13] we know that for any z € S,

logP xTYnx < %] < —can.

Let A be the event that there exists some z € S with 7Y,z < . We have that
log P[A] is at most —can + log |S|. Tt suffices therefore to show that on A® we have
Y, > e,

Indeed let y € R? be a unit vector. Choose some x € R? with ||z — y|| < a/8b.
Suppose that A® occurs. Note that we must have Y;, < bnl and therefore ||Y,,|| <
bn. This means

yTYny =aY,x + :cTYn(y —xz)+ (y— z)TYny
- an o a an
9 — =
2 8b 4

and result follows. O

4. POLYNOMIAL DECAY OF SELF-SIMILAR MEASURES

In this section we prove Theorem which we generalise to arbitrary complete
metric spaces and also deal with measures that are not necessarily finitely sup-
ported. While existence and uniqueness of the self-similar measure v is known, we
include a short proof as the argument is needed to establish the polynomial decay
of v. The latter follows from first showing that v is approximated very well by
W™ % 0, and then applying the large deviation principle. For only contractive on
average self-similar measures we show in section [£.2] a polynomial lower bound on
v({jz] > R}).

4.1. Existence, Uniqueness and Polynomial Decay of Self-similar Mea-
sures. Let X be a complete metric space and for a map g : X — X denote by p(g)
the Lipschitz constant of p defined as

p(g) =min{p >0 : d(gx,gy) < p-d(x,y) for all z,y € X}.

Consider the semi-group S(X) = {g : X — X such that p(g) < oo} endowed with
the compact open topology. We note that p may not be continuous, for example
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when X = R. Let p be a probability measure on S(X) such that logop € L(u).
Then the Lyapunov exponent

Xu ::Eg~ui—1ogp(uﬂ::t/kogﬁﬂg)du(g)

exists and is finite. We denote for x € X and R > 0by Br(x) ={y € X : d(z,y) <
R} the R-ball around x.

Theorem 4.1. (Generalisation of Theorem Let X be a complete metric space
and let i be a compactly supported probability measure on S(X) with logop € L' (1)
and assume that x, < 0. Then there exists a unique probability measure v on X
such that p* v =v. Moreover, if p is bounded on supp(u), there is a = a(p) > 0
such that for all R >0 and z € X,

v(Br(z)) <z R™. (4.1)
For notational convenience write
Ap = sup d(xv ’Yx)a
yEsupp(p)

which is finite since p is compactly supported. To show that there exists a unique
stationary measure v, we can drop the assumption of p being compactly supported
as long as A, is finite for every x € X.

Proof. (of existence and uniqueness in Theorem [4.1)) To be explicit, assume that
V1,72, - - - are sampled from the probability space (Q, % ,P). Observe that by the
large deviation principle (Lemma and Borel-Cantelli, there is A € (0, 1) such
that for almost all w €  and n sufficiently large (depending on w),

p(r1(w) - m(w)) < p(ri(w)) - plyn(w)) <A™
Given ¢ € X and w € ) write

Zn(@,w) = (W) - W),

Then almost surely, z,(z,w) is a Cauchy sequence. Indeed, almost surely for k
sufficiently large d(z1(z,w), zx11(z,w)) < AzN* and thus for sufficiently large n
and m,

max{n,m}—1
d(zn(z,w), 2m(x,w)) < Z d(zi(z,w), zp+1(z,w))
k=min{n,m}
o )\min{n,m}
<A b=, 4.2
<4 Y N=A (4.2)

k=min{n,m}

which goes to zero as min{n, m} — oo. Therefore, since X is complete, the limit
limy, o0 2 (2, w) exists for almost all w € Q. The latter limit does not depend on x
as for almost all w and sufficiently large n, d(z,(z,w), z,(y,w)) < A"d(z,y), which
goes to zero. Thus there is a random variable z : & — X such that for almost all
w,

z(w) = nhanéo zn(T,w) = HILH;O (W) ml(w)z

for all z € X.
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Let v be the distribution of z. The measure v is stationary since for any contin-
uous bounded function f on X, by dominated convergence,

(n*v)( //fgzdu )dv(2)
— [ [ ftoz@n dntg)ape)

= Jin [ [ gz (w.0) dulg)p(e)
= lim [ f(zpp1(7,w)) dP(w) = v(f)

for any =z € X.
To show that the stationary measure is unique, let 1 be a further stationary
measure. Then for all n > 1,

[ @ ane) = [ [ #tgm) du @inta) = [ [ Fento)) dbyino).

Letting n — oo, the right hand side tends to v(f) by dominated convergence. [

To complete the proof of Theorem it remains to show the estimate . To
do so, we establish that p*™ x4, converges to v exponentially fast. For a function f :
X — R, we denote by ||f||sc = sup,ex |f ()| and by Lip(f) = sup, e x LIl
the Lipschitz constant of f.

Lemma 4.2. Let X, u, v and A, be as in Theorem [[.1. Then for a bounded
Lipschitz function f: X - R andn > 1,

\ [1@ w6~ [ >]<<MA mac{]|f]]oe, Lip(f)}e~".

Proof. We continue with the notation from the proof of Theorem [£.1} Denote by F,,

the event that {p(y1) - p(v,) < A"} and by E,, = (s, F. Then by Lemma
P[ES] <, e°" for some § > 0. We have shown in (£.2) that for w € E,,,

Ay

d(Z(W)7Zn(wi)) < 1—\

A"

To conclude,

‘/f ) dv(z /fgm dp™| <

[176) = fen(ar )| dBe)

/ 1£(2) = F(2n(2, )] dP(w)
E,

+ [ 156 - fenlaw)] dP)
Ly AgN"Lip(f) 4 2P[ET]]] f]oo
showing the claim for a sufficiently small ¢ such that max{e™, A} < e~°. O

Proof. (of ([L.1))) Let z € X. We first apply Lemma [£.2]to a suitable function. Let
Fr be the function from R — R that is 0 on [-R/2, R/2], 1 on [—R, R|® and the
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linear interpolation between these intervals. Then we consider the function on X
defined for y € X as

fra2(y) = Fr(d(y, x)).
Note that fr . is Lipschitz with Lip(fg.) < 2R~!. Thus by applying Lemma
forn >1,

W(Br(z)") < / Frwdy < (4™ % 6,) (Brja(@)®) + Op(AsR1e™m).  (4.3)

We next give a suitable bound for (u*" * 6;)(Bgr/2(x)¢). If v1,...,7 € supp(u)
then

n
(@, ymw) <Y dln - yioamm i)
=1

<A1+ pm) 4+ o1 Y1)
Let € > 0 be a fixed constant. Then note that

(157 5 8)(Bra@)) = [ 1500 (20 (,0)) dB(0)

< [ tngereonle ) dB) + PIES)

en

Note that if w € E,,, then for all m > en it holds that p(g1 - - - g ) < A™. Thus for
such an w and psup = SUPyegupp(u) P(9):

d(z, 2n(2,0)) < Ag(L+ p(71) + o+ p(31 - Vpne)=1) + A +...A™)

1

<A, (1)\ + ne max{1, psup}”e)

< D1A.(1+ D%*)
for suitably large constants D; and Dy depending on p and sufficiently large n.
Choosing n such that 4D1A,(1+ D3¢) < R<4D A, (1+ DSH_UE) or equivalently
n =<, Llog R it therefore follows that

(1" % 82) (Brya(2)) < PIES,) < 7%,
Combining the latter with (4.3)), we conclude that
V(Br(z)°) <, AgR™ e ™ 4 e7%" <, A,LRTIR7O/9)  R700) «, R~

for a suitable constant a > 0. (]
4.2. Polynomial Lower Bound for Partially Expanding Self-Similar Mea-
sures. Returning to self-similar measures on R?, we show a lower bound on v(B§)
if p is only contracting on average and not supported on contractions with a com-
mon fixed point. On the other hand, if i is not only contracting on average, then the
support of ¥ may be compact or non-compact. Indeed if for example p = %(5g1 +6g,)

with g1(z) = %m + 1 and go(xz) = —x, then v has compact support. On the other
hand, when we change g to go(2) = 2 + 1, the support of v is non-compact.

Lemma 4.3. Let y1 be a only contractive on average probability measure on Sim(R%)
that is supported on finitely many similarities without a common fized point. Then
there is a1 = ay(p) > 0 such that for x € RY,

V(Br(2)%) >0 B (4.4)
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Proof. We note that it suffices to prove the claim for a fixed € RY. Write pu =
Zg Pg04 and let go € supp(p) be a map with p(go) > 1 and pg, > 0. For convenience
write po = p(go), Po = Py, and denote by zo the unique fixed point of gg, which
exists since gg !'is contractive and has a unique fixed point. Since the support of
v contains at least two points, we may choose r > 0 such that v(B,(z¢)¢) > 0 and
note that g¢f B, (z0)¢ C Bypr(z0)¢. Therefore

v(Bpyr(x0)®) = (1" % ¥)(Bygr(20)%))
= (podgy * V) (Bpgr(20)%)
> piv(g0 " Bpyr(w0)°)
> pov(Br(w0)°).

To prove the claim, let R > 1 be such that pjr < R < pg‘Hr for an integer n > 0.

In particular log R < 2nlog pg for sufficiently large R. Setting oy = —;i’og gpgo >0,

V(BR(LU())C) > V(Bpgr(fo)c) >># pg _ e(logpo)n >>;t e—oq-(?nlogpo) = R,

5. ORDER k DETAIL

The goal of this section is to prove the product bound and to show how
to convert (2.2)) into suitable estimates for detail. We first recall in section the
definition of the detail s,.(A\) of a measure A\ on R? at scale r > 0 that was first
introduced by [Kit21]. We then expand the definition and results of order k detail
sEf“)(/\) of a measure from [Kit23] to measures of R<.

As mentioned in the outline of proofs, the advantage of using k-order detail
over detail is that it leads to stronger product bounds. Indeed, we will show in
Lemma [5.3] that

sV 5w ) < s (A1) - s (An) (5.1)

for measures A1, ..., \, on R¢ and r > 0. Moreover, if sq(ﬂk)(/\) < « for all r € [a,b]
and some k > 1 then we show in Proposition for a constant @’(d) depending
only on d that

s, vi(A) < Q'(d) (o + klka®b™?). (5.2)
Combining (5.1) and (5.2)), we deduce the strong product bound (Corollary

mentioned at (2.4)) in the outline of proofs.

In section we show that the difference in the detail of two measures is
bounded in term of their Wasserstein distance. Finally, in section we show
how to convert the conditions from into good estimates for detail. The latter
requires Berry-Essen type results, the Wasserstein distance bounds from section[5.3]
(5.1) and a suitable partition of » . X;.

All of these results will be used in section &

5.1. Definitions. Denote by 7, the standard Gaussian density on R? with covari-
ance matrix y - I, i.e.

_ 1 ] ?
) = G (<15
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Moreover, we write
0
(1) —

Given a probability measure A on R? the detail of A at scale r > 0 is defined as
5:(0) = 7* Q) X+ 2|

where Q(d) = |\77§1)||*1 iT(£)(£)~%? and note that by Stirling’s approximation
d=1/2 < Q(d) < ed='/? for all d > 1. Moreover, r*Q(d) = ||n, 1)|| 1 and therefore
s-(A) <1 for every probability measure .

Proposition 5.1. [Kit21, section 2] Let A and p be probability measures on R?.
Then the following properties hold:

(i) Suppose that there is B > 1 such that s,.(\) < (logr=")=F for sufficiently
small r. Then X is absolutely continuous.

(1) sr(XA*p) < s.(N).

Definition 5.2. Given a probability measure A\ on R? and some k > 1 we define
the order k detail of A at scale r as

s® ) = Qa)* ||A x|,

k k
where 773(, ) = %ny.

5.2. Bounding Detail. We have the following properties:
Lemma 5.3. Let k> 1 and let A1, Ao, ..., A be probability measures on R?. Then
SV % Xg %o M) < sp(A1)sa(A2) - - s (Ag). (5.3)
In particular, for any probability measure X on R and k > 1,
s <1 (5.4)

Proof. Recall that by the Heat equation 8%771/ (x) =13 Z?Zl C,%;ny(x) and therefore
by standard properties of convolution

n(k) o o n
kr2 = . 5 lkr?
11,4..,Zk 1 ax axik
d d
1 02 1 0?
- (iﬁa e ) ( > e ) o <2Zaxz”r2>
1=1 =1 ?
k times
D )

k times

This concludes the proof of (| @ as

A% xS = [0S % A w0 e M@
< 0D - 1Az #0311+ 0 |

To show (5.4)) we set A\; = XA and Ao = ... = Ay = J. and use that s,.();) <1. O
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Lemma 5.4. Let k be an integer greater than 1 and suppose that X\ is a probability
measure on RY. Suppose that a,b,c > 0 and o € (0,1). Assume that a < b and that
for all r € [a,b] it holds that

ST < a+ er?k

Then for all r € [a\/g, b\/g we have

st ()) < 2eQ(d) L (a F (b2 ckb2)r2(k_1)) .

Proof. By the assumption and the definition of detail for y € [ka?, kb?] and writing
y = kr?,

X0 < r72*Q(d) F (a4 er™) = ay *EFQ(d)F + cQ(d) F.
Therefore with y € [ka?, kb?],

2

kb
_ k—1
s D]y < (A% >||1+/ A5 7] du
Yy

kb?
< ||n,§’§;”||1+/ au KR Q(d)F + cQ(d)* du
Yy

(k

2\ _(b_ (b _ —(k—1) _
< (#27)7%0Q(d) "V + ak*Q(d) F L + Q(d) Fekb?,

where we bounded in the last inequality ||n,(£2_ 2 [l1 by using that order (k—1)-detail

is at most one, [ au=kFQ(d)~F du by [ au=Fk*Q(d)~* du and [ cQ(d)* du

by fokbz ¢Q(d)* du. Using that (£5)~* =1 < 1 we therefore get

e yf(kfl)
k-1

Substituting the definition of order k detail gives for y = (k — 1)r? € [ka?, kb?]

or equivalently r € {m / %, b\/Q,
(k—1) _ .2(k-1) k—1 (k—1)
Sy (/\) =r Q(d) H)‘ * n(k_1)7.2||1

Y (L Vi s
k—1

A0l < ak*Q(d)

$ + (b= =2 L Q(d) T ekb?)Q(d)~ R,

< OéTQ(k_l)kikQ(d)

+ TZ(k_l)(b_Q(k_l) + Q(d)—lcka)

1 \F
<aQ(d)™? <1 + k;—l) + (672D 4 Q(d) L ekb?)r2k- D),

k
Finally using that (1 + ﬁ) < 2e and that 2eQ(d)~! > 1 the proof is concluded.
O

Proposition 5.5. Let k be an integer greater than 1 and suppose that A is a
probability measure on R?. Suppose that a,b > 0 and o € (0,1). Assume that a < b

and that for all v € [a,b] we have
s\ <a.

Then we have that
S.vi(N) < Q)" Mo+ k! - ka®b™?)
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for Q'(d) = 4eQ(d)~* > 1.

Proof. We will show by induction for j = k,k—1,...,1 that for all r € [a\/?, b, /?
we have

sW(N) < Q'(d)F7 <a + I;;b2jr2j> , (5.5)

which implies the claim by setting j = 1 and r = avk. The case j = k follows
from the conditions of the lemma. For the inductive step assume now that for all

r e [a\/g ,by/ ? we have that (5.5) holds. Then by Lemma H we have for all
re |ay/iE by 7]
sUTD(N) < Q'(d)F72eQ(d) (a + (b‘Q(J‘l) + j'b‘QleP) 7‘2(]_1)>
, k! ‘ .
< Q'(d)"72eQ(d) (a + (1 TG 1)') bQ(Jl)TQ(Jl))
J— .
k!

< Q'(d)+-G-D (a N b2(j1)r2(j1)> .

(7= 1)
O

Combining Lemma [5.3] and Proposition [5.5, we arrive at the following corollary.

Corollary 5.6. Let k > 1 and let A\i, \a, ..., \p be probability measures on R?.
Suppose that a,b > 0 and o € (0,1). Assume that a < b and that for all r € [a, ]
and i € [k] we have
sr(Ni) < au
Then it holds that
S, vi(N) < Q' () (o + k! - ka”b™?).

5.3. Wasserstein Distance. Recall as in (2.17)) that the Wasserstein 1-distance
on R? between \; and )\, is defined as

Wi(A1, A2) = inf —y|dy(x,y),
1(A1, A2) ’YGFI(I;I,AQ)/]Rdx]Rd |z —yldy(z,y)

where T'(A\, \2) is the set of couplings between A\; and Ay. We show that detail is
comparable to the Wasserstein distance.

Lemma 5.7. Let A1 and Ay be probability measures on Re. Then for k> 1 and
r >0,

s (A1) = s (A2)] < edr™" Wi (A1, A),
where e is Fuler’s number.

Proof. Let X and Y be random variables with laws A; and A respectively. Then
(=) 1) (0) = E [0 (v = X) = nf}) (v = V)]
and therefore
| = 2) # ) @) B [0y (0 = X) =) (0 = ¥)]]
Note that v
- 3) =P -1 < [ 19— ) lad,
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where [?|du| is understood to be the integral along the shortest path between

and y and V is the gradient. Thus
Y
/X Vi) (v = ) |du|] dv

/ /R [V (0 = w)| du du]

— VB L E[1X - Y]

(i: 1) E[[X — Y]

i=1
We next bound ||-2- e, 77k7~)H1 As in the proof of Lemma it follows that

N O S O T ) N €0
8%‘77’”2 3zinmr2 nﬁﬂ 771%1’"2.

k times

In =2 < [ B
Rd

=E

9 (k)
axi M

Using standard properties of Gaussian integrals,

2k +1) _, k+1 _,
22t < /2=
e

e

and therefore

2
H k+1r

[

Il
(/f+1)/2
S (k —I: 1) Q(d)_k’/’_Qk_l.
Using that ( )(k+1)/ < e, we conclude

158 (A1) — s Na)] < 725 Q)| (M — Ae) * 1|y
< der 'E[|X - Y]]

Choosing a coupling for X and Y which minimizes E[|X — Y] gives the required
result. g

5.4. Small Random Variables Bound in R?. The aim of this subsection is
to show that the sum of independent random variables in R¢ have small detail
whenever they are supported close to 0 and have sufficiently large variance. To
state our result, we use the partial order for positive semi-definite symmetric
matrices.

Proposition 5.8. For every positive integer d > 1 and every a > 0 there exists
some C = C(a,d) > 0 such that the following is true for all r > 0 and positive
integers k. Let X1, Xs,..., X, be independent random variables taking values in
R? such that almost surely

| X;] < Cr  and ZVarXi > Ckr?l.

i=1
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Then
sgk)(Xl +...+X,) < aF.

Proposition relies on a higher dimensional Berry-Essen type result, which
implies Proposition for £k =1, as deduced in Lemma To prove the higher
dimensional Berry-Essen type result we first need the following.

Theorem 5.9. Let X1, Xo,..., X, be independent random variables taking values
in R with mean 0 and for each i € [n] let E[X?] = w? and E[|X;|?] =3 < co. Let
w?=3" w?andlet S =X;+ -+ X,. Let N be a normal distribution with
mean 0 and variance w?. Then for an absolute implied constant

Z?:l '713
== L
Dic1 %‘2

Proof. A proof of this result may be found in [Eri73]. O

Wi (S, N) <«

From this we may deduce the following higher dimensional Berry-Essen type
result.

Lemma 5.10. Let X1, Xs,...,X,, be independent random variables taking values
in RY with mean 0 and denote for each i € [n] write
Zi = Var Xi~

Suppose that & > 0 is such that for each i € [n] we have |X;| < ¢ almost surely. Let
Y= Z;L:l Yiand S = X1 +...+ X,. Let N be a multivariate normal distribution
with mean 0 and covariance matrix 3. Then

Wi (S, N) <4 6.

Proof. First we will deduce this from Theorem in the case d = 1. In this case
simply note that

iﬁf’ = iE[IXZ-\?’} < iE[é\Xﬁ = dw?.
i=1 i=1 i=1

The result follows.
Now in the case d > 1 the result follows by looking at the projection of S and
N onto each of the d coordinate axis. [l

Lemma 5.11. For every positive integer d > 1 and every a > 0 there exists some
C = C(a,d) > 0 such that the following is true. Let r > 0 and let X1, Xa,...,Xn
be independent random variables taking values in R? such that

|IX;|<C'r  and ZVarXi > COr?l.
i=1
Then
sh(X1+ ...+ X,) <a.

Proof. Denote for 1 < i < n by X! = X; —E[X;] and let S’ = Y | X!. Note
that s,.(>"1; Xi) = s,(S"). Write ¥; = Var X; and let ¥ = > | ¥;. Let N be a
multivariate normal distribution with mean 0 and covariance matrix >. Note that
|X/| < 2C~1r almost surely. Therefore by Lemma

Wi(S',N) <4 C~ 7.
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Also
[ 1

r N) < r r2) = U = .

5p(N) < sp(nc2r2) Hng)” C?2+1
Thus by Lemma [5.7]

1
_ —1
sp(X1+ ...+ Xp) =5.(5) <q C +1+02,

implying the claim. [

The proof of Proposition [5.8]in the case d > 2 is more involved than the proof in
the case d = 1. In order to prove this proposition we also need the following lemma
and a corollary of it.

Lemma 5.12. Let V be a Fuclidean vector space, let vi,...,v, € V and write
S=wv+ 4w, Letci,ca >0 be such that for all i € [n] we have

lv)| <er and v - S > calvg]]S].

Let k be a positive integer. Then we can partition [n] as JUJoU---UJg such that
for each j € [k] we have

1S; — £5| < 3 '/ 22|8] + 2¢5 e

where S; = Zier v;.

Proof. Choose the J; such that

k
Z |19 (5.6)

is minimized. For each ¢ € [n] let j(i) denote the unique j € [k] such that i € J;.
For each i € [n] and j' € [k] we know that moving 7 from J;(;y to J; cannot decrease
the sum in (5.6). Therefore

1Sia) — vil® + 1S +oi* > |00 |* + 155
Expanding this out and cancelling gives
Sjtiy - vi = [vil* < Sjr - g
and summing over all ¢ € J;, we get
S-S5 < S;- S+ > |uil*.
iEJj

Let A; denote )
and so

ie, [vil*. Note that the above equation gives |S;— Sy |> < A;+4;

S — LS| < max|S; — S| < [2max A;. 5.7
1) = 181 < max [, = ;| < 2 4, 6.7
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Now let A? = max;/c[y) Aj. We compute
>l <1817 ) (vi- 8)°
iEJj iEJj

<8172 ) (i S)eal S|

=3 %c1|S|71S S5 < e3%c1]S| < e (£]S] + V2A).

Therefore A? < c;%¢1(|S|/k + v/2A), which gives

2
(A—C;2cl/\/§) < 62_281‘S|/k’—|—02_46%/2

and so
—2 —4 —2
A< c1|S|+c2 C%+CQ a1
- k 2 V2
<y /9S) + 5 2e1V2,
showing the required result by (5.7)). |
Corollary 5.13. Let Ay, ..., A, be symmetric positive semi-definite d X d matrices.

Suppose that Y"1 A; > CkI and that for each i € [n] we have ||A;|| < c. Then we
can partition [n] as Jy U Jo U --- U Jy such that for each j € [k] we have

> A (C - dvaeC - 202 1.

i€J;

Proof. Let M = Y | A;. We know that M is symmetric positive semi-definite
and so it may be diagonalised as M = P~!DP for some orthogonal matrix P and
a diagonal matrix D with non-zero real entries. Since M > CkI all of the diagonal
entries of D are at least Ck. Let D’ = vCkD~1 be a diagonal matrix and for each
i € [n] let A} = QA;Q where Q = P~1D’P. Note that A} is symmetric positive
semi-definite, ||A}|| < cas ||Q| <1 and that ) ;" A} = CkI since

QMQ = (P~'D'P)(P~'DP)(P™'D'P)= P~'D'DD'P = CkI.

We now apply Lemma with V being the space of symmetric d X d matri-
ces with inner product given by A-B = 377, 3" | AyyByy = tr AB and with

v1,...,0, being A}, ..., A" . We will denote the norm induced by this inner product
by | - |. Note that given a symmetric matrix A we have that |A|? is equal to the
sum of the squares of the eigenvalues of A and so in particular || || < |-| < Vd| - |-

This means that we can take ¢; = v/de so that [A]] < ¢;.

All that we need to do is find some lower bound on A;-CkI in terms of |A}|-|CkI|.
Note that tr A} is equal to the sum of the eigenvalues of A} and that |A}|? is equal
to the sum of the squares of these eigenvalues. In particular since the eigenvalues
are non-negative tr A; > | A%| and so

Al - CEI = Cktr A} > Ck|Al| = |A)| - |CEI|/Vd.

This means that we can take ¢ = 1/v/d.
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We now apply Lemma with § = Y7 | Al = CkI to construct our partition
[n] = Jy U Jo U--- U Jg such that for all j € [k],

Mo Aj-cI| < | A - CI| < dV2cC + 2d% .

i€J; i€J;
Therefore
3" A - CIQ2|| < (aV2eC +2d°/2¢)||Q 2]
icJ;
and hence,
S A > CIQ7 — (avaeC +24%%) Q21
i€J;
(- avaeC —2a%/2¢) Q21T
> (€= dv2eC - 2d¥%c) I
using that ||Q7!|| > 1 in the last line. -

Finally we can prove Proposition [5.8]

Proof of Proposition[5.8 Note that since | X;| < C~1r almost surely we have || Var X;|| <
C~2r%. By Corollary we can partition [n] as J; U Jo U -+ U Jg such that for
each j € [k] we have

> VarX; > (C - V20T - 2d¥2C72) 121,
icJ;
This means that by Lemma [5.11] provided that C' is sufficiently large in terms
of d, we know that

Sy ZXi < a.

iEJ]‘
The result now follows from Proposition [5.3 O

6. ENTROPY AND VARIANCE ON GENERAL LIE GROUPS

Throughout this section let G be an arbitrary Lie group of dimension ¢ with a
fixed choice of Haar measure m¢ and let g be the Lie algebra of G. We fix an inner
product on g, inducing an associated norm | o |. Also denote by

log: G — g

the logarithm on G, which is defined in a small neighbourhood around the identity.

We study entropy on arbitrary Lie groups. As exposed in the outline of proofs, we
shall convert entropy estimates of a random variable Z to estimates of the variance
of Z. Indeed, recall that if Z is an absolutely continuous random variable on R
with variance o2 then

1
H(Z) < 3 log(2mea?), (6.1)
where H(Z) is the differential entropy of Z and equality holds in (6.1]) if and only

if Z is distributed like a Gaussian with variance o?. We will prove an analogue of
this fact on Lie groups. To do so, for random variables g that are supported within
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small balls of a given point gy we consider the covariance matrix of the Lie group
logarithm applied to g, 4. This viewpoint allows us to apply a higher dimensional
analogue of to deduce an analogous result on G.

Indeed, we recall that for an ¢-dimensional random variable X we denote by
tr(X) the trace of the covariance matrix of X. In particular, we use the following
definition. Given gy € G and a random variable g on G we define

trg, (9) = tr(log(gy '9)),

whenever log(gy'g) is defined. The analogue of (6.1)), which will be proved in
Proposition then amounts to

(o) < giox (2 t10)) + 062 (6.2

for random variables supported on B.(go) and &€ > 0 sufficiently small.

A further goal of this section is to study entropy between scales on G. Indeed,
we will define in section an explicit family of smoothing distributions s, , on G,
which satisfy

l
tre(sra) ~ 0r*  and  H(s,,) = 3 log 2mer? + 05(67“2/4) + O¢.o(r), (6.3)

while being supported on By, (€). The error O@(e_“z/‘l) arises since s, 4 is compactly
supported while equality holds in for Gaussians, which are non-compactly
supported.

We then define the entropy at a scale r > 0 of a random variable as

H,(g;7) = H(gsr,a) - H(Sr,a)
and the entropy between scales between two scales r1,r9 > 0 as
Ha(girlr2) = Ha(g;m1) — Ha(g;72)-

Roughly speaking, H,(g;r1|r2) measures how much more information g has on scale
ary than it has on scale ary. We work with the parameter a as the uniform bounds
(6.3) are useful for our purposes.

We next aim to relate the entropy between scales to the trace of a random
variable. To do so we introduce the trace tr(g;r) for a random variable g at scale r,
which we define as the supremum of all ¢ > 0 such that we can find some o-algebra
&/ and some o7-measurable random variable h taking values in G such that

|log(h™'g)| <r and Eftry(g|e?)] > tr?.
Then we show in Proposition [6.14] that
tr(g; 2ar) > a=2(Hq(g; r|2r) — Og(efa2/4) — Ogq(1)). (6.4)

In section we give definitions and discuss basic properties of entropy on G,
after which we discuss the Kullback-Leibler divergence on G in section [6.2] In
section [6.3| we prove ([6.2)), after which we study conditional entropy in section

Finally we prove (6.4)) in section
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6.1. Entropy and Basic Properties. For notational convenience, we denote
h(z) = —xlog(x)

for € (0,00) and recall that h is concave. If A = 3" p;d,, is a discrete probability
measure on G, we define the Shannon entropy of A as

HO) = 3~ hip).

On the other hand, given an absolutely continuous probability measure A on G with
density f) we define

HO) = [ 15) dm.

We extend the definition to finite measures A that are either absolutely continuous
or discrete by setting

H(A) = [[Al[LH (M [[Al]1)-
In this subsection we collect some useful basic properties of entropy.
Lemma 6.1. Let A\q,..., )\, be absolutely continuous finite measures on G. Then
H(>\1—|—...—|—/\n) ZH()\1)++H(>\n)

Proof. Tt suffices to prove the claim for n = 2. Let f; and f> be the densities of A\;
and Ao. Then since h is concave

H(Ap+X2) = (|>\1|1+||/\2||1)/h<fl+fz> e

el + el
[Aala f
> A h d
= (Wl + 10 f e (s ) 47
[1A2]lx f2
Pl el s e b ) 7

= H(A\) + H()).
m

Lemma 6.2. Let p = (p1,p2,...) be a probability vector and let A1, Ag, ... be prob-
ability measures on G either all absolutely continuous measures or all discrete mea-
sures with finite entropy such that ||A;|| = p;. Then

oo

H (i Ai> <H@p)+ Y H).
=1 i

In particular, if p; = 0 for all i > k for some k > 1 then

H (i)\Z) < 1ogk+iH()\i).

i=1

Proof. Upon taking limits it suffices to prove the claim for n-dimensional probability
vectors p = (p1,...,pn) and we only consider the case of absolutely continuous
measures as the proof is analogous in the discrete case. We prove the first line in
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the case when the )\; are absolutely continuous and denote their densities by f;.
Note that h(>"1; a;) < >, h(a;) for any a,...,a, > 0. Therefore

()

/ (fi) dme

HA +. .+ A

/ ) log - f3) — fi(@) log(py)) dme
/ S f)dme + hipy)
H

(Ai) + H (p)-

iMs=1iM=1 M: HM: i

O

Lemma 6.3. Let A\ be a discrete and and Ao be continuous probability measures
on G. Then

H(/\1 * /\2) S H()\l) + H(/\Q)

Suppose further that Ay is supported on finitely many points with separation at least
2r and that the support of Ay is contained in a ball of radius r. Then

Proof. Write A\; = 22;1 pidg, and let f be the density of A2. Then the density of

A Ao is given by Yo7 pi fogi ' Ash(31, a;) < Y0, h(a;) for any ay, . .., a, >
0,

H(M\ xXa) / (Zpl °g; ) dmg
<3 [ so g me
i=1

= Z/(pifogfl)(log(pi) +log(fog; ")) dma

= H(M) + H(As).

If \; is supported on finitely many points with separation at least 2r and that the
support of Ay is contained in a ball of radius r, then the support of the functions
fo gi_1 is disjoint and the inequality in the second line is an equality. O

6.2. Kullback-Leibler Divergence. If v < p are measures on G, then we define
the Kullback-Leibler divergence as

dv
Dxr(v||p) = —/log@du

Observe that if v is absolutely continuous, then H(v) = Dkp,(v || mg). We collect
some basic results on the Kullback-Leibler divergence on G.
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Lemma 6.4. Let v < pu be measures on G and assume that v is supported on a
set A of positive p measure. Then

Dxgr(v]| i) <log(u(A)).

Proof. For convenience write v = f, du. Then by Jensen’s inequality,

Dl = [ 1 (L5 ) d= [ Ha) s dit og((4) < Tog(u(4))

O

Lemma 6.5. Assume that we can write G = X1 X ... X X, as a product of sub-
manifolds X; C G and assume that mg = mx, X ... X mx,, for measures mx, on
X;. Denote by m; the projection from G to X; and by m;u the pushforward of u
under w;. Then for a probability measure p << mq it holds that

Dxv(p|lme) < Dxu(mipl|[mx,) + ... + Dxr(mmp || mx,,)-

Proof. It suffices to prove the claim for m = 2. Denote by f,, the density of u with
respect to mg and write

fﬁ(zg):/fu(zl,xg)dmgl(xl) and fi(iEl):/fH(ZEl,.TQ)dez(IQ).

Therefore,
Dy (p]|mea) ://h(fu(ajl,sr:Q))del(ml)de2($2)
/ / <f“ TP fﬁ(m)) dmx, (z1)dmx, (v2)

// (f“ L )f,%(xl)dmxl(xl)dm)(?(xg)

+ [ [ ~1os(s2@0) o, e2) dm, (1) dmx, (22)
< [ by dm, ) + [ B2 dmx, o)

= Dxv(mpl|lmx,) + Dxr(map || mx,),

having used that h is concave and Jensen’s inequality in the penultimate line. [

Lemma 6.6. Let X be a manifold with a measure mx and let ® : G — X be a
diffeomorphism. Then for measures v < p on G such that ®,.v < mx it holds that

do,.v
Dict (®.0].0) = Disvlle) ~ [ log =" dmx

for Dy® the differential of ® at g € G.

Proof. Note that
do,.v
dmx

dd,.v B dv

o) = @(@’1(1))'

(z)
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and therefore

do,
D1, (P.v||P.v) = —/log 10 qu’*y

dv . _, d®.v
_/log (dl/((I) (2)) - g (x)) d®.v
do,.v
— Diavlle) — [ 1o

O

Lemma 6.7. Let A1 be a probability measure on G and let Ao and A3 be measures
on G such that Ay € Ag, A\ K A3 and Ay < 3. Let U C E and suppose that the
support of Ay is contained in U. Then

|Dkr(A1 || A2) — DxrL(A1 || As)| < sup
zeU

lo drz
&
Proof. We calculate

dX d\
|Dkr (A [[ A2) = Dre(Ar || As)] = ‘/ IOgildAl / 10gd7)\1d)\1
3

d\ d\
log —~ — log
= / 8, 8, |
= [ |log d\
d/\3 !
d)s
< sup |lo
IEE gd)\B

O

6.3. Entropy and Trace. In this subsection we prove (6.2)). Recall that given
go € G and a random variable g on G we define

trg, (9) = tr(log(gy '),
whenever log(gy g) is defined.
Proposition 6.8. Let G be a Lie group of dimension . Let € > 0 and suppose

that g is a continuous random variable taking values in B:(go) for some go € G. If
e 1is sufficiently small depending on G,

(o) < g1ox (% 110 ) ) + 06 ).

Proof. We first note that if X is an ¢-dimensional random vector, then
¢ 2
H(X) < ; log (26 -tr(X)) (6.5)

Indeed, it follows from the 1-dimensional case that H(X) < Ilog((2me)’ -
[Var(X)|), where |Var(X)| is the determinant of the covariance matrix. Note that
by the AM-GM inequality |Var(X)| < tr(X)“ ¢, which implies (6.5).

Since H(gy'g) = H(g) and tr,,(g) = tre(g 'g), we may assume without loss of
generality that gg = e. The density m is smooth and for € > 0 sufficiently
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small is 1+ Og(e) on Be(e) and therefore supp_,, |log m < €. Thus by
Lemma [6.7]

|Dxr(g || ma) — Dxr(g || mg o log)| <¢ e.
The claim follows since by ((6.5)

Dxr(g||mg olog) = Dkw(log(g) || mg) = H(log(g)) < glog (gtre(g)> :

6.4. Conditional Entropy and Conditional Trace. The aim of this subsection
is to prove an abstract result relating entropy between scales and the trace. To do
so, we first discuss conditional entropy and conditional trace. Let Y be a random
variable on a probability space (Q, #,P) and & C % be a o-algebra. Denote by
(Y|</) the regular conditional distribution as defined in section[3.2] Assuming that
(Y|<7) is almost surely absolutely continuous, we define

H(Y | o)) (w) = H((Y|o)(w)).

Recall that if X; and X5 are two random variables then entropy of X; given X,
is H(X;|X3) = H(X1,X2) — H(X2). If X; and X5 have finite entropy and finite
joint entropy, then by [Vig21],

H(X1|X2) = E[H((X1]X2))]- (6.6)

We next give an abstract definition of the entropy at a scale and for a smoothing
functions s. Indeed, let g and s be random variables on G and assume that s is
absolutely continuous. Then the entropy at scale s is defined as

H(g;s1) = H(gs1) — H(s1)

Moreover, if s; and sy are absolutely continuous smoothing functions we define the
entropy between scales s; and s as

H(g; s1]s2) = H(g; 51) — H(g; 52).
The following basic result on the growth of conditional entropy holds.

Lemma 6.9. Let g,s1,s2 be independent random wvariables taking values in G.
Assume that sy and so are absolutely continuous with finite differential entropy and
assume that gs1 and gsq also have finite differential entropy. Then

H(gsilgs2) = H(g; s1]s2) + H(s1).
Proof. Note that
H(gs2|gs1) > H(gs2|g, s1) = H(gs2|g) = H(s2)

and so
H(gs2, gs1) = H(gsz2|gs1) + H(gs1) = H(gs1) + H(s2).
Therefore
H(gs1|gs2) = H(gs2, gs1) — H(gsz2)
> H(gs1) — H(gs2) + H(s2)
> H(g;s1]s2) + H(s1). O

We next define the conditional trace of a random variable on G and relate it to
the entropy between scales.
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Definition 6.10. Let g be a random variable defined on a probability space (Q, F,P)
and taking values in G. Let of C % be a o-algebra let gg be a o -measurable ran-
dom variable taking values on G. Then we denote by try,(g|</) the of -measurable
function given for w € Q by

trg, (9] ) (w) = trge(w) (9| #)(w))-

We note here that the variance of a measure u is defined as the variance of a
random variable with law . It follows from Proposition [6.8] that

e

H((gl) < 1o (55t (0let) ) + Octe). (6.7

Theorem 6.11. Let g,s1 and sy be independent absolutely continuous random
variables taking values in G and suppose that that si and ss are supported on
B, for some sufficiently small ¢ > 0 and have finite differential entropy. Write
c = Llog 2%¢tre(s1) — H(s1) and suppose that tre(s1) > Ae? for some positive
constant A. Then

2
Eftrgs, (glgs2)] 2 5 (H(g; s1]s2) — ¢ = Ce)tre(s1),
where C' is some positive constant depending only on A and L.

We first prove some basic result on the trace of the product of two random
variables.

Lemma 6.12. Let € > 0 be sufficiently small and let a,b be random variables and
4 a o-algebra. Suppose that b is independent from a and </ and let gy be an o -
measurable random variable. Suppose that gala and b are almost surely contained
in B.. Then
try, (able?) = try, (a|e/) + tr.(b) + O(?).
Note that under the assumptions of Lemma it holds by Lemma that
[abl.</] = [a]/][b|</] = [a]/]b.
Therefore the claim follows from the following unconditional version.
Lemma 6.13. Let ¢ > 0 be sufficiently small and let g and h be independent

random variables taking values in G. Suppose that the image of g is contained in
B and the image of h is contained in B:(hg) for some hg € G. Then

try, (hg) = trp, (h) + tre(g) + O(?).

Proof. Let X = log(hy'h) and let Y = log(g). Then |X|,|Y| < & almost surely
and by Taylor’s theorem there is a random variable E with |E| < 2 almost surely
such that

log(exp(X)exp(Y)) =X +Y + E.

Therefore
trn, (hg) = E[|[X +Y + E*] - |E[X + Y + E|?
=E[X +Y["] - [E[X + Y]]
+2E[(X +Y) - E]| +E[|E|?] — 2E[X + Y]E[E] — [E[E]|?
= Var[X + Y] + O(e®) = Var[X] + Var[Y] + O(£%).
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Proof. (of Theorem [6.11)) We note that by [6.6] and Lemma it holds that
E[H ((g511952))] = H(g; s1|s2) + H (s1)
and so by ,
14 2me
E |5 108 2T try0, (g1192)| + O) > Hgs sals) + Hisa).
Note that (gsz) g = s5 *, which is contained in B, (e). Therefore by Lemma/6.12)
s (951|952) < trgs,(glgs2) + tre(s1) + O(€?)

and so

Y4 2me

log = (trgs, (glgs2) + tre(s1) + 0(83)):| + O(e).

H(g;81|32)+H(31)<E{2 7

Thus
2

2 (Hlgsila) ) < frog (14 Te2ll22) o).
Using that log(1 + ) < z for > 0, we conclude the claim. O
6.5. Entropy Between Scales. In this subsection we prove an explicit result
relating the entropy between scales and tr(g). To do so, we construct a suitable
family of smoothing functions. Indeed for given r > 0 and a > 1, denote by 7,4 a
random variable on g with density function f,, : g — R given by

|=|?
frale) = {0 it o] < ar

0 otherwise,

where C, , is a normalizing constant to ensure that f, , integrates to 1. We fur-
thermore define

Sr.a = €Xp(Nr,q)-
We then define the entropy at scale r as
Ha(g;r) = H(g; 5r,0) = H(gSr,a) — H(sr,a)
and the entropy between scales r1,72 > 0 as
Ho(gir1lr2) = H(9; 81y ,al8r2,0) = Hal(gim1) — Ha(g572)

= (H(g8r1,a) — H(Sry,a)) — (H(gsrz,a) - H(Srz,a))-

Recall that tr(g;r) is defined to be the supremum of all ¢ > 0 such that we can
find some o-algebra & and some .&/-measurable random variable h taking values
in G such that

llog(h™tg)| <r and Etry(g|e/)] > tr?.

Proposition 6.14. Let g be a random variable taking values in G, let a > 1 and
r > 0 be such that ar is sufficiently small in terms of G and assume that g, s, o and
Sor.q are independent random variables. Then

tr(g; 2ar) > a=2(Hy(g;7|2r) — Og(e_a2/4) — Og (1)),
for the implied constants depending on G.
Proposition relies on the following lemma.

Lemma 6.15. The following properties hold for r > 0 and a > 1:
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(i) br* < tr(nyq) < €r? and
H(nyro) = glog 2mer? + Og(e_a2/4).
(ii) If ar is sufficiently small, Ir* < tre(s,q) < €r? and
H(spq) = g log 2mer? + 05(67“2/4) + O¢ o (r).

Proof. We note that (ii) follows from (i) and the claim ¢r? < tr(n,,) < €r? is
obvious. To complete the proof of (i), we deal with r = 1 case first. Note first that

¢
/ e~ 171?12 gy < / e~ 121?72 gy — H/ e~ 7i/2 dx; = (271')”2
z€R! |z|<a z€R¢ i—1/R

and by using spherical coordinates

oo
/ e~11?/2 gy :c@/ Wl 2 gy,
z€R’ |z|>a a
o0 2 o0 3 2 2
<<e/ e /3du§/ e~ 3 gy =27/ <y e /4,
a a a
Thus we conclude

/ e 12 gy = (2)t/? — / e 1ol /2 gy > (2m)1/2 — Oy(e=" /%)
z€R?,|z|<a

z€R! |z|>a

and therefore C , = (27)~¢/2 + Og(e_a2/4). We are now in a suitable position to
calculate H(n1,,). Indeed,

H(Wl,a) :/ _Cl7a€*|x|2/2 log (Cl7a€*|r|2/2> d
|z|<a

2
= ~/| ‘ Cia <|:1:2| — log C1,a> e~ 1e?/2 gy
z|<a

|z

Cha ( — log Cl,a) e 1o /2 g
z€R? 2

We calculate

= (2m)¥2Cy 4 <§ —log 01@)
—a2/4 14 ¢ —a2/4
= <1+Og(e )) 510ge+§10g27r+04(e )

1
=5 log 2me + Og(e_a2/4).

and again using spherical coordinates,

2

> u? 0—1_—u?/2
=y Ci,a > —logCi, |u""e dx

<0 Oy /4.
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Thus the claimed bound on H(n;,) follows. Since f,qo(z) = r‘Cyofia(z/r) it
follows that H(n,,) = log(r) + H(n1..) and hence the proof is complete. O

Proof. (of Proposition [6.14) We apply Theorem to 81 = Spq and Sy = S,
and we set e = far. By Lemma (ii) we have that tr.(s1) > ¢r? >, €2 and

¢ = tlog Zetr.(s1) — H(s1) < O(e™"/%) + O, 4(r). Applying Theorem
Eltrgs, (glgs2)] > er®(H (g r(2r) = Or(e™/*) = Oga(r)

for some absolute constant ¢ depending on G. On the other hand, we have that
|log((gs2)~tg)| = |log s2| < 2ar and therefore

tr(g; 2ar) > (2ar)_2E[tr952 (glgs2)] > a_Q(H(g;r\%) — Oz(e_“2/4) — 0¢.a(r)).
O

7. VARIANCE GROWTH ON Sim(R¢)

In this section we return to G = Sim(R?) with dimension ¢ = @ + 1. For

1 a probability measure on G we denote by 71,72, ... independent p-distributed
samples of p and write

Qn = 71" In-
For k > 0 be denote by 7,; the stopping time

7o = inf{n : p(gn) < k}.

The goal of this section is to give bounds for Zf\il tr(qr,, i) for suitable scales
s;. Towards the proof of our main theorem as discussed in section it would be
ideal to give a bound roughly of the form

al 4 h Su e
Ztr(qm,?ar) > - logk! with  r~ kPl and 2Nr ~ g2l

P |Xu‘

(7.1)
for sufficiently small k. As we explain below, we can’t quite achieve and the
bound we arrive at will also depend on the separation rate S,,. To estimate the
left hand side of we apply Proposition to each of the terms tr(g,,_,2'ar)
which gives

N
Ztr(qm, 2tar) > a 2(Hy(gr; 7|27 7) + Od(Ne_az/e) + Oq4(r)) (7.2)
i=1

having used that by a telescoping sum

N
Hulgrsr2¥r) = 3 Hal 22,

i=1
The main contribution from (7.1)) comes from suitable estimates for H,(q,;7[2V7).
Indeed, we will show in Proposition that, up to negligible error terms,

h
H,(qr;72Nr) > |X—”‘loglfl. (7.3)
m

To show this, we recall that

Ha(QT,{;r‘QNr) = Ha(‘]TK;T) - Ha(q‘r,c;2NT)
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and therefore we need to estimate the two arising terms H, (g, ;) and H, (g, ;2V7).
To bound the first term, as we explain after the statement of Lemma we use
that with high probability 7,, ~ log(x™1)/|x,| and so the points in the support of

Su_
q-. are separated by distance r ~ kT ~ exp(—S,7,). For the second term we use

the large deviation principle and the polynomial decay of our self-similar measure.
Combining ([7.2)) with (7.3]) would lead to (|7.1)) would it not be for the error term
O4(N e=a’/t ). Indeed, to not cancel out the lower bound from ([7.3)) we require that

h
Ne_az/e < c—-log k1

|Xu|
for a sufficiently small constant ¢. By our choice of N it holds that N ~ é—“‘ log k1
and therefore
e—a’/t < c@.
o
So we have to set
a? = cmax {1,10g S"} .
hy

Applying then ([7.2)), since the error term Og4(r) is negligible, we conclude that

N A g 1!

Ztr(qTN,Zlar) > —logk ! max{l,log“} : (7.4)

i1 X hy

We will give a precise proof of the latter bound in Proposition [7.5

7.1. Entropy Gap of Stopped Random Walk. In this subsection we show
that the entropy between scales is large for a suitable stopped random walk on
G = Sim(R?). Indeed, we establish the following more precise version of (7.3)).

Proposition 7.1. Let u be a finitely supported, contracting on average probability
measure on G. Suppose that S, < oo and that h,/|x,| is sufficiently large. Let
S > Sy, k>0 and a > 1 and suppose that 0 < ri < 19 < a~ b with r; <
exp(—Slog(k™1)/|xul). Then as k — 0,

h
Ha(QTN;Tll'rQ) > (XM| — d) IOg li_l + H(STQ,(J,) + Op,d,S,a(IOg K_l)'
n

Proposition [7.1] directly follows from Lemma [7.2] and Lemma

Lemma 7.2. Under the assumptions of Proposition|7.1, as k — 0,

h
Hu(gr,;m1) > - logk™ 4 0,a.5.4(logr™h).
|Xu|
Recall that H,(qr,; 1) = H(qr, 8r, .0)—H(Sr, o). To give the proof idea, note that

with high probability 7, &~ log(k™')/|x.|- Also, by definition of h,,, we have that
H(qog(x-1)/1x,)) = hu log(k™*)/|xu|- On the other hand, s,, , is mostly contained
in a ball around the identity with radius O(exp(—Slog(k™")/|x.|)), and therefore
by Lemma we have H(Qlog(ﬁfl)/\xu\ . 57"1,11) = H(qlog(ﬁfl)nxd) + H(Srl,a)7 which
implies the claim. We proceed with a more rigorous proof.



INHOMOGENEOUS AND CONTRACTING ON AVERAGE SELF-SIMILAR MEASURES 48

Proof. For ease of notation we write in this proof 7 = 7. Fix some £ > 0 which is
sufficiently small in terms of S and u. Let m = |log(k™')/|x,|| and define 7’ as

[(1+e)m] if7>[(1+¢e)m],
=S 1(1-eym] ifr<|[(1-¢)m],
T otherwise.
For a random variable X denote by £(X) its law. Furthermore, given an event A,

we will denote by £(X)|4 the measure given by the push forward of the restriction
of P to A under the random variable X. Note that ||[£(X)|4 || = P[A].

By applying Lemma [6.1}
H(grsr1,0) = H(L(qr) * L(8r4,a))
> H(L(qr)|lr=r * L(Sr1,0)) + H(L(qr) |7 * L(81,0))
> H(L(qr)|r=r * L(Sr,,0)) + P[T # T'|H (L (8r1,0))s (7.5)

having used that

H(L(gr )| * L(8r1,0)) = H(L(Gr) |7 * L(8r,,0)]r)

Plr # 71H(L(sr,.a))-

We next apply that s,, , has small support. Set § = i(S - S,). Write D,,, =
U, supp(p*?) for all m > 1. Then for every N sufficiently large, exp(—(S, +
0)N) < d(z,y) for all z,y € Dy. Therefore for ¢ and & sufficiently small, exp(—(S,+
20)m) < d(z,y) for all x,y € Di14eym]. As d(sy,,4,€) <G r1a it follows that if x
is sufficiently small in terms of p,a and S,

>
2

1
d(Sry.a,1d) < O(aexp(—Sm)) < =

min
2 z,yesupp(q,:),x#y

d(z,y).

In particular, by Lemma
H(L(gr)|r=7 * L(Sn,a)) = H(L(qr)|r=r") +P[T = T/]H(L(Sn,a))' (7.6)

Combining (7.6]) with ({7.5)),
H(grsry0) > H(L(qr)|r=r) + H(8r, a)-

It remains to estimate H(L(g:)|r=r). Consider the random variable

X' = (g a-ym)> Y (=ym] + L,V (1=e)m)+25 - - - » V[ (A+e)m]+1)-

As g, is completely determined by X', we have H(X'|¢,/) = H(X') — H(q,).
Let K be the number of points in the support of u. Note that if

Y(A—e)ym|+1: V[(1—e)m|+25 -+ V[(14+e)m]

and 7’ are fixed, then for any possible value of ¢, there is at most one choice of
q|(1—e)m) Which would lead to this value of g;,. Therefore for each y in the image
of ¢, there are at most (2em + 2) K™ +2 elements x in the image of X’ such that
P[X' = xNg = y] > 0. Therefore (X'|q7./) is almost surely supported on less than
(2em + 2) K2 +2 points and hence by (6.6)),

2elog K

H(X'|qr) <log ((2em + 2) K> +?) < ™
;L

logk ™' 4+ 0,c(logr™).
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On the other hand,

h
H(X') > H(¢n) > hgw - m > |RV[|/ logk™ —o,(logr™) (7.7)
X
and therefore
hrw — 2¢clog K
H(g,) > Rrw — 2208 logrk™ — o0, (logr™1).
Xl
To continue, we note that by Lemma [6.2

H(qr) < H(L(gr)lr—rr) + H(L(gr ) r2) +log2. (7.8)

We wish to bound H(L(g,')|r=-) from below. By the large deviation principle,
Plr # 7] < o™ for a € (0,1) only depending on ¢ and p. We also know that
conditional on 7 # 7/, there are at most 2K [A+e)m] possible values for ¢, and
therefore
H(L(g)rper) < 0™ log (2KTHIMT) = 0, (log i),
This implies
hRW — 2e log K
H(L(qr) ) >~V 22080
|Xu‘
Since € can be made arbitrarily small, the claim follows. O

1

logr™ —o0,(logr™1).

Lemma 7.3. Under the assumptions of Proposition|7.1, as k — 0,
H(qyr, 8ry0) < dlogr™ +0,.0.4(logr™t).

Proof. As in the proof of Proposition write 7 = 7, and K = |supp(u)|. We use
the product structure on G combined with Lemma [6.5] Indeed, note that a choice
of Haar measure on G is given as

/ fdmg = / f(pU + b) p~ Y apdUdb,

for dr,db the Lebesgue measure and dU the Haar probability measure on O(d).
Therefore by Lemma H(GrSry,0) <

D (p(r5rs,a) || o7V dp) + Drr(U(gr8rs.0) || dU) + Dicr,(b(grrs.a) || db).
We give suitable bounds for each these terms. As dU is a probability measure
Dk (U(qr8ry.0) || dU) <0 by Lemma
We next deal with Dkr,(b(¢-Sry,0) || db). Denote by v, the distribution of b(g; Sy, 4)-
We claim that there is @ = a(u, d, a) such that
v, (BR) <R (7.9)
for all sufficiently small x and sufficiently large R. Note that

6(gr5rs,0)| = (a7 )U(qr)b(Sr5,0) + b(qr)| < K[b(Sr2,a)| + |b(gr)]
and therefore it suffices to show ([7.9)) for the distribution of b(q,), which we denote
by v.. For x € R¢,
b(a-) = ¢-(2)] < [-(0) — ¢ (2)| < p(gr)|z] < k2|
and so |b(g;)| < |g-(2)] + &|z|. Therefore if R < |b(g,)| then either R/2 < |g¢.(x)]

or R/2 < klz|. Also note that if = is sampled from v independently from v1, 7o, .. .,
5o is ¢r(z). By Theorem [4.1] this implies that

v (BR) < v(By) + v(Biy,) < B2272 (L4 57177,
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showing (7.9).

To conclude we deduce from that Dkr,(vr || db) is bounded by a constant
depending on p,d and a and therefore is < 0, 4,4(log k~1). Indeed denote by f,
the density of v, such that

DKL(VTHdb):/_fTIng‘rdde~

Also let L > 1 be a constant and for ¢ = 0,1,2,... write p; = v (Bpri+1\Br:) such
that p; < v-(B$,) < L~*. Thus it holds by Jensen’s inequality for h(z) = —zlogz,

Dy (v- || db) = Z/ —frlog fr dmpa

i>0 B,i+1\Bp:

_Z/ —f. log (f””) dimpa
Bpi+1\Bpi Di

>0

= </ (frpi) L\BL dmpga + p; log(pi)>
i>0 pi

<Y hp) < Y hp)+ Y (LT
i>0 0<i<I i>1

having used in the last line that log(p;) < 0 nd that h(z) is monotonically de-
creasing for small z and therefore h(p;) < h(L™*) for ¢ > I with I sufficiently
large.

Finally, we estimate DKL(p(qTNs,.M) || p~ @ Ddp). Fix € > 0 and let A be the
event that p(q,;) > K(HE) By Lemma there is 6 > 0 only depending on p and
¢ such that P[A¢] < x%. By Lemma

o

Dir(L(p(gr, Sry.0))|a || p~ @V dp) < log (/ p(d+D) dp)

= log (d_lﬁ_d(1+5)) <d(l+¢)logr.

1+e

To bound H(L(qrSr,,a)|ac), we note that as in Lemma it suffices to bound the
Shannon entropy of H(L(g;)|a). If 7 < 21°|g “‘71 the contribution can be bounded

by /152](‘@7: log K. By the large deviation principle, when n > 21°|g”‘ " it holds

that P[r = n] < o™ for some a € (0,1). Therefore the contribution in this case is

< a"nlog K where a € (0,1) is some constant depending on p. Summing over all
-1

n > 2% and using Lemma we conclude that H(L(¢rSr,,q)|ac) is bounded

and therefore o, - (logk™!). As € > 0 was arbitrary the claim follows. O

7.2. Trace Bounds for Stopped Random Walk. In this subsection we give a
precise proof of (7.4) following the sketch given at the beginning of this section.
We first convert Proposition into an integral bound.

Proposition 7.4. Let p be a finitely supported, contracting on average probability
measure on G = Sim(RY) and write { = dim G = (d+1) + 1. Suppose that S,, < co
and that h, /x| is sufficiently large. Let S > S, and suppose that S is chosen
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sufficiently large such that h, < S. Then for sufficiently small k,

Lm
h. S\t
—tr(gr, ;u) du > ( )max{l log — } logr~t.
U Xl Xp]

2expl
Proof. Let 7 = 7, and let a > 1 to be determined. Let

K
/ s
K Ixpl

s S
ri=a 'kPul =a texp <—1ogﬁ_1>
|X;L‘

and
_ KS _ hu) 1°g*’~‘1J 1
IXul  2llxul/ log2
Note that
1 RTRT 1 T R oy
- _ - - < oN <= - _ -
4 ary 4/4;_%;#' 2/{—% 2 arp

Given u € [1,2) and an integer 0 <i < N —1 let
ki(u) = Hy(gr; 2 tury |20ur).

Then by Proposition there is some constant ¢ = ¢(d) > 0 depending only on
d such that

a2

tr(g-; a2'ury) > ca” 2 (ki(u) — Oa(e™ T ) — Og.a(2'71)). (7.10)

Thus
N N

Z tr(qr; a2'ury) > ca™> Z ki(u) — Od(Ne_§a_2) —O0g.a(N2N7y).

i—1 i=1
hp S
Note that for u € [1,2) we have a2Nury < k¥l and aur; > ksl . Therefore,

h
2l xpl

" 1
/IS\ (qu )du
X

a2it!

ury
/ 71]1‘ QTa )du
a2tury

1
/ —tr(gr; a2’ url) du
U

v

Y

i Mz i Mz

a2

/ (Zk —04(Ne™Ta )—Od,a(Ner1)> du. (7.11)

Observe that Zi:l ki(u) = Hu(qr, ;uri|2Nury) and therefore by Proposition
and Lemma [6.15

Z Eqi( (|| — d) log K40 log 2Nu7“1 + Op,,d,S,a(IOg H_l)
Xp
h hy
> [ )loglﬁ +o0 ,d’sya(logm_l). (7.12)
(|Xu| 2|X/t| g
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Let C = C(d) be chosen such that the error term O(Ne_ﬁa*) in (7.11)) can be
bounded above by CNe™ T a~2. Note that this is at most C Ta2logr~
Let ¢ be as in (7.10). We take our value of a to be

a=2log [ 2€_ 5
B &\ clog2h, )

_ S -
IXn|log2 ©

Then

a2 h
CNe Tqg 2 <ca 2L log kL
4|X#|

We also note that N2Vr; < 0, 4 s(logx™!). Therefore combining (7.11]) and (7.12),

h

ro 2l h h h
—tr(qr;u) du > ca™> ( E_d— - & ) log k '40,.4.5(logr™t).
/,«ulxsu\ U |Xu| 2|Xu| 4|Xu| !

Note further that a? <4 max{1,log hi} Thus we have for all sufficiently small x
(depending on p and M),
hy

K 200xpl h g —1
s —tr(gru)du >y (”) max{l,log} logr~t.
fRel Xul h

O

Finally we prove the following more precise version of (7.5). We show further
that s;11 > k3s; in order to apply Proposition to concatenate proper decom-
positions as defined and discussed in section

Proposition 7.5. Let p be a finitely supported, contracting on average probability
measure on G = Sim(R?) and write £ = dim G = % + 1. Suppose that S,, < oo
and that h,/|x,.| is sufficiently large. Let S > S, be chosen large enough that
S > h,. Suppose that k is sufficiently small (depending on p and S) and let
~ s

m = | gorg,d-

Then there exist s1, 8, ...,Sm > 0 such that for each i € [m)],

s _Pu
Si G (H‘X}L‘7H2[|X}L‘)

and for each i € [m — 1] ;41 > k= 3s; and

0 b g1
tr(gr,; 8i) >a (”) max {1,log } )
Z |XM| hu

=1

P s 5
Proof. Let A = k™ xu1™ 2mlxul, Define ay, as, . . ., Gamq1 by a; = £™uT AP~ There-

5 "y
fore a1 = k™»l and agm41 = k2Xul. Furthermore, provided h,/|x,| is sufficiently
large, we have k3 < A<k In particular a;4+; > Kk 3a;.
Let U and V be defined by
m
lasi—1,a2:)  and V= | J[a2s, azit1).

1 i=1

U:

=

(2



INHOMOGENEOUS AND CONTRACTING ON AVERAGE SELF-SIMILAR MEASURES 53

Without loss of generality, upon replacing U with V, by Proposition [7.4]

1 h -
/ —tr(gr,;u) du >4 <“> max{l,logs} log k1.
U u Xl X ]

For i € [m] let s; € (az;—1,a2;) be chosen such that
1
tr(qr,;8i) > = sup tr(gr, s u).

u€(az;—1,a2;)

In particular,

1 (el
t T s St > —t Tr 3 d .
(0ri50 2 gy [ Lntans

Summing over 4 gives

m

1 1
Ztr(qm; 8;) > m /U Etr(qm;u) du

i=1
c (h S\t
> — [ & max{l,log} logr~t.
2log A <|X#|> X1 ]

As log A < log k™! it follows that, provided that x is sufficiently small depending
on i,d, S,

‘Xu|

m b 1
Ztr(qm;si) >4 <“> max {l,logs} .
i=1 Xl

Finally we note that as A > k=3 we have that s; 11 >~k 3s;. O

8. DECOMPOSITION OF STOPPED RANDOM WALK

In this section Theorem [2:4]is proved. We construct samples from v in a suitable
way in order to bound the order k detail of v. Given a probability measure p on
G = Sim(R%) we denote by 71,72, ... independent u-distributed random variables
and write ¢, = 71 ---7v,. Recall that if = distributed like v and 7 is a stopping
time, then by Lemma 2.24 from [Kit23] the random variable ¢,z is distributed like
v.

As discussed in the outline of proofs, one uses Proposition [7.5] to make a decom-
position

Gr,® = g1exp(U1)g2 exp(Uz) - - - gn exp(Un )z (8.1)
with a suitable x > 0 that satisfies

Uil < plgr---g:)"'r and D tr(p(gr--- g:)Us) > Cr° (8:2)
=1

for a sufficiently large constant C' and a given scale » > 0. The definition of
tr(gr, , s;) requires us to work with a o-algebra &/ and with the conditional trace
in . As stated in , we need to have at O(loglogr~!) many suitable
times ;.

Indeed, in order to deduce from Proposition We need to combine all the
information at the scales si,...,ss. One also needs to ensure that the assump-
tions from the Taylor-approximation result Proposition [3.4] are satisfied for each
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scale s; and that we can apply our (¢, T')-well-mixing and (g, 8, A)-non-degeneracy
conditions to deduce that

Var((;(U;)) > eatr(p(gr -+~ i) Ui) T

for ¢; a constant depending on d,c,T,ag,0 and A. We will achieve the latter by
ensuring that each g; is a product of sufficiently many -; so that g;z is in distribution
sufficiently close to v.

To combine the trace bounds at the various scales while ensuring that the above
conditions are satisfied, a theory of decompositions of the form will be devel-
oped. We call decompositions satisfying suitable properties proper decomposi-
tions. It is important for our purposes to track the amount of variance we can gain
from a given proper decomposition, which is a quantity we will call the variance
sum and denote by V(u,n, K, k, A;r) (see deﬁnitionfor the various parameters).

In section [8.2| we will show that there exist proper decompositions that allow us
to compare the variance sum V and tr. Proper decompositions can be concatenated
in such a way that variance sum is additive, as is shown in section We establish
how to convert an estimate on the variance sum V into an estimate for detail in
section The proof of Theorem culminates in section [8.5| combining the
previous results. Finally, we establish Theorem in section

8.1. Proper Decompositions.

Definition 8.1. Let p be a probability measure on G, let n,K € Z>o and let
A,r >0 and r € (0,1). Then a proper decomposition of (u,n, K, A) at scale r
consists of the following data
(i) f=(fi)=y and h = (h;)]—, random variables taking values in G,
(1) U = (U;)?_; random variables taking values in g,
(iti) oy C o C ... C A, a nested sequence of o-algebras,
() v = (7:)$2, be i.i.d. samples from p and let F = (F;)$2, be a filtration for
v with v;11 being independent from F; fori > 1,
(v) stopping times S = (S;)7_y and T = (T;)7_, for the filtration F,
(vi) m = (m;)’_, non-negative real numbers,
satisfying the following properties:
A1 The stopping times satisfy

S1<T1 <5 KTy, <... <85, < T,

S1>K aswellas S; > Ti—1+ K and T; > S; + K for i € [n],
A2 We have frexp(Ur) = v1...7s, and for 2 < i < n we have f;exp(U;) =
YT, 41 7s,. Furthermore for each i we have that f; is o/;-measurable,
A3 h; =7g,41- -1, and h; is o/ -measurable,
A4 p(fi) <1 foralll <i<n,
A5 Whenever |b(h;)| > A, we have U; = 0,
A6 For each 1 <i<n we have

\Ui| < p(fihifoha -~ hi—1 fi) "',

A7 For each 1 < i < n, we have that U; is conditionally independent of <,
given <;,
A8 The U; are conditionally independent given <y,
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A9 For each 1 <i<n, it holds
Var(p(fi)U(fi)Uib(h;)|<7;)
p(frhifoho - ficihi—1) =202

| 1| > myl.

Note that in [A9] by Var we mean the covariance matrix and we are using the
ordering given by positive semi-definiteness (2.16) and we denote as in section
by Uib(hi) = ¥,y (Us).

A proper decomposition as above gives us

Y17, = frexp(Un)ha faexp(Uz)ha - hy—1 fr exp(Un)hy, (8.3)
We briefly comment on the various properties of proper decompositions. We
use parameter K and to ensure that each of the fiz and h;x for € R? are
close in distribution to v. Properties and [A6] are needed in order to apply
Proposition We require so that we have Var(U;|«,) = Var(U;|<%) and in
particular the latter is a .7-measurable random variable. is needed so that
[Ui|y], . .., [Un|9%,] are independent random variables and therefore we can apply
Proposition [5.8]
One works with two sequences of random variables f and h instead of one in order
to be able to concatenate proper decompositions as in Proposition Indeed, if
we had proper decompositions of the form

Y1, = 91exp(Ur) g2 exp(Uz)gs - - - gn f exp(Un) gnt1

we could show a variant of and all other results on proper decompositions.
However we could not prove anything like Proposition whose flexible choice of
the parameter M is necessary to apply Proposition

We next define the V' function mentioned above. The additional parameter x > 0
is introduced in order to be able to concatenate the decompositions in a suitable

way (Proposition .
Definition 8.2. Given (u,n, K, A) and k,r > 0 we denote by
V(M, n? K-’ KJ? A; T)

the variance sum defined as the supremum for k = 0,1,2,...,n of all possible

values of
k
> mi
i=1

for a proper decomposition of (u, k, K, A) at scale r with p(fihy - fxhi) > k almost
surely.

It is clear that for any x> 0 with x’ < k we have
V(u,n, K, k', A;7) > V(u,n, K, k, A;r). (8.4)

8.2. Existence of Proper Decompositions. We show that for a suitable depen-
dence of the involved parameters, we can construct proper decompositions compar-
ing the variance sum and the trace.

Proposition 8.3. Let d € Z>1 and ¢,T, 09,0, A, R > 0 with ¢,ap € (0,1) and
T > 1. Then there exists ¢y = c¢1(d, R, ¢, T,,0,A) > 0 such that the following
is true. Let p be a contracting on average, (¢, T)-well-mizing and (o, 8, A)-non-
degenerate probability measure on G such that p(g) € [R™, R] for all g € supp(u).
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Let k,s > 0 with k and s sufficiently small (in terms of u and R). Let K be
sufficiently large in terms of u, R, and T'. Then

V1, K, R385k, A; R ks) > e1tr(qs, ; 5).

Proof. We construct a proper decomposition with n = 1. Let F be uniform on
[0,7]NZ and independent of v. Let S be defined as
S=inf{n: p(gy) <R E N+ F
and let
Sp=inf{n >S5 : p(ys41-- ) < K}
Denote
i:’Yl""Yﬁ and g ="7S+175+2 " VS
By the definition of tr(g;,_, s) there is some o-algebra <7, some random variable

V taking values in g, some &/-measurable random variable f taking values in G
such that g = fexp(V) with |[V| < s and

1
E[tr(V]e)] > 552tr(qm,5). (8.5)
We define T7 = S1 + K and set
hi =8, 41781421y -
Denote

if <A fif <A
Uy — 1% 1|b(h1?|_ Camd = fr 1|b(h1?|_ ;
0 otherwise fg otherwise.

Furthermore we set @/ = o(f, f1,h1, ).
We have

REZ2R Tk <p(fg) <R "'k

In particular, we note that |U;| < s and so providing x and s are sufficiently small
in terms of R, we have R"X3RTr < p(f;) < R~%k < 1. This means that
U1| < s < p(f1) 'R Frs.

Now let € R? be a unit vector. We wish to show that

E [Var(z - p(f1)U(f1)Urb(hn)|4)] = ertr(gr; s)R™>F k25,

Let f' = f ~1f and let P, ..., Py be orthogonal eigenvectors of the covariance
matrix of (U1b(hq)|</) with eigenvalues A; > -+ > A\;. We have

Var(z - p(f1)U(f1)Urb(h1)|a%)
>R E-CR=2T ;2 Var(x - U(S)U(f)U1b(ha)|2)
d
_R2K-6p[p-2T .2 Z |x . U(i)U(f/)-ZDi|2 g
i=1
>R-2K—6[Q-2T 2 ‘3: U(HU(f)Py }2 tr(Uib(hy)]e71)/d.
By Proposition [3.2] we know that when b(h1) € Up(V) and |b(h1)| < A we have
tr(Uib(h1)|a) > 6 - tr(Us|oh) = 6 - tr(Ur] ).
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By our (ap, 8, A)-non-degeneracy condition and Lemma [4.2] we know that providing
K is sufficiently large this happens, conditional on ., with probability at least

1(1 — ). Therefore by (8.5
1
E[tr(U,b(h1)|2)] > Z(l — )dtr(qy, ; 5)s>.

By our (¢, T')-well-mixing condition we have that providing K is sufficiently large
in terms of p,

E[le UOUGP ea] >
Clearly Var(U,z(h1)|<4) is o(hy, &7 )-measurable. Therefore
E[Var(z - p(f1)U(f1)U1b(h1)]1)]
>E [R2KOR722 o U(NU ()P te(Ub(h) ) /d
> R2K—6p=2Tg-1 . 3(1 — )tr(g; s)R2s? - ¢
=c1tr(qy, ; 8)R™2K k252

where ¢; = R7SR™2Td~1(1 — a)dc/4. Since this is true for any unit vector z € R?¢

we have
E [Var(p(fl)U(fl)U1b(h1)|4271)

R_2KK,252 Z cltr(qTN; S)

as required. Finally note that
P(flhl) Z R—lp(ighl) Z R—lR—TR—K—l . K/R_l . R_K — HR_2K_3_T 2 R_SKK
providing K is sufficiently large in terms of 7" and R. g
8.3. Concatenating Decompositions. We note that it is straightforward to show
that for any measure p and any admissible choice of coefficients, the variance sum
is additive
V(Manl + ’I’L27K, K1K2,A;T)
Z V(,LL7 ni, K7 K1, Aa T) + V(M? na, K? R2, A7 ﬁflr)' (86)

However, in order to use Proposition [7.5] it is necessary to work with different
scales r1 and ro and therefore we show the following proposition.

Proposition 8.4. Let p be a probability measure on G. Let R > 1 be such that
p(g) € [R™Y, R] for every g € supp(u). Let ni,ne, K € Z>o with na, K >0 and let
Ki1,ke,7 € (0,1). Let A >0 and let M > R. Then

V(g ny +no, K, RM Ry ko, Ajr)

2 V(N’anlaKaﬁlaA;r) + V(M7n27K7 H?aA;Mﬁl_lr)'

Proof. For j € {1,2} let 79), 'yéj), ... be a sequence of i.i.d. samples from p defined
on the probability space (Q(j),f(j),P(j)). Let 41,492,... be a sequence of i.i.d.
samples from p defined on the probability space (Q, F , I@’) Consider the product
probability space

(Q, #,P) = (Ql x QU x Qo, F1 x F x Fy, Py XEDXPQ).
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Let ( Sl(l),Ti(l) f(l) U; (1) vy (1) ,527(1 ) be a proper decomposition for

(u, k1, K, k1, A) at scale r defined on the probablhty space (Q(l), f(l),IP(l)) such
(1)

that Zz . m; ’ approaches V (u,ni, K, k1, A;r) and

p(AnY - i) =
Given w; € Q) and & € Q, let 7 = 7(wy, &) be given by
7 =min{k € Z>o : p( mh(l) mh(l f(l)h(l A AR) < M Rp}
and let p = p(f(l)h(1 fs 1)h(1 f(l)h(1 4192 . ..4-) such that
peM IRk, M k).
Now given w; € Q; and & € Q, let (%-(2), 5’52),Ti(2), fi(z)7 Ui(z)7 h§2),ﬁfi(2), ml(?)) be
a proper decomposition for (u, ks, K, ko, A) at scale M /{flr defined on the probabil-

ity space (9(2), 9(2),P(2)) such that Zfil mgz) approaches V (i, no, K, ko, A; MKy 'r)
and
1), (1 1), (1
AR DR 5
We now concatenate the two decompositions as follows. Let 71,72,... be the

sequence of random variables on the probability space (2, %, P) defined by

A ifi < T\

4 . a ifti>T" andi < TV 4+ 7

Yi = i—T,51> k1 = Ly

e 1)
’yi_TIS)_T if 7 > Tk1 + 7.

Clearly these are i.i.d. samples from p. For i =1,2,..., k1 + ko we define S; by

g[8 if i<k
E S C A L RIP T By
i—k1 k1 1

and we define T; analogously. We define f; by

£ if i<k
fi= A A =k +1
2. if 7> ki + 1.

We define U; by

K3

g Jul i<k
U8, ik

and define h; and m; analogously. Finally we define o7, by
o — %(I)XQXQ@) if i < ky
Y x Fx B it k.
It is easy to check that (v;, S, T3, fi, Ui, hi, 9%, m;) is a proper decomposition for
(u, R, ky + ko, K, R"'M~'k1ko, A) at scale r and it holds that

k1+ka

Z m; = Zm(l +Zm(2).



INHOMOGENEOUS AND CONTRACTING ON AVERAGE SELF-SIMILAR MEASURES 59

Indeed, we note that for ¢ > k‘g we have that since M/Ql_l <pt,
2) (2 2 2) \— _
|U:| = |Uz( k1| < P( )f e 5 )klflfi(f)kl) 1]\4"1 'y
< ﬁ_lp( 2)f hz(‘zf)klflfi(z)kl)_lr
= P(fl 1fohg - iflfi)
Similarly, for i > ko + 1 and using that p>M?k? <1,
E { Var(p(f:)U(f:)Uib(hi)| %)
p(frhifaho - ficihi—1) =202
(2
Var(p <f52k1> <f52k1> J,ﬂ (hZ,) 1)
N @) £2) @ \aa P
p- ( h fa h T )~2r

Var(p <f52,ﬁ> (fz h)UZ(Z),ﬁb( Dilla)
Pp2o( N N ) 2R MR e

m®
— l k?l I

The remainder of the properties are straightforward to check. O

| i1

>E

Corollary 8.5. Let pu be a probability measure on G. Let R > 1 be such that
p(g9) € [R™Y, R] for every g € supp(u). Let n, K € Z~q and let k,r € (0,1). Let
C,A>0 andlet M > R. Then

Vp,n, K, R*M 'k, A,C; M~ 'r) > V(u,n, K, K, A, C;7)
Proof. By Proposition we have
V(p,n, K,R7*M 'k, A; M~ 1r)
> Vi(p,0,K, 1, A; M) +V(u,n, K, k, A;7).
and simply note that V(p,0, K,1,A,C; M~1r) = 0. O
8.4. From Variance Sum to Bounding Detalil.

Proposition 8.6. For every d > 1 and A,a > 0 there is a constants C =
C(d,A,a) > 0 such that the following is true. Suppose that p is a contracting
on average probability measure on G. Then there is some ¢ = ¢(u) > 0 such that
whenever k < 1 and k, K,n € Z~o with K and n sufficiently large (in terms of A, «
and ) and r > 0 is sufficiently small (in terms of A, and p) and

Vg, R,n, K, k,A;r) > Ck

we have
s (V) < a® + nexp(—cK) + C"k 7,

Proof. Suppose that (f, h,U, «,~,.%,S,T, m) is a proper decomposition of (i, n, K, A)
at scale r such that Y., m; > C/2 and let v be an independent sample from v.
Let

I={iel,n|NZ:|bh;)| < A}
and let m = |I|. Enumerate I as i; < i3 < -+ < i,, and define ¢1,...,gm
by g1 = fih1... fi, and g; = hiy,_ fi,_41... fi; for 2 < j < m. Define v by
v = hi, fip,+1---hpv and let V; = U;,. Let o be defined by

z = grexp(V1) ... gmexp(Vim ).
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Note that z is a sample from v. Let &/ be the o-algebra generated by <7, and v.
Note that the g; and v are </ -measurable.

We will bound the order k£ detail of x by showing that with high probability
we can apply Proposition 34 to ¢1,...,gm, Vi,..., Vi, and U and then bound the
order k detail of this using Proposition [5.8

Let E be the event that [v] < 2A4 and that for each j = 1,...,m we have
1b(g;)| < 24, p(gj) <1and |V;| < p(gr...g;)"'r. By Corollarywe know that
P[EC] < exp(—c1 K) for some ¢; = ¢ (i, A) > 0.

For j =1,...,m define (; by

G = Dulgr---gjexp(u)gji1 - gm0)lu=o-

By Proposition [3:4 on E we have
m
g1 gm®— Y G(V;)| < CPplgr - gm) 0
j=1

for some C; = C1(A) > 0. Clearly the right hand side is at most C?x~r2. By
Lemma [5.7] this means that on E we have

s (a|ef) < s | 3GV | + Cleds™'r
=1

where e is Euler’s number.
Let C3 = C3(a, d) be the constant C' from Proposition [5.8 with the same values
of aw and d and let F' be the event that

> Var (V| /) > kCsl.
j=1

By Proposition using that by the [Vi|#], ..., [Vin|/] are independent al-
most surely, we have that on F'

s (S ¢l | <ot
j=1

Therefore
s (z|e/) < oF + CPedk™'r + Igeype
and so by the convexity of order k detail we have
s (z) < of + CPedrs™ 1% + P[EC] 4+ P[FC].

We already have that P[EC] < exp(—c1 K) so it only remains to bound P[F°].
For i =1,...,n define

G = Du(fiha - hio1 fi exp(u)b(hi))|u=o
and let F' be the event that

> Var (Ul /) =Y Var ¢;(Vl)|| < 1.
j=1

=1
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Let C3 = C5(a, d) be the constant C' from Proposition [5.8 with the same values
of @ and d and let F be the «/-measurable event that Y ., Var((;(U;)|«/) >

(Cs 4+ 1)kIr?. Clearly FUF C F so it suffices to bound P[F“] and ]P)[Fc].
Since gy, . . . s 9m and T are ./ measurable, by Lemma|3.3|we have for j = 1,...,m
that Var((;(V;)|<7) is equal to

plgr---95)° - Ulgr ... ;) g, sr...gnw o Var(Vi) opl o Ulgr...g;)"
and that
Var (G, (Us,)| /) = p(g1 -+ g;)*-Ulga .- 'gj)wb(hij)OVar(VjW/)WbT(hij)U(gl gt

We also have that [V;| < p(g; - - - g;) ~r almost surely and so consequently || Var V|
p(g1---gj)~?r%. Therefore by Lemma (iii),

| Var ¢ (Vi|o/) — Var G, (Ui, ||| <a [b(h;) = gjs1 - - gmT[*r>.

IN

Furthermore we have that whenever i ¢ I that Var((;(U;)|«/) = 0. We may assume
without loss of generality that nexp(—Ky,/10) < 1. This means that, providing
K is sufficiently large (in terms of d), in order for F to occur it is sufficient that for
each j =1,...,m we have

|b(h;) — gj+1 ... gm?| < exp(—Kx,/10) < 1/n.

By Corollary this occurs with probability at least 1 — mexp(—coK) for some
¢z = c2(p) > 0 and therefore P[FY] < mexp(—cK) < nexp(—c K).

Finally we wish to bound P[Fc]. Let
i = r7? Var(G(Ui)| ) = v~ Var(Gi(Ui) | )
=7 *Var(p(fih1 -+ hi—1 fi)U(frha - - hioy fi)Uib(hi)| %))
By construction we know that
E[%:%1,...,%-1] > myl.

We also know that ||;]| < A? since ||ty(n,)|| < [b(hi)] < A. This means that we
can apply Lemma By Lemma we know that providing C is sufficiently
large we have

P> % > (Cs+ 1)kl

i=1

>1—exp <—03k2mi>

=1

for some absolute c¢3 > 0. Providing we choose C to be sufficiently large, we

therefore have IP’[FC] < exp(—c3kC) < oF this is less than o*.

Putting everything together we have
st (2) < 20F + nexp(—c3K) + edClr1r,

Replacing « be a slightly smaller value gives the required result. [
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8.5. Conclusion of Proof of Theorem We finally show a decay in detail
under the assumption of Theorem[2.4] What follows is a rather intricate calculation
and we refer the reader to the outline of proofs in section for intuition and a
sketch of the argument.

Proposition 8.7. Let d € Z>1 and ¢,T,09,0,A,R > 0 with c,a € (0,1) and
T > 1. Then there exists C = C(d,R,c,T,ap,0,A) > 0 such that the following
is true. Let p be a contracting on average, (c,T)-well-mizing and (ag, 0, A)-non-
degenerate probability measure on G with p(g) € [R™Y, R] for all g € supp(n) and

assume that
2
. > Cmaxq 1, (log S”) .
|Xu| hu

Then for all sufficiently small r > 0 and all integers k € [loglogr—! 2loglogr 1]
we have that
sgk)(u) < (log r_l)_wd.

Proof. We prove this by repeatedly applying Proposition [8.3] and Proposition [8-4]
and then applying Proposition First let C be as in Proposition with a =
exp(—20d).

Now let r > 0 be sufficiently small and let K = exp(y/loglogr—1). This value
of K is chosen so that K grows more slowly than (logr~1)¢ but faster than any
polynomial in loglogr~! as r — 0. Let S = 2max{h,, S, }.

Note that ;T“S <landfori=1,2,... let

1 -1 /p i1 xpl Py yie
i ox <_><M2(;g7“ (3{;) ) e

with ¢ = dim G. Then

hy

[xpl
K1 =71 28 and ki1 =K

and let m be chosen as large as possible such that

K < min{ R710K 2710K7

We require k., < R~1°K later in the proof and assume k., < 271K so that k,, is

surely sufficiently small when r is small enough so that we can apply Proposition[7.5]
Note that this gives

h
loglog R + v/loglog r—! < loglog ! + mlog ﬁ + log ;%
which is equivalent to

S 208
mlog (Mmax {1, h”}) = mlogh— < g loglogr™1
" n

and therefore it follows that

g 1\ L
(max {1, log h“}) loglogr™! <4 m <4 loglogr™!.
m

Now as in Proposition let 7 = LWJ. For each i = 1,2,...,m let
n
sgz), 3(21), ..,s% 5 0 be the s; from Proposition with x; in the role of k. So

’ m
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hu

. s _hu
s e (k¥ k1) By Proposition we have for each j € [m],

V(p, 1, K, R38 gk, A; R_Kliisgi)) > citr(gr, sgl))
for some constant ¢; = ¢1(¢, T, v, 0, A, R,d) > 0. Therefore by Proposition

with M = R_1{22}(j)R_?’Kmsg-lll/sy), where we denote 1{>9)(j) = 1 whenever

j > 2, we can prove inductively for j = 2,3,...,7m that
Vi, j, K, R_IR_?’Knisgl)/sg-l), A; R_Kﬁsisgz)) > Ztr(qmi ; sgl)).
a=1

‘We have used here that sﬁl/s(»i) > /Qi_?’ and so M > R’ﬁan > R19K > R since
ki < R719K_ By Proposition and ([8.4]) we conclude that

L . h -1
V (i, K, R hs(? [5) A R M hys)) > cap Ly max {Llog ‘,f"}
X W

for some constant co > 0 depending on all of the parameters.
Note that for ¢ =1,2,...,m — 1 when h,/|x,| is sufficiently large we have

i1 . S 11 _ P
R*4K/<;i+15§z+ )/55%) > R%Kﬂﬁf . 200Xy ]

S RAK 3l ] T ats

— K3

> Rk > ROY > R.

Py
as kit1 = k75 and k; < R7K and so we may repeatedly apply Proposition
with
M = R—l{zz}(i)R—4K,€i+18§Z+1)/8gL)7

where we denote 1;>9) (i) = 1 whenever i > 2, to inductively show fori = 2,3,...,m
that

V(u, R,im, K, R71R74KH1851)/8$;‘L), A; RiKmsgl))
-1
> czih—H max {1, log S”} .
Xl hy
This means using (8.4))

Vu, R,mm, K, R*SKmsgl)/s%T), A; R*Kmsgl))

h S\
203”max{1,log“} loglogr~*
Xl hy,

for some constant cs > 0 depending on all of the parameters. Since

S
_ 1 _ +1 _ 1 Ixpl _ 1, 1
R Kmsg )>R Keprl = R-Ep2t2s > R-8pzta >0

for r sufficiently small by Corollary ﬁ with M = R*Kﬂlsgl)r’l >R

m hy S|~
V(u,R,mﬁz,K,RE’Kr/sf%),A;r)263|X’|max{1,logh’} loglogr~t.
1 n
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_Pp
20 xp

Note that 1/57(::1) > K T and so in particular providing hy/|x | is sufficiently
large we have R_5Kr/s(m) > R¥r. By Proposition provided

m

w Sy -2 .
omaxq§llog——, >2c;C
Xl Ry,
we deduce
Sgk) (V) < eXp(—QOdk) +mm exp(_c4K) + R—Kcmfn

for some constant ¢4 = cq(p) > 0 and k € [loglogr=!,2loglogr~]. Since min <,
loglogr~! it is easy to see that

mimexp(—csK) + R-KC™™ < (logr™!)
whenever © > 0 is sufficiently small (in terms of p). Since k& > loglogr~! we

have that exp(—20dk) < (log r_l)_md. Overall this means that provided r > 0 is
sufficiently small (in terms of x) we have

sW () < (logr™1)
We deduce the main theorem from Proposition

Proof. (of Theorem We combine Proposition 8.7 with Lemma Givenr >0
sufficiently small, let k& = %log logr=!, a= r/\/E and b= rk".
Suppose that s € [a,b] and note that then k € [loglogs™!,2loglogs~!] and
%log r~! < logs~! for r sufficiently small and therefore by Proposition
sF (1) < (log s71) 7104 < 2104 (1og 1) =104,
By Lemma [5.5] it follows that
57"(’/) < Q/(d)kfl(21()d(log,r,71)710d 4 kfk)’
which is easily shown to be < (logr~!)=2 for r sufficiently small. Indeed, recall
that Q'(d) < ed~'/? < e for all d > 1 and therefore Q'(d)* < (log(r—1))°.
This concludes the proof of the main theorem of this paper. O

—20d

~10d
. g

8.6. Proof of Theorem In this section we show how to work with the entropy
and separation rate on O(d) instead of the one on G. Recall that for a measure p on
G the measure U(p) on O(d) is the pushforward of y under the map g — U(g). We
then denote for a finitely supported u by hy () and Sy () the analogously defined
Shannon entropy and separation rate of U(u). As we show in section m when
all of the coefficients of the matrices in supp(U(p)) lie in the number field K and
have logarithmic height at most L > 1, then

SU(/I.) ] L[K : Q]
Therefore Theorem follows from Theorem [RS8l
Theorem 8.8. Let d > 3 and R,c¢,T,p,0,A > 0 with ¢,ap € (0,1) and T >
1. Then there is a constant C = C(d, R, ¢, T, ap,0,A) such that the following
holds. Let p be a finitely supported, contracting on average, (c,T)-well-mizing and

(v, 0, A)-non-degenerate probability measure on G with supp(p) C {g € G : p(g) €
[R™Y, R]}. Then v is absolutely continuous if

h S 2
Ulw) > Cmax{l,log (U(”)>} .
Xl am
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The proof of Theorem [8.8]is analogous to the proof of Theorem [2.4] The only
point where a slightly different argument is needed is the following version of Propo-
sition[7.1} The remainder of the proof is verbatim to the proof of Theorem with
only changing the notation of h, to hy(,) and S, to Sy (-

Proposition 8.9. Let u be a finitely supported, contracting on average probability
measure on G. Suppose that Sy, < oo and that hyuy/|xu| s sufficiently large.
Let S > Sy, £ > 0 and a > 1 and suppose that 0 < r; < rg < a~! with
r1 < exp(—Slog(k™)/|xul). Then as k — 0,

hu ()

Ho(gr;7r1|r2) > (
|X;L‘

—d— 1) log ™t + H(Sry,0) + 0p,d,9,0(l0g rh.

Proof. The proof is similar to the one of Proposition thus we only provide a
sketch. Lemma still holds and therefore we only need to show that

h
Ha(QTN;Tl) > (Z(IT) - 1) log K+ Ou,d,S,a(log "{_1)’ (8.7)
n

where Hy(¢-.;m) = H(¢r.5r,a) — H(Sr,,0). To show (8.7) we apply Lemma
with X = G = Rxog x O(d) x R and @ : G — X, g — (p(g),U(g),b(g)) and mx
the product measure on X as used in Lemma Then we note that ‘%nim; =1.

Thus by Lemma

H(g-, 57‘17@) = DKL(U(ansrha) || dU) + Dxw(p(qr, 5T1,a) I p_(d+1)dl))
+ Dk (b(r, $r1,a) || dD).

As in Proposition [7.1] one shows that

h
Dxv(U(gry$r4,0) || dU) > bU( U Yog k™! + Dir(U(sra) || dU) + 0,1,4,5,0(log 571,
1

On the other hand,
Dxr.(p(qr, $r1,a) || Pi(dJrl)dP) > Dxr(p(Sry,a) | pi(d+1)dp)
and
Dy (b(qr,.$r1,0) || db) > Dk (b(sr,.a) || db)
and note that by Lemma [6.5

DxL(U(8ry.a) [|dU) + DxrL(p(8ry.4) || pi(d+1)d/’) + DKL(b(Sm,a) || db) > H(Sm,a)~

All these estimates combined imply the claim. (I

9. WELL-MIXING AND NON-DEGENERACY

In this section we study (¢, T)-well mixing as well as (g, 6, A)-non-degeneracy.
The goal of this section is prove Proposition [2.2] and Proposition 2.3} We treat
(¢, T)-well-mixing in section and show that we have uniform results as long
as U(p) is fixed. In section we conclude the proofs of Proposition and
Proposition by proving strong results on non-degeneracy.
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9.1. (¢,T)-well-mixing. In this subsection we establish in Lemma that we
have uniform (¢, T')-well-mixing whenever U(u) is fixed and show that (¢,T) can
taken to be uniform when we know a lower bound on the spectral gap of U(u). We
start with a preliminary lemma that will also be used in section Throughout
this section and next we denote by my the Haar probability measure on H and by
I € O(d) the identity matrix.

Lemma 9.1. (Schur-type Lemma) Suppose that d > 1 and that H is an irreducible
subgroup of O(d) and let V' be a uniform random wvariable on H. Let B be a
random variable independent from V taking values in R%. Then V B has mean zero
and covariance matriz of the form Al for some A\ > 0.

Proof. For h € H the random variables hV B and V B have the same law. This
means that the mean of VB is invariant under H and so since H is irreducible
it must be zero. Moreover the covariance matrix M of VB is invariant under
conjugation by elements of H. Since M is symmetric positive definite, it has an
eigenvector v and therefore Mv = A\v and hMv = Mhv = Av for some A > 0 and
all h € H. Since H is irreducible it therefore follows that M = AI as claimed. [

Lemma 9.2. Let uy be a finitely supported probability measure on O(d) such that
supp(uy) acts irreducibly on RY. Then there exists T = T(uy) only depending
on py such that every finitely supported probability measure p on G with U(u) is
(55, T)-well-mizing.

Proof. Let H C O(d) be the closure of the group generated by supp(uy). Then
H is compact and let my the Haar probablility measure on G and denote by V a
uniform random variable on H. We first claim that for all unit vectors x and y in

R? we have
1

Bz - Vy|*] = 7 (9.1
Indeed, we can view y as a random variable independent from V and therefore Vy
has mean zero and covariance matrix AI. Moreover, since E[[Vy|?] = d\ = 1 it
follows that A = % and therefore (9.1)) holds.
Let F be a uniform random variable on [0,7]. Then F is distributed as
1 —
=0

We claim that converges as T — oo to my in the weak*-topology. Indeed,
we note that any weak*-limit m of is py-stationary and, upon performing
an ergodic decomposition, we may assume without loss of generality that m is in
addition ergodic. As this is equivalent to the measure being extremal, we conclude
that m is invariant under the group generated by supp(uy) and therefore also by
H, implying that m = mpg.

Finally we just choose ¢ = 2—1d and T sufficiently large depending on uy such that
is sufficiently close in distribution to my and therefore E[|z - U(qr)y|*] > 55
for all unit vectors x,y € R?, implying the claim. (]

For a closed subgroup H C O(d) and a probability measure py supported on H
we denote as defined in (2.19) by gapy (uy) the L?-spectral gap of puy on L?(H).
We aim to show uniform well-mixing as long as gapy (uy) > ¢ independent of the
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subgroup H. To do so, we first show that we have uniform convergence in the
Wasserstein distance with a rate only depending on € and d.

Lemma 9.3. Let d > 1,e € (0,1) and let puy be a probability measure on O(d).
Assume that gapy(uy) > € for H the subgroup generated by the support of uy.
Then forn > 1

Wi(pg',mu) <a (1—€)*"
for a=(1+ 3dimO(d)) ™.
Proof. We consider the metric d(g1,g2) = ||g1 — g2|| on O(d) for || o || the operator

norm and note that it is bi-invariant and restricts to H. Denote by B (h) for
h € H and § > 0 the d-ball around H and denote

40
mir (Bj' ()
For § € (0,1) we note that mg (B (e)) >4 64™ ) for an implied constant de-
pending only on d and therefore ||Ps||s <4 6~ (4mO(d)/2 " Also we note that for

h € H we have (u*" * Ps)(h) = %‘m. By the triangle inequality,

Wi (W™, mp) S Whi(p™, i * Ps) + Wi(u™ = Ps,mp).
Note Wy (u*™, u*™ x Ps) <4 0 and since H is compact,
Wi % Ps.mar) < | 5 Py — 1|3
<l Ps — 1|2
< (1= &)"l|Bslla <a (1 — )5~ dmOD)2

Ps =

To conclude, if follows
Wl(u*”,mH) <4 5+ (1 _ E)n(;f(dimO(d))/?
Therefore setting § = (1 —)*" for @ = (14 § dim O(d)) ! implies the claim. [

Lemma 9.4. Let d > 1,e € (0,1) and let uy be a probability measure on O(d).
Assume that gapy(uy) > € for H the subgroup generated by the support of uy.
Then there exists T = T(d,e) only depending on d and e such every probability
measure (1 on G with U(p) = pu is (55, T)-well-mizing.

Proof. The proof is similar to the one of Lemma [9.2] and recall the notation used
in it. Consider a list of tuples of unit vectors (z1,¥1),. .., (Tm,ym) such that for
every two unit vectors z and y in R? there is some 4 € [m] such that

1
sup ||z - Uy|2 — |z - in|2‘ < PR
Ueo(d)

Such a list of tuples exists as the action of O(d) on S?~! C R? is uniformly contin-
uous. We claim that for T' large enough depending only on € we have for all i € [m]
that

gl

Ellz; - Ulgr)yil’] >
Indeed, we note that for hqi, ho € H we have
|wi-haysl®—[@i-haysl* | < | |@s-hayil+|ai-hayil || |2 hays| = @i-hays] | < 2|[hi—hal|.
Thus it follows that
Ellzi - Vyil* = |zi - Ulgn)ysl®] < 2V (0" mr)
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and the claim follows by Lemma [0.3] This concludes the proof as for all z and y
we have

1 1
Ellz - U(gr)yl®] = sup Ellz; - Ulqr)yil*] — — > —.
i€[m) 4d — 2d
O

Another direction to show uniform well-mixing would be to study the stopped
random walk U(g,.) and to show that U(g;.) — mpg. We do not pursue this
direction further and just note that the results by Kesten [Kes74] can be applied
to this problem.

9.2. (g, 0, A)-non-degeneracy. In order to state our results on («ag, 6, A)-non-
degeneracy it is useful to understand that we can translate and rescale our gen-
erating measures, without changing any of the fundamental properties. It is also
beneficial to replace p by %56 + % 1 and we show in the following lemma that these
changes do not change our self-similar measure or any of the relevant constants in
a fundamental way.

Lemma 9.5. Let 1 =), pidy, be a contracting on average probability measure on
G with self-measure v. Let h € G and consider the measures
1

1
Hh = Zpifshgihfl and  py, = §5e + Sk
7

Then the following properties hold:
(i) hy = hy, =2hy
(i) Xp = Xpn = 2Xus,»
(i1i) Sp = Su, =Sy,
(v) gapy (1) = gaPy(nymu(n)-1 (1h) = 288Dy (ny o (n)-1 (1)
(v) pn and pp have hv as self-similar measure.

Proof. As conjugation is a bijection on G and by using |[HS17, Lemma 6.8], (i)
follows. Moreover, (ii) follows since p(hg;h~!) = p(g;) and (iv) follows similarly. To
show (iii) note Sy, =S, since by the triangle inequality d(g, h) < d(g,e) +d(e, h)
for all g, h € G. To show that S,, = S, , set

A= min d(91,92)
91,92 €supp(),g1#g2

and note that there is a constant Cj, depending on h such that d(hgih =1, hgoh™1) <
Crd(g1, g2) for d(g1,g92) < A. Thus it holds that

1
S,, = limsup ——logd(hgih™ ' hgah™")
91,92€5n,917#g2 T

1
< limsup ——logCrd(g1,92) =S,
91,92€80,917#92 T

Applying the same argument to conjugation by A~! implies the claim. Finally, we
note that pp and pj, have the same self-similar measure and it holds that

hv = hZPiQiV = Zpihgih_lhy

and therefore hv is the self-similar measure of y;, and pj,. (]
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In particular, it follows that the self-similar measure of p is absolutely continuous
if and only if the one of u; or py is and all of the relevant quantities are the same
up to a factor of 2.

To give an idea of the proof of the main results in this subsection, we first discuss
the case of real Bernoulli convolutions vy with A € (1/2,1). Indeed, we distinguish
between A > A\g and A < )\g for some )\g sufficiently close to 1. Note that vy is
supported on [—(1 —A)71, (1 — \)] and thus when A < \g one easily checks uniform
non-degeneracy depending only on Ay using for example that Bernoulli convolutions
are symmetric around 0. In the case A > Ao we rescale vy by v/1 — A2 to v} so that
v has variance one. Then we can deduce from the Berry-Essen type Lemma
that W (v}, N(0,1)) < V1 -2 < /1 —A2. We then deduce from the latter as
in Lemma that v is uniformly non-degenerate for Ag sufficiently close to 1.

Our results will be deduced from suitable results in the case when p has a uniform
contraction ratio and then in the general case from comparing our given measure
with a self-similar measure with uniform contraction ratio. We now state the main
proposition of this section.

Proposition 9.6. Letd > 1, € > 0 and let puy be an irreducible probability measure
on O(d). Then there is p € (0,1) and some (ag,8,A) depending on d,e and uy
such that the following is true. Let p = Zle pidg, be a contracting on average
probability measure on G satisfying U(u) = py and

p; >¢e aswellas  p(g;) € (p,1) forall 1<i<k.

Suppose further that there is some p € (p,1) such that
Eqynpld — p(7)]
1= Eynplp()]

Then there is some h € G with U(h) = I such that the conjugate measure p) =
26c + 3 3 Pidng,n—1 is (o, 0, A)-non-degenerate.

Moreover, if in addition gap g (p) > €, for H the closure of the subgroup generated
by supp(p), then p and («o, 0, A) can be made uniform in d and e.

We first show how to deduce from Proposition [9.6] the two propositions [2.2] and
from section To do so we first state the following lemma.

<1l-—=e.

Lemma 9.7. Suppose x1 < x2 and let X be a real-valued random variable such
that X < xo almost surely and P[X < x1] > 1/2+ p for some p > 0. Then

B[ X — z1[] < E[|X — 2] — 2p(22 — 21).
Proof. Let X; and X5 have the same law as X and be coupled such that at least

one of them is at most x; almost surely. Let A be the event that both X; and X5
are at most x1. Noting that A has probability at least 2p we compute

E[ X1 — 21| + [ X2 — z1[] = E[(| X1 — 21| + [ X2 — 21[)[ac]
+E[(|X1 — 21| + | X2 — 21[)La]
< E[(| X1 — 22| + [ X2 — 22[)L4c]
+ E[(|X1 — 22| + [ X2 — 22 — 2(z2 — 21))14]
< E[| X1 — 29| + | X2 — x2|] — 4p(z2 — 21).
The result follows. [l
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We now prove Proposition [2.2] and Proposition 2.3

Proof of Proposition[2.4 Let v1,72,... be i.i.d. samples from p. Let pyin be the
smallest of the py, ..., pr and let pyin be the smallest of the p(g1), ..., p(gr). Clearly

]P)[p(’)/l .. ’Vn) S pmin] 2 1- (]- _pmin)n'

In particular there is some n depending only on e such that this is at least 3/4.
Note that by Lemma with £1 = pmin and 22 =1 and p = % we have

EHP(’Yl e 'Yn) B pmin'] < 1-— E[p(')/l .. ’Yn)} B (1 _ pmin)/2

L=Elp(n...m)] ~ 1=Efp(71---7n)]
=1 1- Pmin
21 =E[p(m---m))
<1_— 1-— Pmin
N 2(1 - pglin)
1
<1l-——.
- 2n
The result now follows by applying Proposition Lemma [0.2] and Lemma [9.4] to
/Jl*'n/. D

Proof of Proposition|2.5 This follows directly by Proposition and Lemma [9.4]
O

Now we prove Proposition We use the following definition.

Definition 9.8. Given two measures A1, Ao on R? we define

PWi(Ai o) = inf  sup / Ipz — pyl dy(z, )
YET(A1,A2) pe P(d)

where P(d) is the set of orthogonal projections onto one dimensional subspaces of
R? and I'(\1, \2) is the set of couplings between \; and \.

We use this to show that if a measure is sufficiently close to a spherical normal
distribution then it is (ayg, €, A)-non-degenerate.

Lemma 9.9. Let I be the d x d identity matriz. Then given any p € P(d) we have

2
Eonnonllpzll =4/ .

Moreover, for any € > 0 there exists ag € (0,1) and 6, A > 0 such that if v is a
measure on R? and

2
PWi(v,N(0,1)) < \/;—E
then v is (v, 8, A)-non-degenerate.

Proof. The first part follows since if X ~ A(0,1) and u € R? is a unit vector, then
(X,u) is distributed as N(0,1). The second part follows from the first part, the
fact that the y € R such that E,.n(,1)|z — y| is minimal is y = 0 and Markov’s
inequality.
More precisely, we aim to estimate for all yo € R? and all proper subspaces
W C RY
v({z € R ¢ |z — (yo + W)| < 0 or |z > A}),
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which is bounded by v({z € R : [z — (yo + W)| < 0}) + v({z € R : [z] > A}).
To deal with the second term we note that by Markov’s inequality for a coupling ~
between v and N (0, 1) we have

v({z €eRY : |z| > A}) < A7? / || dv(z)

<At ( [wavo.nw + [ 1e- yldv(x,y)> .

In order to apply our bound for PW; (v, N(0, I)) we consider the projections p1, ..., p4
to the coordinate axes. Then |z — y| < Z?ZI |pix — p;y| and therefore by choosing
a suitable coupling, it follows that for A sufficiently large only depending on d and
e we have that v({z € R? : |z| > A}) < g/16.

To deal with the first term v({x € R? : |z — (yo+W)| < 6}), we assume without
loss of generality that W has dimension d — 1 and we let p be the orthogonal
projection to the orthogonal complement of W. Then it holds that |z — (yo+W)| =
|px — pyo| and therefore

v({z €R? |z —(yo + W) < 0}) = v({z € R? : |pz — pyo| < 0}).

In the following we identify pR? as the real line. Let v be any coupling between v
and N(0, ). Then it holds that

/Ipx—pyldv(w,y) > /lpm_py|1\pw71)yo\<9(x7y) dy(z,y)

v

v({z €RY : (jpz — pyo| < 6}) / Ipy — pyol — 8) AN (0, T)(w)

v({z € R : (Ipx — pyo| < 0}) (\/Z 9) ,

having used in the last line that y € R such that E,n(o,1)|z — y| is minimal is
y = 0. By choosing a suitable coupling and setting § = /4 it therefore follows for
¢ sufficiently small that

Y]

2 —¢
v({z e R? : (Ipr —pyo| < 0}) < Y= <1-¢/8
2
P 6/4
The claim follows by combining the above two estimates. ]

To make this useful we need to show that our self-similar measures are close to
spherical normal distributions. We prove this in the case where all of the p; are
equal with the following proposition.

Proposition 9.10. Given any € > 0 and any irreducible probability measure uy =
Zle 0y, on O(d) there is some p € (0,1) depending on € and py such that
the following is true. Let p = Zle pidg, be a probability measure on G without
a common fized point and with U(u) = py as well as p; > € for all 1 < i < k.
Assume there is p € (p,1) such that p(g;) = p for all 1 < i < k. Then there exists
some h € G with U(h) = I such that the self similar measure v, generated by the

conjugate measure (i), = 50 + 5 >_; Pipg,n-1 satisfies

Wi (v, N(0,1)) < e.
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If moreover gapy (uy) > € then p is uniform in d and e.
We then extend to the general case using the following lemma.

Lemma 9.11. Let v and ¥ be contracting on average random variables taking
values in G such that U(vy) = U(¥) and z(y) = z(¥) almost surely. Let v and U be

the self similar measures generated by the laws of v and 7 respectively. Then
v Ellp(v) = p(9)]]
PWi(v,7) < P Z PO o |, ).
! L=E[p(y)]  pepr

We now have all the ingredients needed to prove Proposition [09.6]

Proof of Proposition[9.6, Without loss of generality we replace p by %66 + % . Let
Gi » x + pU;x + b; and let o = > | 65, with self-similar measure . Then by
Proposition there is some h € G with U(h) = I such that
Wg(ﬁh, N(O, I)) < 6/10

Clearly this implies Wy (7, N(0,1)) < £/10 and therefore PW1 (9, N(0,1)) < /10
and so by Lemma if we define pp = Zle Pidpg,n—1 and let vy, be the self similar
measure generated by y, we have PWy (v, N(0,1)) < /5 —¢/2. The result follows
by Lemma O

Now we just need to prove Lemma and Proposition We start with
Lemma[9.11]

Proof of Lemma|9.11. Let x be a sample from v and & be a sample from 7 such
that (z, ) is independent from (v,%). Note that this means that yx is a sample
from v and 4% is a sample from . Let p € P(d). We have

Ellpyz — pyZ|] < E[lpy(z — 2)[] + E[|p(y — 7)Z[]
= E[p(MIE[IpU (7)(z — 2)|] + Ellp(v) — p(MIE[[pU (v)(&)])-

Therefore by taking a series of couplings such that sup,¢ p(q) E[|[pz—pz[] = PWi (v, )
we get

PWi (v, 2) < Elp(m)]PWi(v,7) + Ellp(v) = p(3) [Exns[lp(2)]]-

Now we wish to prove Proposition [0.10] First we need the following result.

Lemma 9.12. Let uy be a probability measure on O(d) and let H be the closure of
the group generated by the support of py and let V' be a uniform random variable
on H. Lety1,7v2,... be independent samples from %56 + %MU- Then for everye > 0
there exists N € Z~q such that whenever n > N we have

Wi(y1 -7, V) <e.
Furthermore if gapy (uy) > €, then N can be made uniform d and e.

Proof. This follows similar to the arguments given in section [9.1| since the measure
1y = $0c+5pu satisfies that (uf;)*™ — mp asn — co. In the presence of a spectral
gap we apply Lemma and use that by compactness of H the L3-Wasserstein
distance is comparable with the L'-Wasserstein distance. (I

It is convenient to work with measures which are appropriately translated.
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Definition 9.13. We say that a probability measure p on G is centred at zero if

E, ey [2(0)] = 0.
Lemma 9.14. Suppose that i is a probability measure on G which is centred at zero
and has uniform contraction ratio p € (0,1). Then if v1,72,... are i.i.d. samples

from p and n € Z~y we have

and
2 1L—p* 2
Ef[v1 ... (0)[F] = WEH%(ON J-
Proof. Both of these follow by an induction argument left to the reader. O

In order to prove this we need the following theorem of Sakhanenko from [Sak85].

Theorem 9.15. For every p,d > 1 there is some constant ¢ = ¢(p,d) > 0 such
that the following holds. Suppose that X1, ..., X, are independent random variables
taking values in R with mean 0. Let ¥; = Var X, suppose that Z?:l ¥2 =1 and
let L, =" | E[|X;[P]. Then

W, <§n: XZ-,N(O,I)> <CL,.

i=1

This is enough to deduce the following estimate.
Lemma 9.16. Let (p1,...,px) be a probability vector, Uy, ..., Uy € O(d) generate
an irreducible subgroup, by,...,b, € R? and let p € (0,1). Let p be the probability
measure on G given by p = Zlepiégi where g; : x — pU;x + b;. Suppose that p
is centred at zero and that all of the b; have modulus at most 1. Let v1,7s,... be
i.i.d. samples from p. Let e € (0,1).

Given £ € Z~q we define Sg :=E[|y1...7(0)|%] and

Wy :=W;s (dl/zse_l/z’}/l .. -7@(0)3 N(Oa I)) .

Suppose that there exist m,n € Z~q such that for V a uniform random variable
on the closure of the subgroup generated by the Uy, ...,U, we have

m
Ws(U(y...vm), V) <e and S <e.
Then for n' € Z~g,
Wimtnyn <a (T7Y6 4+ T2\ (W, +1) (9.3)

where T := Z?;gl P In particular if pm ™M™ > 1/2 then n//2 < T < n and
therefore

Wintnyn <a (') 7V + (') 2) (W, + 1) (9-4)
Proof. Fori=1,...,n' let

Xi = Yi=1)(ntm)+1 - - - V(i=1) (n+m)+m
and
Yi = Y-1)(n+m)+m+1 - - - Vi(n+m)
such that
Zi = XiYi = Y1) (ntm)+1 - - - Vi(ntm)-
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Furthermore consider Vi, ..., V) independent random variables which are uniform
on H (the closure of the subgroup generated by the U;), independent of the Y; and
are such that
E[|U(X;) - V|’ < €.
Note that
Zy .. Zp (0) = Z1(0) + p™+ U (Z1) Zo(0)+
oo pENC DY Zy L Z 1) 2 (0).
Also note that
WS (p(7n+n)(i—1)U(Zl o Zifl)Zi (0), p(7rL+n)(i—1)+7nV'thL_(0))
= pm W EIWG (U (Zy - Zi1) (P U (X3)Y3(0) + X4(0)), p™ViY;(0))
< D (4 ™ (R [[Y;(0))) 1)
&g epmtME=D g2y 4 1),
having used the triangle inequality in the second line and that |X;(0)] < m as
sup; |b;| <1 as well as that
Ws (U(Z1 ... Z;-1)U(X;)Y;(0), ViYi(0))
=Ws(U(Zy...Z;_1)U(X;)Y;(0),U(Zy ... Z;—1)V;Y;(0))

as V; is distributed like the Haar measure on H.
Note that by Lemma the covariance matrix of V;Y;(0) is d=1S,,I. Therefore

! (min 1/2
by Theorem [9.15|letting A = d—1/2 (LM> Si/% we have that

17p2(m+n)

/

Wi [ A7 pm DYV (0) | N(0, 1)

i=1
o 1/3
< Z E “Aflp(ern)(zfl)}/l(O)P}
=1
N\ 1/3
B 1— p3(m+n)n
1
<o ( 1 — p3m+n) (Wn+1)
&g T~Yo(W, + 1),
where we exploited that
1— 2n' (m+n) 1— n'(m+n) 1 n’(m+n)
P S s € [T/2,T)

1— p2(m+n) - 1— p(m+n) 1+ p(m+n)

1_p3(m+n)n’ 1/3
17p3(m+n)

and a similar estimate for (
Therefore we may deduce that
Wi (A7 - A mgnynr (0), N (0, 1)) <q T7Y5(W,, + 1) + eTH2(W,, + 1)
By Lemma we have that
d_1/2S;,1/2

- :1+0(%):1+0(5).
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We conclude
Wiy <a TYV8(W, + 1) + eTY2(W,, +1) + ¢
g T YW, +1) 4+ eTY2(W, +1)
as required. O
From this we can deduce the following.

Corollary 9.17. For every € > 0 and every irreducible probability measure uy
on O(d) there is C > 0 and p € (0,1) such that the following is true. Let u =
Zle pidg, be a probability measure on G such that U(u) = py and p; > € for all
1 <i<k. Assume further that maxi<i<k |b(¢g:)| = 1 and for some p € (p,1) we
have p(g;) = p for all1 <i < k. Suppoge}hat W is centred at zero and let v1,72, . ..
be i.i.d. samples from . Then for every k € Zwq such that C*T1 < lfzc there is
somen € Z~q such that

1 ko kel
s elchom
and

Ws(d 28712~ . 4, (0),N(0,1)) < C.
Moreover, if gapy () > €, then C and p can be made uniform d and €.

Proof. Let ¢/ > 0 be sufficiently small. Choose m = m(uy,e’) such that
WB(U('YI s Vm)u V) <é
and choose ng = ng(e,&’, p) such that

m /
W<€.

no
Note that this is possible by Lemma as ¢ < E[|71(0)]*] < 1 and providing we
choose p to be sufficiently close to 1 in terms of ¢’. Now inductively chose nj such
that S7%; " pm+ni)i ¢ [/=3/2 9¢/-3/2] and define M1 1= 1 (ng+m). Repeat this
process until we find some k such that » -, plmtr)i < /=3/2 and let k* denote
this value of k. By Lemma this means that for i = 1,...,k* we have

W; <4 6,1/4(Wi_1 +1).

Providing we take p to be sufficiently close to 1 we can bound no and W, from
above purely in terms of € and &’. This means that, providing we choose ¢’ to be
sufficiently small, there is some C; = Cy(g,¢’) such that for each i = 1,... k* we
have

W, < Chy.
We also have that

1—phi+t [5/—3/27 26—3/2]
1 _ pm-&-ni
and so providing we choose p to be sufficiently large we have
12" s
1—pni
The result follows. When we have a spectral gap, all of these constants can be
chosen to be uniform. O

Now we have enough to prove Proposition [9.10
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Proof of Proposition[9.10f Without loss of generality we may assume that yu is cen-
tred at zero and that max®_, |b;| = 1.
Let ¢ > 0. By Lemma there is some m € Z~( depending only on ¢ and &’
such that
Ws(U(71 ... vm(0)),V) < €.
By Lemma there is some N depending only on py and €’ such that for any
n > N we have

m /
W <eg.
Let C be as in Corollary and choose n such that
1 —1_./-3/2 1—3/2
W S [C 9 ,OE ]

Providing we choose p sufficiently close to 1 we will also have n > N. By letting
n’ — oo in Lemma [9.16] we deduce that

Ws(A™ v, N(0,1)) <4 Ce'/*

where A = d'/?(1 — p*)Y/? = limy_, oo d1/2S;1/2. In the presence of a spectral gap,
all of these bounds are easily seen to be uniform. O

10. CONSTRUCTION OF EXAMPLES

Throughout this section we denote as usual by G = Sim(R%). We first study
random walk entropy in section and then the separation rate in section [10.2
We prove Corollary [I.§] on real Bernoulli convolutions in section as well as
treat complex Bernoulli convolutions in section [10.4] proving Corollary [[.9] Finally,
we discuss examples in R? in section and show Corollary Corollary
and Corollary

10.1. Bounding Random Walk Entropy. The techniques from [HS17, Section
6.3] or [Kit23, Section 9.2] follow through to our setting. In particular we have the
following using Breuillard’s strong Tits alternative.

Proposition 10.1. ([HS17, Section 6.3]) Let d > 1. Then for every py > 0 there
exists p = p(po,d) such that if p = Zle pidg, is a finitely supported probability

measure on G with p; > po and supp(p) generates a non-virtually solvable subgroup,
then h, > p.

We will also use the following version of the ping-pong lemma for which we
provide a full proof for the convenience of the reader.

Lemma 10.2. (Ping-Pong) Let G be a group acting on a set X and let g1,92 € G.
Assume there exist disjoint non-empty sets Ay, As C X such

g1(A1UAy) C A and  g2(A1 UA) C As.
Then g1 and g2 generate a free semigroup.

When this happens we say that g; and g2 play ping pong.

Proof. Let wy = hihg---hy, and we = f1fo--- fo, with distinct sequences h;, f; €
{g91,92}. Assume without loss of generality that ¢; < ¢5. First assume that there
is some 1 < k < /1 such that hy # fr. Choose the smallest such k and note
that it suffices to show that hy---he, # fi--- fe,, which follows by applying the
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resulting maps to any © € A; U Ay and noting that hy ---hgyx # fr - fe,z. On
the other hand assume that h; = f; for all 1 < ¢ < ¢1, in which case we need to
show that w’ = fg, 41 -+ fe, is not the identity. Without loss of generality assume
that fs,4+1 = g1. Then for € Ay we have that w'z € A; and thus w’ is not the
identity. We note that in particular it follows by the assumptions that g; and g
have infinite order. O

Lemma 10.3. Let u be a finitely supported probability measure on G such that
g1, 92 € supp(u) generate a free semigroup. Then

hy, > min{u(g1), p(g2)}-

Proof. Denote y = 3. + $u. Then by [HS17, Lemma 6.8] we have h,, = h, /2.
Thus the claim follows from Proposition [Kit23| Section 9.7] (generalised to G' and

applied to K = min{u(g1), p(92)}/2)- 0

10.1.1. p-adic Ping-Pong. We first use ping-pong in a p-adic setting. For a number
field K with ring of integers Og. Let p C Ok be a prime ideal and we denote by
Ry, the localization of Ok at P defined as

R,,:{%:anmbeOK\p}.

Lemma 10.4. (p-adic Ping-Pong) Let K be a number field and let Ok be its ring
of integers. Let p C Ok be a prime ideal and let M be the ideal of R, defined by

Mp:{%:aep,beOK\p}.

Let g1,g2 € G be such that all of the entries of p(g1)U(g1) and p(g92)U(g2) are in
M, and all components of by and by are in R,. Suppose that

My x - x My +by # My X -+ x My + bs.
Then g1 and g2 generate a free semigroup.

Proof. This follows immediately from Lemma [10.2] with X = Ry x --- X R, and
AiiMpX"'XMp+bifOri:1,2. O

10.1.2. Ping-Pong under a Galois transform. We can also apply the ping-pong
lemma using field automorphisms. Recall that given a number field K, the auto-
morphism group Aut(K/Q) consists of field automorphisms that fix Q.

Lemma 10.5. (Galois Ping-Pong) Let g1 and g2 be two elements in G whose
coefficients lie in a real number field K and without a common fixed point. Let
& € Aut(K/Q) be such that for i = 1,2 we have

p(@(g:))] < 1/3.

Then g1 and g2 generate a free semigroup.

Proof. For i = 1,2 write h; = ®(g;) and let p; be the fixed point of h;, which has
coefficients in K since it arises from a linear equation over K. Then hy; # ho as
g1 and g2 have no common fixed point. Consider A; = By, n,)/2(hi) (the open
ball around h; of radius d(hq, h2)/2) and note further that hi(A; U A3) C A; and
ha(A; U Ag) C Ay. So the claim follows by Lemma m O
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10.2. Heights and Separation. In this subsection we will review some techniques
for bounding S), using heights. We recall the following definition.

Definition 10.6 (Height). Let oy € C be algebraic with algebraic conjugates
Qo, 3, ...,04.

Suppose that the minimal polynomial for ay over Z has positive leading coefficient
ag. Then we define the height of a1 by

N 1/d
H(o) = (ao H max{1, |04i|}>

i=1
and we define the logarithmic height of o to be h(a1) = log H(aq).

We wish to use this to bound the size of polynomials of algebraic numbers. To
do this we need the following way of measuring the complexity of a polynomial.

Definition 10.7. Given some polynomial P € Z[X1,Xs,...,X,]| we define the
length of P, which we denote by L(P), to be the sum of the absolute values of the
coefficients of P.

We recall the following basic facts about heights.

Lemma 10.8. The following properties hold:
(i) H(a™t) = H(a) for any non-zero algebraic number a.
(i) If « is a non-zero algebraic number of degree d,

H(a)™% < |a| < H(a)

(i1i) Given P € Z|X1,Xa,...,X,] of degree at most Ly >0 in X1, ..., L, >0
i X, and algebraic numbers £1,&o,...,&, we have
(P&, &, 6n)) < LIPYH(EDD . H(E)"
Proof. (i) and (ii) are well-known and (iii) is [Mas16], Proposition 14.7]. O

Proposition 10.9. Suppose that y is a finitely supported measure on G = Sim(R?).
Let S be the set of coefficients of p(g),U(g) and b(g) with g € supp(u) supported
on a finite set of points. Suppose that all of the elements of S are algebraic and let
K be the number field generated by S. Then

S, <q [K : Qmax({h(y) : y € S}U{1}).
Proof. We let m,n € Z~( and we consider an expression of the from
aytayt .. a;thiby .. by,

We wish to show that this is either the identity or at least some distance away from
the identity. Let C' := max{H(y) : y € S}. First note that

playtayt .. a; biby. . . by) — 1

is a polynomial in elements of S and their inverses with length 2 and total degree
at most n + m. Therefore by Lemma

H(p(a7tagt ... a; iy . . by) — 1) < 20™T"
and so either p(a;tay'...a; biby...by) =1 or

lp(artazt .. a;tbiby .. . by) — 1] > 27 U= (man)K:Q]
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By a similar argument we see that either U(ay *ay ' ... a;,  biby...by,) =T or
|U(a7tazt. . a7 biby .. . by) — I|| > (d™+" 4 1)~ KU o= (min)[K:Q]
and that either b(a; *ay’ ... a;  biby...by) =0 or
lb(aTtazt .. a;tbiby. . by)| > (d™F" 4 1) QA o= (mdn)K:Q]
Overall this means that either a;lagl ooy thiby .. by, =1d or
logd(aytayt .. a; biby.. by, 1d) >4 —(m +n)(logC + 1)[K : Q].
The result follows. U

10.3. Real Bernoulli Convolutions. In this section we prove Corollary [I.8] stat-
ing that there is C' > 1 such that if A is algebraic with

A > 1 — C~ ' min{log My, (loglog M,)~?},
then the Bernoulli convolution vy is absolutely continuous.

Proof of Corollary[1.8 As in the paragraph before Proposition [9.6] Bernoulli con-
volutions are uniformly non-degenerate. Since we are in d = 1 they are (1,0)-
well-mixing and therefore Theorem applies. For convenience write n = log M
and hy = h,,. We don’t keep track of possible enlargements of C. That Bernoulli
convolutions are uniformly non-degenerate follows from Proposition[2.2] Then The-
orem [2.4] implies that if

(1= X)"'hy > C (max {1,logn/h\})?, (10.1)

then vy is absolutely continuous. Recall that by [BV20, Theorem 5] (which is stated
with logarithms base 2) there is an absolute ¢y € (0, 1) such that ¢omin(log2,n) <
hx < min(log2,7).

We proceed with a case distinction. First assume that 7 < log2. Then ¢ L>
n/hyx > 1 and therefore by the condition (1 — \)~teon > C is sufficient for
absolute continuity, which is equivalent to

A>1-C 1. (10.2)
Next assume that n > log2. Then cylog2 < hy < log2 and so gives
(1 — \)max{1,logn + log(colog2)'}? < C~1.
Note that max{1,logn + log(colog2)~!} < 2log(colog?2)~! max{1,logn}. There-
fore we get the condition
A>1—C 'max{l,logn} 2 =1— C 'min{1, (logn)?}. (10.3)

To deduce (1.4), we note that there is a unique ' > 0 with ' = (logn’)~2 and
this 1’ satisfies 2 < ' < 5/2. Moreover logn < (logn)~2 for 0 < n < 1’ and
logn > (logn)~2 for n > n’. Therefore (1.4) holds for n < log(2) and 1 > 2" by

(10.2)) and (10.3)). In the range log(2) < n < 21/, we enlarge C to ensure that (1.4)
holds. g

We note that if A is algebraic and not the root of any non-zero polynomial with
coefficients 0,£1, then hy = 2 and also as mentioned in Remark 5.10 of [Kit21],
My > 2. Therefore for such a A, vy is absolutely continuous if

A >1— C 'min{1, (loglog My)2}. (10.4)
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10.4. Complex Bernoulli Convolutions.

Proof of Corollary[I.4 We can’t directly apply Proposition [2.2] so we give a direct
proof of mixing and non-degeneracy. First note that ensures that there is some
¢>0and T > 1 depending only on & such that the (¢, T)-well-mixing property is
satisfied.

To deal with non-degeneracy, we distinguish the case when |A| < Ag and [A| > Ao
for some )\ sufficiently close to 1. As in the case of real Bernoulli convolution, for
any given \g, the family of Bernoulli convolutions with |A| < Ay are easily seen
to be uniformly non-degenerate depending on Ag. To deal with the case A > A,
we rescale our measure to the one given by the law of By = /1 — [A]2Y 7o, £\
and denote the resulting measure by v4. Now let ¥ be the covariance matrix of v}
under the natural identification of C with R2. Note that the trace of 3 is 1 and we
claim that the smallest eigenvalue of ¥ is >, 1. Indeed, for a unit vector z € R?
we want to estimate 7 3z, which is by identifying C with R2 equal to

BBy -al’] = (1= [A*) )N - 2? > 1,
=0

which follows as |[A\? - z|? > |A|? unless A\’ and z are almost colinear, which is only
the case for a very small proportion of i’s. It follows that
inf E_. 1
ot Ea N,z [[pzl] >e
for p ranging in the orthogonal projections of R? as in section By for example
Lemma we know that W (v}, N(0,X)) < /1 — |A|2. Therefore for Ay suffi-
ciently close to 1 in terms of &, uniform non-degeneracy follows as in Lemma
Having establish uniform well-mixing and non-degeneracy, Corollary is estab-
lished by the same argument as the proof of Corollary [I.8 O

10.5. Examples in R¢. In this section we prove Corollary Corollary and
Corollary on general examples with absolutely continuous self-similar measures.

Proof of Corollary[1.10, We first show that ¢g; and go generate a free semigroup
for sufficiently large ¢ by using Lemma [10.4] For simplicity we first treat the
case when all of the entries are rational. Then consider the g-adic numbers Q,
and the g-adic integers Z,. As the Uj,...,Uy and the by,...,b; are fixed, for a
sufficiently large prime ¢ all of their entries are in Z,\gZ,. On the other hand, by
construction p(g;) € gZ4 for 1 < i < k and as ¢Z, is an ideal therefore also all
of the entries of p(g;)U; are in ¢Z,. By Lemma it therefore suffices to check
that (qZq)? + b1 # (qZ4)? + bz or equivalently by — by & (¢Z4)¢, which is clearly
the case for sufficiently large q. Thus ¢g; and g, generate a free semigroup. The
same argument applies in the general case for K the number field generated by the
coefficients of the entries of g; and by choosing any prime ideal that factors (q).

Thus it follows by Lemma that h, > ¢ and note that by Lemma it
holds that S, <k 4 logq. Hence there exists a constant C' depending on all the
relevant parameters such that the self-similar measure of p is absolutely continuous
if
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Therefore it remains to estimate the Lyapunov exponent. Indeed, note that

. 1—e
log el =log|1-— %q) >log | 1— 1 > —q °.
q + Gj.q q + Qj.q q

Therefore |x,| < ¢~¢ and the claim follows for sufficiently large g. O

Proof of Corollary[1.11] As in the proof of Corollary g1 and go generate a free
semigroup for sufficiently large ¢ and therefore h, > e. Write oy = p1 + ... +prp—1
and as = pg. Then we have as a; + as =1,

q q ¢+ (dag—1)q

+a« =
g+3 " Cg—1 (¢+3)(¢—-1)

E7~u[/’(7)] =o

and thus
(q+3)(g—1) = (¢ +(4aa —1)q) (3 —4az)g—3
1—-FE. = = .
rulp7) G+3a-1) G+3a-1)
On the other hand, choosing p = qf’g we have
R q q dqa
E..llp— _ _ _ .
renllp =PI = o2 (ql q+3> k(g+3)(g—1)
Thus it follows that

a0 T—E,_u[o(7)] 3 4oy

provided that as = pr < %. If we assume that p < % then we have that the limit

in (10.5)) is uniformly away from 1. As in Corollary we have that S, <k
log g. Therefore by Theorem there exists a constant C' depending on all of the
parameters such that p is absolutely continuous if

C < ——
el < fioglog g2
As in Corollary it follows that |x,.| < ¢~ ! and hence the claim follows. [l

We next prove Corollary [[.12] and first show the following basic lemma.

Lemma 10.10. Let K be a real algebraic number field satisfying Q(\/q) C K
for a prime q. Then there exists a field automorphism ® € Aut(K/Q) such that
(/) = i,

Proof. Write Ko = Q(,/q) and assume that K = Ko(a1,...,a¢) forsome oy, ..., a4 €
K. Denote by © € Aut(K,/Q) the automorphism with ©(,/q) = —/q. When £ =1
we consider the surjective map Ko[X] — Ko(a) with P — O(P)(ay) for ©(P) the
polynomial to which all coefficients we have applied ©. This map induces a field
automorphism of Ky(a) with the required properties and our proof is concluded by
an induction on ¢ with the same argument. O

Proof of Corollary[1.13 By Theorem there exists p € (0,1) and C > 1 de-
pending on d,e and uy such that p is absolutely continuous if p; > ¢ as well as
M € (p,1) for all 1 <4 <k as well as

2
e >C (max{l,logsu}) .
X ] hy,
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Let K be the number field generated by all the coefficients of elements in supp(u).
Then by Lemma there is a field automorphism ® € Aut(K/Q) such that
®(,/q) = —/q and therefore we have that |[p(®(g;))| < 3 for j = 1,2. Thus by
Lemma and Lemmawe have that h, > e. We also have h, < log e~ 1. On
the other hand, it follows by Lemmam (iii) and Proposition that S, <a,uy
log L, which readily implied the claim upon changing the constant C. (]

Lemma 10.11. In the setting of Corollary[1.13, for € > 0 choose
ai = [Vl —mig,  bi=2 =3[Vl

for m;, an integer satisfying m;, € [0,¢*/>7¢] and any d; € Z with |d;|ec <
exp(exp(¢c/3)). Then p is absolutely continuous for sufficiently large q depending
on d,pg,€ and Uy, ..., Uy, provided g, ..., gr does not have a common fized point.

Proof. Tt holds that M € (0,1) converges to 1 as ¢ — oo and that |7ai_j"ﬂ| <

%. We next estimate the Lyapunov exponent of . Indeed, note that for ¢ large

enough,

i bz _ ,1/2—¢ 9
10g<a+ \/a)>10g [Val — a7 +2\q
: 3[4l
| 2AA @) g
3[vdl
and therefore |y,| < ¢~¢. In our case, for large ¢ we have L = |d;|« = exp(exp(¢*/?))

and therefore log(log L) = ¢°/3. Thus for sufficiently large ¢ we have that C|x,,| <
(loglog L)~2 = ¢~%/3 and the claim follows. O

&

> log > —q
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