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Abstract

The principal aim of this thesis is to give an alternative proof of property () for
Q-forms of SLs, following ideas of [GGN]. One uses the circle method [HB96] to
establish effective results on Diophantine approximation, which in turn imply
a uniform effective mean ergodic theorem or equivalently a uniform spectral
gap. We moreover give a comprehensive exposition of the involved methods from
representation theory, ergodic theory and analytic number theory.



Contents 5

Introduction

The dynamics of homogeneous spaces has decisive influence in number theory.
For instance, the reader may recall the work of Margulis [Mar] on Oppenheim’s
conjecture or the contribution of Einsiedler, Katok and Lindenstrauss [EKL0G]
on Littlewood’s conjecture. On the other hand, number theoretic techniques
have applications to dynamics as for example in the work of Einsiedler, Linden-
strauss, Michel and Venkatesh ([ELMV09], [ELMV1I], [ELMV12]) or Einsiedler,
Margulis, Mohammadi and Venkatesh ([EMV09],[EMMVT9]).

This thesis is on the interface between ergodic theory and number theory. We
apply effective p-adic ergodic theory to answer questions concerning Diophantine
approximation. On the other hand, we use the circle method to establish results
in Diophantine approximation, which in turn imply effective results in p-adic
ergodic theory, culminating in an alternative proof of property (7) for Q-forms
of SLy. To summarize, the following diagram of ideas sketches the main themes
of this thesis.

Property (7)

!

Uniform Effective p-adic Mean Ergodic Theorem

!

Uniform Diophantine Approixmation

1

Circle Method

In order to contextualize this thesis, we briefly review the recent results of
[EMMV19]. Namely, they proved an effective adelic equidistribution statement
for semisimple algebraic groups over number fields by using property (7). More-
over, their method gives an independent and dynamical proof of property (7)
for groups whose absolute rank is > 2. For these groups one can use property
(T') at suitable places to establish the latter effective equidistribution statement
which then readily implies property (7).

Property (7)

!

Uniform Effective Adelic Equidistribution Theorem

1

Property (T) for Groups with Absolute Rank > 2.

In the next paragraphs, we give a more detailed exposition of some central
parts of this thesis. Let p be a prime number. A principal aim is to understand
the density of SLQ(Z[%]) in SLy(R). More precisely, we want to quantify how
many prime powers of p are necessary to approximate a given element of SLo(RR)
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well. More generally, the same question can be raised for the ¢-congruence

subgroups I', 4 of SLy (Z[%D for £ coprime to p.
The |-|,-norm on Q is defined for a rational number of the form z = p" ¢ € Q
for n € Z and a,b coprime to p as |z[, = [p"¢[, = p~". In vague terms, |- |,

measures how often the prime number p appears in the denominator of . We
thus want to understand for an element g € SLo(R) how large all of the |- |,-
norms of the coefficients of an element v € I', , must be so that  is very close
to g.

At first sight, the question at hand seems unrelated to homogeneous dynamics.
Nonetheless, if one enlarges the group SLa(R) to the product group SLy(R) X
SL2(Qp), then I', ,, viewed as a diagonally embedded subgroup of SLg(R) x
SL2(Qp), is a lattice. Using the latter setting, Diophantine approximation of
I, in SLa(R) can equivalently be formulated as a condition on the behavior of
certain SLy(Q,)-orbits in the homogeneous space

(SLQ(R) X SLQ(Qp))/FRg. (01)

This homogeneous space is referred to as the p-adic extension of SLy(R)/T,
where T’y the ¢-congruence subgroup of SLy(Z).

Property (7) for SLy implies a uniform effective mixing rate for the collection
of all SLy(Q,)-measure preserving systems of the form . This can be used
to establish an effective mean ergodic theorem, which in turn implies a uniform
rate of Diophantine approximation for all the congruence subgroups I',, . This
is work by [GGN13].

Furthermore, given z € SLy(R) one can ask how many elements of v € T,
are e-close to x. Write for convenience I' =T, ; and for h > 0 denote I', = {y €
I' : ||v]l, < h} for || - ||, a suitable norm on SLy(Q,). In particular, we aim
towards effective estimates of

ITs N Be ()| (0.2)

as h — oo. Such estimates can again be achieved by using the effective mean
ergodic theorem. Remarkably so, the converse also holds. Namely, effective
estimates of imply a mean ergodic theorem which in turn also implies a
uniform effective mixing rate. Thus, in order to give an independent proof of
effective mixing for the dynamical systems in question, one needs an independent
proof of (0.2).

This is precisely where the circle method comes into play. In fact, [HB96] gives
results on the number of solutions of quadratic forms in four variables. The link
to our current setting comes from noting that one can view the determinant on
Ms 2(R) =2 R* as a quadratic form in four variables. In this context, the quantity
(0.2) can be expressed as the number of integer matrices with a congruence
condition so that the determinant of the latter integer matrix is h2. The results
of [HB96] then lead to effective estimates of (0.2)).

In order to prove property (7) for Q-forms of SLy, the reader may observe
that all of the above holds if M5 » is replaced by a quaternion algebra B over
Q. Then SL; is replaced by the elements of unit norm of B. By using the norm
quadratic form instead of the determinant, uniform effective estimates of
can again be established by [HB96].

We next comment on the organization of this thesis. In chapter 1, we discuss
SL2(Q,) and its p-adic extension. Moreover, quaternion algebras are discussed
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in sufficient detail. Chapters 2 and 3 are devoted to developing the necessary
background from the theory of unitary representations. Then, in chapter 4, the
results from chapters 2 and 3 are exploited in order to deduce effective ergodic
theorems. In chapter 5 we apply the developed theory to deduce results on
Diophantine approximation as in [GGN13|. In addition, following [GGN], we
explain how results established by the circle method are used to deduce a spectral
gap. Finally, chapters 6 and 7 are devoted to the circle method. In chapter 6 we
expose the Hardy-Littlewood asymptotic formula for Waring’s problem. Then,
in chapter 7, we present the results by [HB96] and apply them to quaternion
algebras.
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Notation and Conventions

Most of the below notations and convention will be introduced throughout this
thesis, yet we assume it to be useful for the reader to collect them here.

We write < or > if two quantities are < or > up a constant, which might
depend on some quantities that are usually indexed in < or >. We also write
A=< Bif A< B« A. If the quantity A is complex valued then the notation
A < B is a defined as |A] < B.

The notation e(a) is used for e2™i®. For x € R, we write ||z|| = min, ¢z |7 — 2|
and we denote by [z] the integer part of 2 and by {z} the fractional part.

By a group G we mean a locally compact, Hausdorff group and for convenience
assume that G is o-compact and metric. A left Haar measure is denoted by
m¢ and if we speak of a Haar measure, we refer to a left Haar measure. The
corresponding LP-space with respect to any Haar measure is written as LP(G).
IfT' < G is alattice in G and X = G/F, then we denote by LP(X) the LP-space
on X with respect to the Haar probability measure on X induced by G.

A Hilbert space # is assumed be complex and separable, unless stated
otherwise. A unitary representation (m, .5¢°) of a group G is always continuous,
ie. G x A — A is a continuous map. For v,w € J# we write ¢7 ,, for the
matrix coefficient, i.e. the function

Ypw:G—C, g — (mgu, w).

The diagonal matrix coefficients ¢y , will also be written as 7. The space of
all diagonal matrix coefficients of all unitary representations of G is denoted as
Z(G) and the reader may recall that &2(G) is precisely the space of continuous
positive definite functions on G.

We say that a unitary representation (m, %) is tempered if it is weakly
contained in the regular representation. For (m, 5) a unitary representation
of G and ¢ € [2, 0], we say that (7, ) is ¢g-integrable if there exists a dense
set of vectors V C 5 such for all v,w € V the matrix coefficients r 4 satisfy
@7 € LYG). We define the almost integrability exponent ¢(7) € [2,00] as

q(m) = inf{q € [2, 0] : 7 is ¢g-integrable}.

A measure preserving system or a G-system consists of a group G acting
on a space X preserving a probability measure p and is denoted as the triple
(G, X, ). To such a G-system one associates the Koopman representation
on L2 (X) given by

(mgf)(x) = f(g~ )
for f € L2(X), g € G and z € X. In this setting L§(X) denotes the subspace
{f € LA(X)  p(f) = J fdu =0},

An algebraic group G is assumed to be a simply connected, almost simple
algebraic group over the rational numbers, unless stated otherwise. By using
the font G we always mean a group object in the category schemes, whereas G
is reserved for groups such as G(Q,) for p a place of Q.

Denote by B, the quaternion algebra associated to a,b € Q*. To be precise,
if we write B, , we refer to the affine scheme A* equipped with the corresponding
algebra structure. For a quadratic form @) over QQ, we denote by Og and SOq
the orthogonal respectively special orthogonal group scheme associated to Q.
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For an algebraic group G as above, we write G, = G(R) and for a prime
p, G, = G(Q,). The group G, has an Iwasawa decomposition G, = K,B,,
where we assume that K, is a maximal compact subgroup and B, an associated
minimal parabolic. We moreover assume that G(Z,) C K, so that for almost all
primes p, G(Z,) = K,,.

We moreover denote by ms, the Haar measure on G, which is normalized so
that me(G(R)/G(Z)) = 1. For a prime p, we denote by m, the Haar measure
on G, that satisfies m,(K,) = 1. For a place p of Q, we denote by mgam the
Tamagawa measure on G(Q,) induced by a fixed gauge form.

For such an algebraic group G, we denote by I'y the ¢-congruence subgroup
of G(R). For p a prime number and ¢ a number coprime to p, we denote by I,
the /-congruence subgroup of G(Z[%]) and by X, , the homogeneous space

(G(R) x G(Qp))/Tp.e,

where I, ¢ is diagonally embedded. We denote by 7, ¢ the unitary representation
of G(Q,) on L?(X,,) given by multiplication in the second coordinate.
Moreover, we write

Xa=G(4)/GQ
and denote by , the corresponding representation of G(Q,) on L*(Xy).
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1 The p-adic and the Adelic Extension

Before starting to develop the theory, we allude to a geometric view of the p-adic
extension. The reader may recall that the transitive action of SLy(R) on the
upper half plane H by fractional linear transformations allows one to regard
SLo(R) as the unit tangent bundle of H. Analogously, in intuitive terms, one
could say that SL2(Q)) is the unit tangent bundle of the (p + 1)-regular tree.
More precisely, the subgroup SL2(Z,) is a maximal compact subgroup and the
quotient SL2(Q,)/SL2(Z,) has a structure closely related to a (p + 1)-regular
tree

H

Figure 1: SL2(R)/SO2(R) Figure 2: SLy(Q2)/SL2(Zs)

From this viewpoint, the product group SLa(R) x SL2(Q)) can be visualized
as a upper half plane where to each point one attaches a (p + 1)-regular tree.
The p-adic extension is then a finite volume folding of the latter space. Moreover,
with this image in mind, the SLy(Q,) action at a point corresponds to traveling
further down along the tree-part of that point.

In this chapter, we first give a detailed exposition of properties of SL2(Q,)
and of the p-adic extension for SL,. Then, in chapter we treat general
algebraic groups and discuss examples of particular importance. Finally, in
chapter the adeles are exposed as well as and the adelic points of algebraic
groups.

1.1 The p-adic Extension of SL,

Let p be a prime number and denote by Q, the p-adic numbers, i.e. the
completion of Q with respect to the p-norm | - |,. Recall that the p-adic integers
are given by

Zp={r€Qp : |z|, <1}.

The Lie group SLs(R) is equipped with the norm

lgll = llglloe = macx, s

with g € SLo(R) and for g € SL2(Q,,) we set

loll = llglly =  max lgijlp.

Write K, = SLa(Z,).

Mn fact the quotient SL2(Qp)/SL2(Zp) can be viewed as the subtree of the (p + 1)-regular
tree consisting of all vertices of even distance of a fixed starting vertex.
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Lemma 1.1. The norm ||-|| on SL2(Qy) is submultiplicative and bi-Kp-invariant.

Proof. The first claim easily follows as the norm is non-archimedean. For the
second claim we exploit the property that

la+ b, = maX{|a|p, |b|p} (1.1)

if |a|, # |b|p. It suffices to prove left-K-invariance as this implies right-K,-
invariance by noticing ||g|| = ||g™!|| since g € SLa(Qy).

Let g =(2%) € SLy(Qp) and k = (% %) € K,,. Then either  or z must be
an element of ZX as otherwise det(k) # 1. In the following we assume |a|, = ||g||
and |z|, = 1 and omit the other cases as they are analogous. We calculate

_ (za+yc zb+yd
\zat+we zb+wd)’

If |e|, < |alp or |yl, < 1, then by (L.1]), one concludes ||kg|| = |a|, = ||g||- Thus
we assume |c|, = |a|, and |y|, = 1. Then it follows that

L= [1], = [rw — yz|, < max{|zw|p, [yz],} = max{|wl,, |z],} < 1.

If either |w|, < 1 or |z|, < 1, then it again follows by that ||kg|| = |a|, =
llg||. Thus it remains to deal with the case 1 = |z|, = |y|, = |2]p, = |w|p.

Write a = p"Z,¢ for n € Z. If |xa + yc|, = |a|, = p~", then we are done.
Thus assume that this is not the case. Since clearly |za + yc|, < |al,, we can
express xa + yc as

za+yc=hep"Z,

for m > n. Using that 1 = zw — zy and yc = h — za, it follows that

(1+zy)
za +we = za + c

x
:za+5+%
x x
¢ z(h—za)
=za+ =+ "2
x x
_c, zh
T ox
Thus since |z|, = |z], = 1,
20+ wely = | < + 2 ly = la
za+wel, =|—+=| =|=| =lc,=la
L P x P P
P P

where we used (LI) as |22[, = ||, < p™™ < p~" = |£|,. This finally shows
kgl = lalp = llgll- H

It will be useful to have two decompositions of the group SL2(Q,,). We further
introduce the notation

A; = {(po p0n> ne ZZO}

B, = {upper trangular matrices in SL2(Q,)}.

and
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Lemma 1.2. (Iwasawa decomposition and Cartan Decomposition) We have an
Twasawa decomposition
SL2(Qp) = K, By

and a Cartan decomposition
SLy(Q,) = KPAZ",'KP7
where the element of A; is uniquely determined by g € SLa(Qp).

Proof. Let g = (2Y) € SLy(Qy). For the Iwasawa decomposition assume first
that |al, > |c|,- As det(g) = 1, |a], > 0 and so in particular a # 0. Then an
Iwasawa decomposition is given as

1 0 a b
(1O L) <K

On the other hand if |a|, < |¢|, then

2 1\ (c d
g = (i 0) (0 Cl) € KPBP

is an Iwasawa decomposition.
To prove the Cartan decomposition, assume without loss of generality, upon

left and right multiplication by the matrix (! _01 ), that

[SH[sY

lal, = max{|alp, [blp, e[y, |d]p}-

Then as a has maximal p-norm, one can use matrices from K, which perform
the operation of row and and column reduction, to turn g into a diagonal matrix.
In particular, there are matrices ki, k2 € K, so that

0
kigks = (8 a_1> .

Choose m € Z so that |a|, = p™ and note

a 0\ _(pm 0 a0
A A

Thus the Cartan decomposition follows from the observation

0 1\ /p™ O 0 -1\ (p™™ 0

-1 0 0o p™)\1 o) L0 pm)°
Finally, uniqueness of the element of A; follows by bi-K,-invariance of the
norm. O

Lemma 1.3. The subset SLy(Z,) C SL2(Q,) is a mazimal compact subgroup.

Proof. The subgroup property follows as | - |, is non-archimedean. In order to
prove that SLs(Z,) is maximal compact, consider a subgroup H < SL(Q,) with
SLy(Z,) € H. Then there is an element h = (¢ %) € H where at least one of the
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coefficients has p-norm > 1. By the Cartan decomposition, there are matrices

k1, ko € K with
<p0 p9m> = kyhky € H

for m > 1. In particular H contains the matrices

pnm 0
0 pfnm

for all n > 1 which implies that H is non-compact and SL2(Z,) is maximal
compact. O

Lemma 1.4. The diagonally embedded subgroup SLQ(Z[%]) < SLa(R) x SL2(Qy)
is a lattice.

Proof. We use that SLy(Z) < SLa(R) is a lattice. Hence there is some € > 0
with B.(e) N SLy(Z) = {e}, where we define

B:(e) = {g € SLa(R) : |lg — efloc <e}-

Observe that if vy € SLQ(Z[%]) satisfies (v,v) € Be(e) x SLa(Z,), then ||v||, <1
yielding v € SL9(Z) and hence in particular v = e by our choice of . This

shows that SLQ(Z[%]) < SLy(R) x SL2(Q,) is discrete. Moreover, the same
argument can also be used to show that the orbit (SLa(R) x SLQ(ZP))SLQ(Z[%])
is isomorphic to (SLz(R) x SL2(Z,))/SL2(Z), where the map is given by

(9o0: 9p)SL2(Z[3]) = (9oc: gp)SL2(Z).-

By this observation, in order to prove that SLg (Z[%}) is a lattice, it suffices

to show SL3(Q,) = SLQ(Z[%])SLQ(ZP)7 which is clear as Z[%] C Q, is dense and
SL2(Zp) is an open subgroup. In particular, it follows that if ' C SLy(R) is
a fundamental domain for SLy(Z) < SLa(R), then F x SLa(Z,) is a surjective
domain for SLQ(Z[}%]) < SL2(R) x SL(Q,). O

As SLQ(Z[%]) is a lattice in SLa(R) x SL2(Q)), we can equip the homogeneous
space

Xp = (SL2(R) x SL2(Qy)) /SLa(Z[;])
with a Haar probability measure mx,. The space X, is referred to as the p-adic
extension of SLy(R)/SL3(Z).
Multiplying on the left induces a natural action of SL2(Q,) on X,. More
precisely, if z = (goo,gp)SLg(Z[%]) € X and g € SLy(Q,) we set
9-¢ = (goos 99p)SL2(Z[2]).-
Proposition 1.5. The SL2(Q,) action on X, is ergodic.

Proof. We write ux(z) = (3 %) for z € R and u,(z) = ({ ¢) with z € Q,. For
r € Q we denote u(r) = uoo(r) X up(r). We claim that

((89) % up(Qp)) - u(Z[}]) C uoo(R) x up(Qy)
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is dense. To prove this, it suffices to show that for each tuple (roo,rp) € R x Qp,
there is v € Z[%] and ¢ € Q, so that [rec — | <p ™™ and [r, — (Y+¢q)|p, <p™"
for any n. As Q is dense in Q,, we assume without loss of generality that
rp = 3 € Q. Then choose m € Z so that v = 1% satisfies the former inequality.
The latter inequality is then achieved by setting g = 71% +3+p"€QCQ,
The same argument also works with matrices of the form (19).

To prove ergodicity, consider a SLy(Q,)-invariant measurable function f :
Xp — C. The function f lifts to an SLg(Z[}%])—invariant function on SLy(R) x
SL2(Q,), which we again denote by f. As SLs is generated by {(§ 1), (L 9)}, it
follows by the above claim that f is invariant under a dense subset of SLa(R) x
SL2(Qp). Recalling that every Borel measurable function that is invariant under

a dense subset is constant, the statement follows. O]

If £ is an integer coprime to p we denote by I', ; the kernel of the homomor-
phism
SL2(Z[;]) — SL2(Z/(Z)
which is well defined as p is invertible in Z/¢Z. We also denote by I'y o =
SLQ(Z[%]). As the group SLy(Z/¢7Z) is finite, it follows by the first homomorphism
theorem that I', ; is a finite index subgroup of I', o and hence in particular a
lattice of SLa(R) x SL2(Q,). We furthermore write

Xp’[ = SLQ(R) X SLQ(QP)/Fp,g,
where again I, ; is diagonally embedded and SL2(Q,) acts by left multiplication.
Corollary 1.6. For { coprime to p, the SL2(Q,) action on X, is ergodic.

Proof. We use the same notation as in Proposition [I.5] however denote

Up,e = {u(5) so that z € Z with 2 =0 mod £ and n > 0}.

As in Proposition the statement follows if we show
((69) xup(Qp)) - Upe C uso(R) x up(Qp)
is dense, which follows by the same argument as in Proposition since
1
U {z€Z:2#0 mod ¢} cR
n>1 pn
is dense. O

Finally, we discuss integration over SL2(Q,). We assume in the following that
the unimodular Haar measure on SL(Q,) is normalized so that mg, (K,) = 1.
The aim is to prove the following result.

Proposition 1.7. For all f € LY(G,),
/ fdme, = / F(k) dmic, (k)
GF KP
+> (+ 1)p2"‘1/ / Fllu(?) o Vk2) dmu, (ky)dme, (k).
KP KT‘

n>1
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In particular, if f is bi-Kp-invariant, i.e. f(kigks) = f(g) for all ki, ks € K,
and g € G, then

/fdmc = H ) + Y+ Dp (7 2):

n>1

The key to Proposition is to understand how K,(” On p(*)” )K, decomposes
as a disjoint union of K-cosets. In particular, we prove the following proposition.

Proposition 1.8. For n > 1, there exist elements g, ¢ € Gp, of norm p™ for
(=1,...(p+ 1)p*~ 1 so that

o0 (pr1)pn
Ky < 0 p—n) Ky = £|?! Kpgn.e.

In particular

"0 _
e (Kp (pO p") KP) =(p+1p

As a first step, we treat the case n = 1.

Lemma 1.9. It holds that

p271 —1 .1
p 0 P Jp
&Q)PQ&F4 &(0 p)

In particular
p 0
ma, KP 0 pfl K;D :(p+1)p-

Proof. To show that the union on the right hand side is indeed disjoint, assume
first that there exist ji, o € {0,...,p? — 1} so that

e | 1 1
pt ot e (P Jep
&(0 p)_&(o p)'
Then in particular
— PR _ . —1 _
pt e (P et p1 le —J2p1
0 P 0 P
_ (1 (h —32)17 2
0 1

is an element of K, which is the case if and only if j; = jo. A similar argument
applies to the other cases showing that indeed the union is disjoint.
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The inclusion D easily follows as for instance
1 - .
p Jip (0 1\(p O 0 -1 1 3 p 0
<0 p )‘(—1 o)(o p—1)<1 0 )\o 1) o p1) Br
It remains to show C. Solet g = (2%) € Kp(gpgl)Kp with p = ||g|| =
max(|alp, [blp, [y, |d],). Assume first that either a or ¢ is an element of p~'ZX.

We can assume without loss of generality upon left multiplication by (% §) that
a € p~'Z,. Then

B (ap)™t 0 a b\ pl by
Kpg—Kp( —cp  ap) \c d =Ky 0 p
for by = (ap)~'b € p~'Z,. Then choose j € {0,...p* — 1} with pb; = j mod p?
implying

-1 —pb1+j -1 -1 -1
p by T =55\ (p b P Jp
I R e [ R R (A

Next we assume that a or ¢ is an element of Z;f so we assume without loss
of generality a € Z;f. Thus we again have

a”t 0\ [a b 1 b
NCEIT Y
for by = a='b € p~1Z,. This time we choose pb; = j mod p for j € {1,...,p—1},

where we note that the case j = 0 is not possible as then b; € Z,, which
contradicts ||g|| = p. Then as above,

1 b\ R A N A 1 jp!
K”(O 1)_K”(o 1 0o 1) =% lo 71 )

Finally we treat the case where a,c € pZ,. If a,c € p?Z,, then using
b,d € p~'Z, (which follows from ||g|| = p) it follows 1 = det(g) € pZ,, a
contradiction. Thus we assume without loss of generality a € ng. Then for

by =2
_ (2)"1 0\ (a b _ p b
KPQ_KP(—; a)\e a) =% \0 p

_ 1 =pbi\ (p b1 _ p 0
K”(O 1 )(0 p‘1>Kp<0 r i)

Proof. (of Proposition [1.8) Precisely the same proof applies as the one of

O
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Lemma In fact, with exactly the same method one proves:

p2n71 )
p" 0 _ p " gp "
K:D (O pn) KP - |_(|) KP ( O pn )
=

2n—1_q

P p—(n—l) jp—n
U |_| KP 0 pnfl
§=0
ptj
p>r -1 )
—(n—2) —-n
ol | Kp<p 0 ;{32) u...
§=0
p*tj
4 L gp™ p" 0
U UK”(O 1> "'KP(O p")'
=0
Pt

In particular, the number of cosets of the above decomposition is
p2n +p2n—1 _p2n—2 +p2n—2 _p2n—3 4+ +pn -1 + 1= (p+ 1)p2n—1.
O

Proof. (of Proposition The proof is a straightforward consequence of Propo-
sition In fact for f € LY(G),

/fdma” B> /g|—pn fdma,

n>0

- /Kp T dmae, () + n%:l Agn—pn fdma,

Thus we are reduced to treating the integral over ||g|| = p™ for a fixed n. Using
unimodularity of G, and our normalization of the Haar measure on K,, we
conclude,

/||g||=pn Fdme, = /||g||=pn /K /K fkrghks) dme, (9)dmic, (k1)dmi, (k2)
= / / / f(kl(p; pE)" Vk2) dmg, (g)dep (kl)dep (k2)
lgll=p" /K, /K,
=mg,{g€ G, : |9 = p”})/ f(lﬂ(PO" p?n Vka) dmic, (ki )dmi, (ko)
K, JK,

— (p + 1)p2n71 /K /K f(]gl(p(: p?n )kg) dep (kl)dep (kg),

where we used in the last line that {g € G, : ||g|| = p"} = Kp(pon p?n VK

together with Proposition |1.8 O



1. The p-adic and the Adelic Extension 18

1.2 Recollections from the Theory of Algebraic Groups

We first survey some definitions and results concerning algebraic groups and
discuss some examples. Second, we generalize the discussion around the p-adic
extension for SLy to general algebraic groups. We refer to [Spr98] and [PR94]
for a detailed exposition of parts of the material discussed. Let F' be a field.

Definition 1.10. An algebraic group G over F is called almost simple, if
there are no non-trivial, connected, normal subgroups.

Definition 1.11. Two algebraic groups G; and Gg over F are called isogeneous
if there exists a surjective morphism defined over F' of algebraic groups G; — Go
with finite kernel.

Definition 1.12. An algebraic group G over F is called semisimple, if one of
the following two equivalent definitions hold:

1. There are no non-trivial connected, normal, solvable subgroups.

2. The group G is isogeneous to a direct product of almost simple algebraic
groups over F'.

Let G be a semisimple algebraic group over Q. A further notion of importance
is that of a simply connected group. In order to avoid introducing too much
notation, we refer for the definition to [Spr9§]. For our purposes it will be
sufficient to note that G is simply connected if and only if G(C) is a simply
connected complex Lie group.

Definition 1.13. Let G be a semisimple algebraic group over F. We say that
G is F-isotropic if its F-rank is > 0, i.e. if G contains a non-trivial, F-split
torus. The algebraic group G is called F-anisotropic if its F-rank is 0.

In the following we discuss an important example, which motivates the term
isotropic. Let @ be a quadratic form over Q of degree n, i.e. a homogeneous
polynomial @ € Q[X1,...,X,] of degree 2. Let ¢;; € Q for 1 < ¢ < j < n be the
coeflicients of @, i.e.

Qz)= > qimiz,

1<i<j<n
for v = (x1,...,2,) € Q™
If we denote
T
qi1 q12 --- {(in qgi1 qi12 ... (in
1 0 g2 ... qn 0 q2 ... qn
AQ = = . . . . + . . . . )
2 S R
0 0 oo Qnn 0 0 ce+ Qnn

then we can write Q(z) = 2T Agz for x € Q™. We aim towards defining the
special orthogonal group with respect to the quadratic form @ as an algebraic
group such that

S04(Q) = {g € SL,(Q) : Q(g9z) = Q(z) for all z € Q"}
= {g S SLn(@) : gTAQg = AQ}.
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Denote by {f;,i € I} the polynomials in n2-variables whose vanishing locus

determines the equation g7 Agg = Ag. Then we set
SOq = Spec Q[X1, ..., Xp2]/({det —1, f; 1 i € I}),

where ({det —1, f; : ¢ € I}) is the ideal generated by those polynomials. Moreover,
we set

Og = SpecQ[X1, ..., Xn2]/({fi : i € I}).

The opportunity is taken to clarify the difference between viewing SOq as
an algebraic group over Q, and to consider its Q,-points, where p is a place of
Q. To discuss a more general setting, let X = Spec R be an affine scheme over
Q where R is a Q-algebra. If we say that we view X over Q,, then we actually
refer to the affine scheme

X = Spec R ®q Qp,
whereas the Q, points are defined as

X(Qp) ={f : SpecQ, — Spec R ®g Q, | f is a morphism of affine schemes}
={f:R®qQ, — Q, | f is a ring homomorphism}.

Returning to our concrete case, the algebraic group SO¢q viewed over Q, is the
affine scheme

Spec Qy[X1, ..., Xp2]/({det =1, f; 1 i € I}),

which corresponds to viewing the quadratic form @ over Q,. Then
SO (Q,) = {ring homomorphisms Q,[X1,..., X,2]/({det =1, f; : i € I}) — Qp}
={g€SL,(Q,) : ¢"Agg = Ag}.

Two quadratic forms @1 and Q2 over Q are called equivalent if there is
C € GL,(Q) so that Ag, = CT Ag,C or equivalently if Q1(v) = Q2(Cv) for all
v € Q™. The quadratic forms @); and @7 are similar, if they are equivalent up
to a scalar non-zero multiple. Similarity of quadratic forms corresponds precisely
to the property that SOg, and SOg, are isomorphic as algebraic groups, as
can be shown using group cohomology (see Proposition 2.6 in chapter 2.2 of
[PRI4]). This observation allows us to find examples of algebraic groups that
are isomorphic over @, but not over Q by considering two quadratic forms that
are similar over Q,, yet not similar over Q.

Recall that the quadratic form @ is said to be isotropic if there is a non-zero
v € Q" so that Q(v) = 0. If there exists no such v, we call @ anisotropic. The
following lemma motivates the term isotropic in the context of algebraic groups.
We note that the proof of Lemma [I.14] can be extended to case of a quadratic
form over any field with characteristic # 2.

Lemma 1.14. The quadratic form Q is isotropic over Q if and only if SOq is
a Q-isotropic algebraic group.

Proof. Assume that SO¢ is isotropic, i.e. there exists a non-trivial Q-split torus
T C SOg. Then we can find a non-trivial eigenvector v € Q" for T with a
non-trivial character x : T(Q) — Q*. Thus for all ¢t € T(Q),

Q(v) = Qtv) = Q(x(t)v) = x()°Q(v).
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This implies Q(v) = 0 and @ is isotropic.
For the converse we recall that the quadratic forms 2> — y? and xy are
equivalent via the matrix
1 1
()
1

More generally, if @ is an isotropic quadratic form then we can replace it without
loss of generality by x129 + Qo(xs,...,z,) for Qo a quadratic form of degree
n — 2. In this case

T = diag(x,*,1,...,1) C SOg C SL,,
defines a non-trivial Q-split torus. O

We next discuss ternary quadratic forms. For p a place of Q and a,b,c € Qy,
we denote by (a,b, c) the quadratic form aX? + bY? + c¢Z2. Over R, there are
only two similarity classes of non-degenerate ternary quadratic forms. This
follows as if () is such a quadratic form, then as defined above Ag is a symmetric
matrix and hence there exists a matrix B € GL3(R) so that

(€51
BTAQB = (65
a3

for real numbers oy > az > ag. If C = diag(y/]a;] 17 V]az| 1, V]as] 1), then

a1
C [6%) CT

as

is equal to a matrix with only 1 and —1 on the diagonal. Thus the four triples
(1,1,1),(1,1,-1),(1,—-1,-1),(—=1, -1, —1) classify the four equivalence classes
of non-degenerate ternary quadratic form over R. As the class (1,1,1) is similar
to (=1,—1,—1) as well as (1,1,—1) is to (1,—1,—1), it follows that there are
two similarity classes of ternary quadratic forms over R. The precisely same
argument shows that there only one similarity class of ternary quadratic forms
over C.

Whereas in the real case a ternary quadratic form is determined by its
signature, the situation is more subtle over the p-adic numbers. We review the
discussion exposed in [Jer] or [Bay|. In analogy to the real case, however with an
altered proof, one shows that each ternary quadratic form over Q, is isomorphic
to one of the form (a, b, c). However, we cannot proceed as before since square
roots behave differently over the p-adic numbers.

Lemma 1.15. Let p be a prime number. Then

4 ifp#2

X\2|
/(@) {8 iy

Proof. This is Lemma 3.6 of [Jer]. We only discuss the case p # 2. Denote as
usual ZX = {z € Zy, : |z], = 1}. We first show |ZX/(ZX)?| = 2. As pZ, is a
maximal ideal of Z,, we have a ring homomorphism

Zpy = Lp/pZy = F,.
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Moreover, clearly Z,X — F)X. We use Hensel’s lemma. Let x,2 € Z)* so that
z = 2% mod p. Then consider the polynomial f(X) = X2 — z which satisfies
f(z) = 0mod p and |f'(z)|, = |2z]|, = 1. Thus by Hensel’s lemma, there is a
root of f. This argument shows |ZX /(ZX)?| = [F)X /(FX)?| = 2.

The claim of the lemma now follows as each p-adic number x € Q;f can be
written uniquely in the form z = zp® for z € Z; and ¢ € Z. Thus z? = 22p?
and so for x € Q) to be a square of another number in Q,°, it has to hold that

z € (Z))? and that £ must be even. O

One then proves (cf. Proposition 3.13 of [Bay]), that over Q, there exists
precisely one anisotropic and one isotropic ternary quadratic form up to similarity.
We won’t give the details for this statement here, yet provide an example of
an anisotropic ternary form, shedding some light on the proof of the latter
statement.

Throughout the following we fix an odd prime p and an element e € ZX\ (ZX)?.
We claim that the quadratic form (1, —e, —p) is anisotropic over Q,. For a
contradiction assume there exist z,y,z € Q, not all equal to zero that satisfy
z? — ey? — pz? = 0. We assume without loss of generality that z,y,z € Z,
and that at least one of them lies in Z;f. Reducing modulo p, we hence obtain
2? = ey’ mod p. If y € %, then as in the lemma above e € (ZX)?, which is a
contradiction. On the other hand, if p|y, then p|z and hence z € Z). It follows
p~t = |p2?|, = |2® — ey?|, < p~?2, a contradiction. Thus indeed (1, —e, —p) is
anisotropic.

Relating to the above, we discuss quaternion algebras over Q. Let a and b
be two nonzero elements of Q. Then we denote by

Baop(Q) = {zo + z10 + z2j + 3k : zo, 21, T2, 23 € Q}

the quaternion algebra over Q associated to a and b, where 1,4,j, k are
variables that satisfy

i’?=a, j2=b and ij=k=—ji.
If @« = zg 4+ x17 4+ x27 + x3k, then we define the conjugate of « as
a=x9— x1t — Toj — x3k
and the norm and trace of « as
Nr(a) = aa = 22 — ax? — ba3 +abr? and Tr(a) = a+a = 2zo.

Observe that the norm satisfies Nr(af) = Nr(a)Nr(8) for a, 5 € B, ,(Q) and
moreover, an element « is invertible if and only if Nr(a) # 0 and then

a_ @ _a

(67

- Nr(a) oaa’

We want to consider B, ; as an algebra object in category of affine schemes
over Q. In order to do so, we view B, ; as the affine space A* equipped with
the morphisms of affine schemes which correspond to the algebra structure on
Ba,b(@)'

If every non-zero element of B, ;(Q) is invertible, we then say that B, is a
division algebra over Q. For the next lemma, we note that we can also view
the set of 2 x 2 matrices, My 2 as an affine algebra scheme over Q.
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Lemma 1.16. Let a,b € QX. Then the following properties are equivalent:
(i) Bap is not a division algebra over Q.
(i) The quadratic form (1, —a,—b,ab) is isotropic over Q.
(ii) The quadratic form (—a,—b, ab) is isotropic over Q.
(iv) Bap = B11 = Mz as algebra objects in the category of affine schemes

over Q.

Proof. (i) and (ii) are equivalent as the quadratic form (1, —a, —b, ab) is precisely
the norm form on B, ;(Q). For the equivalence of (ii) and (iii) we refer to [Bay]
Theorem 2.33.

We next show that By ; = My . Consider the map

D : Bl,l(@) — Mg(@)

N SN (Y

(j) = (2 (1)) B(k) = (_01 é)

Thus for zg, x1, T2, x3 € Qp,

determined by

and

. . To+x1 T2+ X3

O(xg + z11 + T2j + x3k) = .
(20 ! 2 3k) (xz — I3 To— $1>

One checks that this defines a ring isomorphism with the property that for

a =X +$1Z+£L‘2] +$3]€7
det(®(a)) = x3 — 23 — 23 + x5 = Nr(a).

This also shows that By 1 is not a division algebra. Also (iv) implies (i) since
My 2 is not a division algebra.

Assume now that B, ; is not a division algebra. Then choose a non-invertible
and non-zero element b € B, ;(Q) and consider the proper left ideal a generated
by b. Then a is a Q-subspace of B, 5(Q) and denote by m its Q-dimension. Left
multiplication of a fixed element in B, 5(Q) gives rise to an algebra homomor-
phism

Bo,5(Q) — Endg(a) = M,, ., (Q).

Observe that this algebra homomorphism is injective since B, ;(Q) is a simple
algebra, i.e. the only two-sided ideals are {0} and B, ,(Q). This shows m > 2
as dimg B, 5(Q) = 4. The same argument applied to the non-trivial quotient
algebra B, ,(Q)/a shows m < 2. Hence the above map is an isomorphism. [

We denote by B}Lb the group scheme of norm one elements and by B(Ol,b(Q)
the trace zero elements. Then the above lemma allows us to draw the following
corollary.



1. The p-adic and the Adelic Extension 23

Corollary 1.17. Let a,b € Q% and assume that B is not a division algebra.
Then there exists an isomorphism of algebraic groups

B{') — SL,
over Q.

Proof. This follows by Lemma and its proof. O

To proceed, we consider the norm quadratic form on Bg’b(Q) with respect to
the natural basis, arriving at the ternary quadratic form

Qap(z,y,2) = —az® — by® + abz*.
Furthermore we discuss
PBS, =BJ,/Gpm
the projective group of invertible quaternions so that for instance
PB;,(Q) = B;,(Q)/Q*.
Proposition 1.18. There exists an isomorphism of algebraic groups over Q,

PB;,b — SOQa,b

Proof. The idea is to view each element of B;(b as an element of the automorphism

group of ng preserving the quadratic form @, 4. For o € sz((@ consider the
automorphism

Sa : Ba,b(@) — Ba,b(@)7 ﬁ — aﬂa_l

As the norm is multiplicative, S, preserves the norm. We claim that S, (Bg, ,(Q)) =
BY ,(Q). To see this let a = x1i 4+ 225 + 23k € B)) ,(Q). By Q-linearity of S,
it suffices to check that aia, ajo and aka are all elements of ng((@). This
follows as

k* = —ijji = —ab,
ik = iij = aj,
Jk = —jji = —bi,
ki = —jii = —aj,
kj =ijj = bi

and

aia = (xg + x1i + x2j + w3k)i(xo — 10 — 22j — w3k)

= (zoi + 219° + 1271 + 23ki) (o — 10 — 205 — x3k)

= (zoi + ax1 — x2k — axsj)(xo — w10 — x2j — T3k)

(—azoz1 + axox1 — abraxs + abxaxs) + (... )i+ (.. )7+ (... )k
04+ (..)i+(.05+ (. )k
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showing aiar € ng((@). One analogously checks that aja, aka € Bg)b((@) which
implies Sq (B ,(Q)) C B ,(Q). The claim follows as o is replaced by its inverse.
As S, is Q-linear, we can view it as a matrix by identifying B27b(Q) as the
@Q-span of i, j, k. More precisely, if
Sa(i) = a11i + a1 j + asik,
Sa(j) = a12i + azj + aszek,
Sa(k) = a13i + az3j + assk,

then we view S, as the matrix

a1 ai2 ais
Mg, = | ax1 a2 ag3
asz1 asz as3

As S, preserves the norm, it follows

Qab(Sa(B)) = Nr(Sa(B)) = Nr(8) = Qap(8)
and thus
MScx € OQa,b(@)'
Finally as So,a, = Sa, © Sa, for all a;,as € ng((@), we hence have arrived at
a group homomorphism
B:b(Q) - OQa,b (Q), o — Mg,

which only depends on [a] € Pij and hence induces a group homomorphism

PB;,(Q) — Oq,,(Q),  ar— Ms,.

It remains to check that the map is onto SOq, ,, for which we refer to Lemma
2.4 of [Berl6]. In essence, the claim follows as SOgq, , is generated by even
reflections. O

Corollary 1.19. For a,b € QX, the algebraic group B}z,b is anisotropic over Q,
if and only if the quadratic form Qg is anisotropic over Q.

Proof. This follows directly from last proposition as Ble,b can be viewed as a
double cover of PB;b. O

Definition 1.20. The algebraic groups G = B}l’b for a,b € Q* are called the
Q-forms of SLs.

We return to the general case of a linear algebraic group G C GL,, over F', yet
restrict in the discussion below to the case where F' is a local field of characteristic
zero and G C GL,, is semisimple. The theory reviewed in this paragraph can be
found for instance in [BT72]. Denote the F-points as G = G(F'). The group G
has an Iwasawa decomposition, i.e. there exists a maximal compact subgroup
K C G, and a corresponding minimal parabolic B C G so that G = KB. If A is
a suitable abelian subgroup we also have a Cartan decomposition

G=KAK

so that for all a € A,
afl = klakg, (12)

for some k1, ks € K.
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Lemma 1.21. Let G C GL,, be a semisimple algebraic group over Q and p a
prime number. Then the diagonally embedded subgroup G(Z[%]) < G(R) x G(Qp)
is a lattice.

Proof. As the class number of G is finite (see [PR94] chapter 5), there exist
Z1,..., Ty € G(Q,) so that

n

G(R) x G(Qp) = [ J(G(R) x G(Zy))a:G(Zy).
i=1
Denote C' = |J._, G(Z,)z;G(Z,) and observe that C is compact. Thus if

F C G(R) is a fundamental domain for G(Z) then F x C' is a finite volume
surjective domain for G(Z[:]) < G(R) x G(Q,). O

1
P
In analogy to chapter write

X, = G(R) x G(Q,)/G(2[2),

equipped with the Haar probability measure mx,. Set G, = G(Q,). Then G,
acts on X, by left multiplication.

Proposition 1.22. Let G C GL,, be a simply connected, almost simple algebraic
group over Q and p a prime number. The action of G, on X,, is ergodic.

Proof. The proof uses the property that such groups G C GL,, are generated by
unipotent subgroups. Then the same argument as in the proof of Proposition

applies. O

As G C GL,,, we can again define the congruence subgroups I'y, ; for £ coprime
to p as the kernel of the homomorphism
G(Z[%D — G(Z/tZ)
and again write 'y o = G(Z[%D. Then one deduces as in chapter , that T'), 4 is
a lattice, diagonally embedded in G(R) x G(Q,) and the G(Q,) action on

Xpl = G<R) X G(Qp)/rpl

is ergodic.
The associated Koopman representation of the action of G, on X, , will be
denoted throughout this thesis as 7, ¢. In particular, for f € L? (Xp,e) we have

((mp.0)gf)(x) = fg™"a),

where g € G, and x € X, 4.

In the final part of this subchapter we discuss Tamagawa measures. Fix a
rational invariant differential form on G of top degree (see [Wei82]). Such a form
is called a gauge form. The gauge form defines Haar measures mI®™ and m12™
on G(R) and G(Q,). It is well known ([Kot88]), as G is simply connected, that

mE™(GR)/G(Z) [T mp™™(G(2Zy)) = 1.

[eS)
p prime

We next discuss a lemma from [BR95].
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Lemma 1.23. In the above setting, for any prime p,

Tam 1 |G(Z/ka)|
my " (GZ)) = lim = e

Proof. For simplicity we only treat the case where

G =SpecQ[X1, ..., Xn2]/(f1,-- s fr)

for f1,...,fr € Z|X1,..., X 2] with the property
rank((ajfi)ij) =T.

As G is smooth,
dim(G) = n® — rank((9; fi);)-

Let w be the fixed gauge form on G. Consider the smooth map f : (f1,..., fr):
A" = A", We denote by G, the fiber f~1(s) for s € A" so that G = Gg. As
rank((9; fi)ij) = r, the map f is smooth on f~!(U) for some Zariski open set U
of A”. Fix a prime number p. As discussed in chapter 1 of [BR95], there exists a
differential form w, on the fibers G, = f~'(s) inducing measures m; %™ so that

G = [ oo ( L )wdm,T,zm) ds,

where ¥ and p are locally constant compactly supported functions.
Next fix £ > 0 and set

2
o

Ch=p"Z,cQ, and B=Z' cQy.

Then vol(Cy) = p~*". Let 9 be the characteristic function of the compact
open subset B and ¢ the characteristic function of C%. Observe that as
5 = my ™ (Gs(Zp)) is continuous and since Cj, is a sequence of neighborhoods

decreasing to 0 in Q}, it follows that

1 am 1 am
/ mI (G, (Z,)) ds = / M (G (Z,)) ds
Ck Ck

dm en pr
— M (Go(Z,)) = M (G(Z,)).

Thus upon dividing by p~*" the lemma follows from the final claim that

G/ )|

mpa™(Gs(Zp)) ds = P

p,s
Ch

To prove the claim, we first apply the above integration formula to conclude

mn(Gu(2,) ds = |

R kaZg (f(il')) dr.
Z

n
Cy, I8

Recall that the map Z — Z,/ kap that factors through the canonical injection
Z — Z,, is surjective. In particular, for each element x € Z;f there is a residue
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class a € (Z/ka)”2 so that = € a —l—kaZQ. Moreover, the ka; residue class of
the value f(z) only depends on the value f(a). As the volume of each residue
class a + kagz is p”2k7 we conclude

[ owmtionds= = S (i)

P a€(z/p*Z)"?

G(Z/p"Z)]
pnzk :

n
p

O

Lemma [1.23| will be applied in chapter [5.5] Furthermore, we will also need
in chapter the following claim, for which we consider the concrete setting
G = B!, where B is a quaternion algebra over Q. Fix a prime p and let h = p™.
Denote by

Bp ={z € B(Qy) : Nr(z) =1, [[z][, < h}
and by
Bj, = {z € B(Z,) : Nr(z) = h*}.

We will again use the measures mg‘";m, which were introduced in the proof

of Lemma [[.:23] In this concrete setting, the defining property of the measures

mTam reads as

p;s
Qs PNty de /@p\m} o) </Nr-1<s>¢ mp’s> )

Denote by F : B(Q,) — B(Q,), z — h~'z and note that F' defines a bijection
between Bj, and Bj,. We aim to calculate F,(m; ™). In order to do so, let ¢
and ¥ be any locally constant functions with compact support. Then,

d Tam d
/@p\m} o) (/er(s)w e > ’

= [ o(Ne(z))y(x) da
Q;

= [ o(h*Ne(2)y(h™ z)|h|,* do
@

:/ HhT5) / o Fdmy™ | bl ds
Q,\{0} Ne—1(s) ,
:/ ) / Yo Fdmy53, | |hl,? ds
Qp\{0} Nr—l(hQS) P, p
:/Q o é(s) </N - )t/)dF*(mEjZ“;S)> |h|;2 ds,
y4 T S

where we replaced in the third line by h~'x and in the penultimate line s by
h~%s. We conclude for any s € Q,\{0},

Fy(my ™) = [hlgmy, 52, (1.3)
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Lemma 1.24. In the above setting,

k7\4 . — 12 k
i 1 € BT 2 Ne(@) = 12 mod Py

k—o0 p3k p

Proof. By equation (|1.3)),
my ™ (By) = my " (By) = my 32 p,2 (Bh)
= |hl, *my 53 (F~1(By)) = h*m, 53 (By,).

As in the proof of Lemma [1.23| one shows that

[ g € D Nla) 12 o
h2+pkZ, ’ p

The claim again follows since s — m;";m(B;L) is continuous and h? + pFZ,, is a
sequence of neighborhoods of h that converges to h as k — oco. Thus,

lim — / my 2 (By,) ds = m 53 (By,) = h~*m) ™ (By).
h2+pkZ,
O

1.3 Adeles and Adelic Points of Algebraic Groups over Q
We follow in part the exposition given in chapter 3 of [GGPS].

Definition 1.25. The adeles of Q are the ring
A ={(a00,a2,a3,...) : ax € R,a, € Q, and for almost all pimes a, € Z,}
equipped with componentwise addition and multiplication.

We discuss how to equip the adeles with a natural topology. First we consider
the subring
A°=Rx ]z, c A,
P

on which we consider the product topology so that a basis is given by
Ux[]U»
P

with U C R and U, C Z,, open so that U, = Z, for almost all primes p. We
furthermore require that A° is open in A. This yields that a basis for the topology
on A is given by

a+ (UXHUP> = (ax +U) XH(ap+UP)a

p

with U and U, as above and a € A.
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Lemma 1.26. The adeles are a locally compact, second countable Hausdor(f
topological ring.

Proof. As Z,, is compact for all primes p, it follows from Tychonoff’s Theorem
that for each point a € A the neighborhood

ae[aoo—Laoo—i—l]xHaj—&—Zp
P

is compact. As R and Q, are second countable and Hausdorff, the adele ring
also has these properties. It remains to check that addition and multiplication

TiAXA DA, iAxXA A

are continuous.

We first treat the addition map. As A is second countable, it suffices to show
that if a™ — a and 0™ — b in A then a™ 4+ b"™ — a + b. Analyzing the topology
on A, it follows that the sequence

n __ n n n
a" = (al,al,af,...)
converges to

a = (s, 02,03, .- .),

if and only if the sequence converges pointwise and there is some large N so
that for all n > N the difference a; — a; is a p-adic integer for all primes p. In
view of this observation, to prove a” 4+ b"™ — a + b is straightforward. Pointwise
convergence follows from continuity of addition in R and Q,. Choosing IV large
enough so that a, —a, € Z;, and b, — b € Zj, for all n > N, we conclude
ap +bp —ay + by = (a, —a,) + (b, — by) € Zy
for n > N.
To show continuity of multiplication, we first show that left multiplication

Ly:A— A a— ba

is continuous for any b € A. To see this let ¢ — a. We want to show
that ba™ — ba. Componentwise convergence again follows from continuity of
multiplication in Q. It remains to check that for large enough n and all p we
have that

bpap — bpay = by(ap — ay)

is a p-adic integer. As a, — a for n > Ny, the difference a, — a}} is a p-adic

integer. By definition of the adeles, we can find P large enough so that for all
p > P the element b, € Q, is a p-adic integer. Set next

pu— 1 b .
c Z%aé(P(maX{ , | p‘p})

By componentwise convergence, we can find Ny large enough with the property
that for n > Ny |ap, — ap], < ¢! and so |by(ap —ap)| < 1 forall 2 < p < P.
Choosing n > max{Ng, N1 },
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for all primes p, proving ba™ — ba.

One analogously shows that right multiplication is continuous. We are now in
a suitable position to prove that - : A x A — A is continuous. Namely, if a” — a
and b — b, we want to show a"b"™ — ab. Again, componentwise convergence is
clear. So it remains to show that for large enough n,

ab—a"b" = ab—ab” + ab” —a"b" =a(b—0") + (a — a™)b"
=ab-b")+(a—a™)(d" —b+D)
=alb—-b0")+(a—a™)(®" —b)+ (a —a"™)b

is a p-adic integer at every prime. For the left and right term in the last expression
this follows as left and right multiplication are continuous. For the middle term
one exploits that Z, is closed under multiplication. O

Viewing the adeles as an additive abelian group, the adeles have a Haar
measure py on A which is given by restricting the product measure on R X Hp Qp.
Moreover, we choose a normalization of the Haar measure giving unit volume to

[0,1] x HZP ={a €A : ax €[0,1] and |a,|, <1 for all p}.
P

The rational numbers can be viewed as a subring of A via the embedding

Q=4 q-(¢049...),
where one observes that this map is well defined as |¢|, = 1 for p large enough.
Proposition 1.27. The rational numbers form a lattice in the ring of adeles.

Proof. We first show that Q is a discrete subgroup. Assume for a contradiction
that they are not discrete, i.e. there is a sequence of non-zero rational number
T = (Tn, "y Tn, - - -) with 7, — 0 in A. For n large enough, 7, is a p-adic integer
for all primes p. Hence r;, is an integer for large enough n but then r,, does not
converge to 0.

Finally notice that

F ={(ts0,a2,a3,...) : 0 < as <1 and a, € Z, for all primes p}

is a fundamental domain for A/Q, which implies that Q is a lattice in A as F'
has volume 1. O

Let G C GL,, be an algebraic group over Q. We define
G(Z,) = G(Q,) N GL,(Z,),
where GL,,(Z,) = {9 € M,,,n(Qp) : g and g7 € M,, ,(Z,)}.

Definition 1.28. The adelic points G(A) of the algebraic group G are defined
as the subgroup of

GR) x [TG@)
p
given by
G(A) = {(aco, a2,as,...) : ap € G(Z,) for almost all primes p},

equipped with componentwise multiplication.
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Analogously to the case of p-adic numbers, we equip

G(R) x [[G(Zp)

with the product topology and require that it is an open subset of G(A). Equiv-
alently, a sequence of adelic points g™ € G(A) converges to g € G(A) if and only
if we have componentwise convergence and there is some N large enough so that
for all n > N and primes p, the difference g, — g € G(Z,).

Lemma 1.29. The adelic points G(A) form a locally compact, second countable
Hausdorff topological group.

Proof. Let g € G(A) and let U, be a compact neighborhood of g in G(R).
Then we have that by Tychonoff’s Theorem

Ugoo X H(gp + G(Zy))

p

is a compact neighborhood of g as G(Z,) is compact at every p. To see that
G(A) is second countable and Hausdorff just note that G(R) and G(Q,) have
these properties.

Finally, we check that the multiplication map is continuous. So let ¢” — g and
h™ — h be converging sequences of elements in G(A). Clearly, g"h™ converges
to gh componentwise and so it remain to check that for large n the matrices

gphp — gz?h?

are in Mat, (Z,) for all p. This simply follows as the adeles are a topological
ring and hence for large enough n each matrix entry of g,h, — gy hyy isin Z,. U

If S C P is any set of places, then analogously to the adelic points, we can
define G5 again as the restricted direct product equipped with the analogous
topology. It hence follows that Gg is a locally compact, second countable
Hausdorff topological group.

Returning to G(A), we note that it has a Haar measure. As before, there is
an injection

G(Q) — G(A), re(r,rr,..),
so that G(Q) can be viewed as a subgroup of G(A).

Proposition 1.30. If G is a semisimple algebraic group over Q, the Q-points
G(Q) form a lattice in G(A).

Proof. We first show that G(Q) is a discrete subgroup. Assume for a contradiction
that this is not the case so that there is a sequence of non-identity rational
matrices ™ converging to 1 in G(A). Then for large enough n, the rational
matrix 1 —r} is a Zy-matrix for every p and hence in particular a Z-matrix.
Thus for large n we have that 1 € 1 + Mat,,(Z) and so in particular r™ is an
integer matrix for n large enough. This contradicts the assumption that r, — 0.

To show that G(A)/G(Q) has finite volume, we refer to [PR94] chapter 5.3.
The proof uses that the class number of G is finite, i.e. that there are finitely
many points x1,...,Tn € Gp\ (o} S0 that
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This statement easily implies the claim. Choose a fundamental domain F
for G(Z) < G(R) and denote by K = [[,cp\ (o0} G(Zp). If we choose C =
Ui, Kz;K, it clearly follows that F' - C is a surjective domain of finite volume
for G(A)/G(Q) and hence G(Q) is a lattice in G(A). O

In analogy to the p-adic extension, we also study the adelic extension
Xa = G(A)/G(Q).

If S is a finite set of places, then Gg acts on X, by left multiplication.
To prove ergodicity of the Gg action on X, we need to assume that G is
isotropic over S, as this has the following consequence.

Theorem 1.31. Let G be a simply connected almost simple algebraic group over
Q. Let p be a prime number and assume that G is isotropic over Q,. Then

(i) The product group G(Q,)G(Q) C G(A) is dense.
(ii) The subgroup G(Z[:]) C G(R) is dense.

1

P
Proof. The first statement is the strong approximation property, we refer to
chapter 7 of [PR94]. (ii) follows from (i) as we now show. Note that by (i),
the diagonally embedded subgroup G(Q) C Gp\(p is dense. Let z € G(R).
We consider the element (z,1,1,...) € Gp\(p}. So for any € > 0 we can find
v € G(Q) so that x is arbitrarily close to v in G(R) and v € G(Z,,) for all primes
q € P\{p}. Thus it follows that v € G(Z[}%]), which then implies the claim. O

Proposition 1.32. Let G is a simply connected, almost simple algebraic group
over Q. Let S C P be a finite set of places and assume that G is isotropic over
S. Then the action of Gg on X, is ergodic.

Proof. By Theorem this shows that GgG(Q) is dense in G(A). Hence, as
in the proof of Proposition we consider a Gg invariant measurable function
f: Xa — C. This function lifts to a G(Q)-invariant function on f : G(A) — C,
which is hence constant. O

We will denote by 7, the Koopman representation of the G, action on Xjy.
Thus for f € L?(X,) we have

(mp)gf)(@) = f(g™ ),

where g € G and © € X,.
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2 Elements of the Theory of Unitary Represen-
tations

In this chapter we review some notions and results concerning unitary repre-
sentations. Even though we aim towards applications in dynamics, we give a
general and comprehensive exposition of the stated results, which the reader
hopefully may find useful. As a good introductory reference for the theory of
unitary representations we cite the upcoming book [EW], whose notation we
mostly follow.

Throughout this chapter and even thesis, if we speak of a topological group
G we will always refer to a locally compact, Hausdorff group and for convenience
also assume that G is o-compact and metric, even though these assumptions are
not strictly necessary. Denote by mq a left Haar measure on G and by LP(G)
the corresponding LP-space with respect to any Haar measure. The central
object of study in this chapter are unitary representations (, 7). The Hilbert
space S is always assumed to be complex and separable unless stated otherwise.
For v,w € S we write ¢ ,, for the matrix coefficient, i.e. the function

o 1 G — C, g — (myu,w).

The diagonal matrix coefficient ¢7 , will also be written as ¢7. The space of
all diagonal matrix coefficients of all unitary representations of G is denoted as
Z(G) and the reader may recall that &2(QG) is precisely the space of continuous
positive definite functions on G.

2.1 Containment, Temperedness and the Fell Topology

The primary reference for this subchapter is chapter 4 of [EW]. Let (7, 5) be a
unitary representation. Recall that, up to unitary isomorphism, the diagonal
matrix coefficient of an element v € 77 determines the cyclic subspace generated
by v in J#. As each unitary representation can be written as a direct sum
of cyclic subspaces, it follows that the matrix coefficients of (,.7#’) determine
the representation. The set of matrix coefficients &(G) is equipped with the
topology of uniform convergence on compact sets. This viewpoint suggest that
two unitary representations (m, 74 ) and (p, #53) are close to each other if some
matrix coefficient of m can be approximated on some compact set with some
accuracy by the matrix coefficients of p. The further development of these ideas
leads to the Fell topology which will be discussed later.

In this context, one could say that a unitary representation (m, .5) is as close
as possible to another unitary representation (p,.7%3) if all the matrix coefficients
of m can be approximated by the matrix coefficients of p. This leads to the
notion of weak containment.

Definition 2.1. Let (7, 74) and (p, #%) be unitary representations of G. We
say that 7 is weakly contained in p and write m < p if the following three
equivalent (see chapter 4.3 of [EW]) conditions holds:

1. The diagonal matrix coefficients of m can be approximated by sums of
diagonal matrix coefficients of p, i.e. for each v € 4, compact subset
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K C G and € > 0 there are elements wq, ..., w, € J% so that
n
|- <
i=1 K00

2. For every v,w € 5, compact K C G and ¢ > 0, there are g1, ... ¢gn, h1,..., hy €

S so that

<e
K,00

n
m p
Cow = 2o
i=1

with the additional constraint

n
> Mgl llhal] < [foll[[w]].
i=1

3. For all f € LY(G),
7 (Pllop < [1p(f)lop-

Recall that we say that 7 is contained in p and write m < p if there is a closed
subspace V' C J% so that 7 and p|y are isomorphic unitary representations.
This condition is equivalent to the property that the matrix coefficients of 7 are
a subset of the matrix coefficients of p and hence indeed, weak containment is a
generalization of containment. As the notion of weak containment is central to
this thesis, we discuss some further properties and examples.

Proposition 2.2. Let (m,54) and (p, 75) be unitary representations of G and
assume that (w,74) is irreducible. Then ™ < p if and only if for any v € 4,
K C G compact and € > 0, there is w € 5 with ||w|| = ||v|| so that

oy = Pullk.o <e

Proof. This is Proposition 4.8 of [EW]. O

We next give an equivalent condition for 1¢ < 7w, where 14 is the trivial
representation.

Definition 2.3. Let (m, %) be a unitary representation of G. We say that 7
has almost invariant unit vectors if for every compact subset K C G and
€ > 0 there is a unit vector v € 5 so that

[|mgv — || < e
forall g € K.

The next lemma reflects the fact that 1 < 7 if and only if 7 has invariant
vectors.

Lemma 2.4. For a unitary representation (w, ) of G the following properties
are equivalent:

1. 7 has almost invariant unit vectors.
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2. 1g <.

Proof. Assume that 7 has almost invariant unit vectors. To show 1g < 7, it
suffices to consider unit elements A € C, i.e. so that goic = 1. For each compact
subset K C G and ¢ > 0 there is some unit vector v € J# so that ||mgv —v|| < ¢
for all ¢ € K. Thus we conclude

1037 = @5 llK.00 = 11 = ¢TIl r,00 = [[{mgv = 0,9) | K00 <&,
which implies that 1¢ < 7.

For the converse, assume 1g < 7. Since 1l¢g is irreducible, using Proposi-
tion for each unit vector A € C, compact K C G and € > 0 there is a unit
vector v € S so that

103 = @il K00 = 11 = T Il ,00 = 111 = (g0, )| K00 < &
Using that 7, is unitary it follows for all g € K,
[Imgv — UH2 = (70 — v, gV — V)

= 2(][v]|* = Re((mgv,v)))

=2(1 — Re({mgv,v))) < 2e.
Thus for all g € K,

[|Tqv — v|| < V2,

which implies the claim. O

Lemma 2.5. Let (7, 5, )nen be a collection of unitary representations of G
all weakly contained in the representation (p, #€). Then

@wn < p.
neN
Proof. Let v = (vp)nen € D, ey 0 s0 that
1012 = > llvnll%, and EHOEDIRCHIC)
neN neN

for all g € G. Let K C G be a compact set and € > 0. Choose N large enough
so that

o0
2
D llvnllZe, <
n>N
Then for each v, with n < N we choose a collection of vectors wy, 1, ..., Wp k(n)
so that
(n) c
=1 K,00

Thus we conclude
k(n)

k(n)

PR R N YT

n<N i=1 K,c0 n>N n<N n<N i=1 K,00
k(n)
E T __ E 14
S e+ gO'Un (pwn,i
n<N 1=1 K00

€
< N— < 2¢,
€+ N_s
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implying the claim. O

We next discuss weak containment for compact groups a bit further. Be-
fore stating the next result, we denote for a unitary representation (m, ) by
(7, #°°) the unitary representation

G .

neN

Proposition 2.6. Let (71, 5%41) and (mwa, 55) be unitary representations of a
compact group G. The following properties are equivalent:

(i) m < ma.

(ii) If o <1 for an irreducible unitary representation o € G then o < Ta.
(iii) m < mS°.
In particular, if w1 is irreducible, then m < mo if and only if T < m3.

Proof. Assume (i) and let 0 < m; for o € G. Since m < T, it follows by
transitivity of weak containment that o < mo. Let v € J#,. Since o is irreducible
and G is compact, for each n € N there is a vector v,, € % with ||v|| = ||v,]| so
that

1
s = #T2lleo < -

By Banach-Alaoglu, there exists a weak*-limit v* € % of v,. Then we have in
particular pointwise convergence @72 — @;2. Thus it follows that 72 = ¢ and
hence we conclude o < 3. Thus we have showed (ii). (ii) implies (iii) follows as
every representation of a compact group G is a direct sum of irreducibles and
each irreducible representation can appear at most a countable number of times
since we require our Hilbert spaces to be separable. (iii) implies (ii) implies (i)
is equally straightforward. O

Unitary representations that are weakly contained in the regular represen-
tation are called tempered and they will be of particular importance later
on.

Lemma 2.7. FEvery unitary representation of a compact group is tempered.

Proof. Recall that every irreducible representation of a compact group is con-
tained in the regular representation. Thus the claim follows by the last lemma
as each unitary representation of a compact group is a direct sum of irreducible
representations. O

We next discuss abelian groups. If (m,.%) is a unitary representation of the
abelian group G, then one defines the spectrum o(7) as the support of any
measure of maximal spectral type.

Lemma 2.8. For an abelian group G, the following properties hold.

(i) If (7, 74) and (p, %) are two unitary representations of G, then m < p if
and only if o(m) C o(p).

(ii) Every character is weakly contained in the regular representation.
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(iii) Every unitary representation of G is tempered.

Proof. To prove (i), we first claim that for any f € L1(G),
17 () op = 11 fllom) 00
where f € L>(G) is defined as

f(x)=/fxdm

for x € G. We use the spectral theory for a vector of maximal spectral type
Umax arriving at a commutative diagram:

o (&)

ﬂ(f)l le

(Vmax)w —— L2 (G)

Homax

<Umax>% — L2

As the operator M has operator norm I £1l(r),00» the claim follows.
By the claim we conclude that if o(7) C o(p), then for all f € LY(G),

17 (Pllop = 1Fllom,00 < [ Fllo(p),00 = [12()]lop,

which implies 7 < p. Conversely assume that 7 < p but for a contradiction
o(m) ¢ a(p). So choose ty € o(m)\o(p) and by Urysohn’s Lemma, a function

~

F € C.(U) so that F(typ) =1 but F =0 on o(p). As L/l(\G) C Co(G) is dense
with respect to || - ||oo, there is a function f € L'(G) so that

IF = Fllo < 5.
Thus ) ) 1
I llop = 1 Fllotry 0 > 1 (t0) = Flt0)] > 5
and

)

N | =

||p(f)|‘0p = ||f_ F||U(p),oo = ||f_ F||o(p)7oo <

contradicting m < p.
We give two proofs of (ii). Recall that by Plancharel’s Formula, the reg-

ular representation is unitarily isomorphic to L2(é) with the representation
(Myf)(x) = x(9)f(x) for f € L*(G) and x € G. Thus it suffices to show
x < L%(G). We first show 1¢ < L*(G), so let ¢ > 0 and K C G be compact. Let

B,, be a sequence of open subsets of G with B, — {e}in G and set Py = %.
m(B,

Then for € > 0 we choose n large enough so that for all y € B,, we have that
Ix(g) — 1| < e for all g € K. Thus for all g € K,

11— @l (9)] = |1 — (Mg, )]

XB,,
1—/@x(9)m(gn) dmg(x)
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which shows that 15 < L? (@) An analogous argument works for any character

X-
We give a second proof that 15 < Ag using that G is amenable. So for every
compact K C G and € > 0 there is a compact set B with

m(BA(k + B))
m(B)

for all £ € K. We assume without loss of generality that K is symmetric.
Consider the function fp = % which satisfies ||fg||1 = 1. Then for all k € K,

Aa(k)fB — fBll <e.

Thus it follows that if we take the square root h = +/fp so that ||h||2 = 1, then
we have for all k € K,

11—}, (k) = [(Ag(k)h — h, h)|?
< [[Ag(k)h — hl}3

- / h(g + k) — h(g)* dmal(g)
< / (g + k) — h(g)?] dme(g)

- / Falg + k) — fa(9) dmalg)
— Da(k)fs — fally <=,

where we used that |a — b|? < |a? — b?| for all real numbers a, b € R.
By (ii), 0(Ag) = G and thus (iii) follows from (i). O

We return to considering a general topological group G. Another lemma that
will turn out to be useful in chapter is the next one, for which we introduce
the following notion.

Definition 2.9. Let (7, ) be a unitary representation of G. The support of
7 consists of all irreducible unitary representation weakly contained in m, i.e.

supp(m) ={c € G : 0 < 7}.

Lemma 2.10. Let (m, 5) be a unitary representation of G. Then the represen-

tation
Osupp(w) = @ g

o€supp(m)

is weakly equivalent to 7, i.e. T < Ogupp(x) ANd Ogupp(r) < m. In particular, for
all f € LYG),

I (Hllop = sup{llo(f)llop : o € supp(m)}.

Proof. Tt is clear that ogpp(r) < 7, as for each o € supp(w) we have o <
7. The claim m < og,pp(r) follows as the diagonal matrix coefficients of 7
can be approximated by diagonal matrix coefficients of irreducible unitary
representation weakly contained in 7, by Proposition 4.33 of [EW]. The last
claim is immediate. O
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We point out that the representation ogypp () from the last proposition does
not need to be separable, which does not cause any problems.

We finally discuss a general criterion, which implies that a unitary represen-
tation is tempered. Namely, we say that a unitary representation (m, 5) of G
is almost square integrable if there is a dense set V' C 57 with the property
that for all v € V' the diagonal matrix coefficient ¢7 is contained in L**¢(G) for
any € > 0. A proof of the next theorem is exposed in [EW].

Theorem 2.11. (Theorem 1 of [CHHS8S8]) Every almost square integrable unitary
representation is tempered.

Corollary 2.12. Let (mw, ) be a cyclic representation of G with generating
vector v. Assume that the diagonal matriz coefficient ¢} is almost square
integrable. Then (7, ) is tempered.

Proof. Using Theorem it suffices to show that for all vectors of the form

n
w = g QT g,V
i=1

for a; € C and g; € G we have that ¢ € L?>T¢(G) for all £ > 0. To see this note
that

n n
T —_— _ — 7w —1
on =Y ol (me,v, mv) = Y il (g5 9gi).
i,j=1 i,5=1

Thus it suffices to show that for all g;,9; € G, ||} (gj_1 - gi)||2+¢ is finite for all
e > 0. We calculate

lef (g5 " - 9)ll51E = [ley (a0)ll5 e

- / 6 (990) 2 dma (g)
G

= 8ola) ™ [ 6@ dmalo)
= 2a(9) 7 l¢f lo4e < oo,
by assumption. O

It is natural to ask whether the converse of Theorem [2.11] holds. We first
provide a simple counterexample. If G is abelian yet non-compact, then G is
ameanable and so the trivial representation 14 is tempered. However the trivial
representation is almost square integrable if and only if G is compact. Thus the
converse to the above theorem does not hold for non-compact abelian groups.
On the other hand, it is clear that the statement holds for compact groups as
then all the unitary representations are almost square integrable and tempered.
In chapter we will show that, roughly speaking, if a group has an Iwasawa
decomposition, then the converse to Theorem holds.

The final aim of this subchpater is to discuss a suitable topology on the
space of unitary representations of G, to which we already alluded to in the
beginning of this subchapter. As usual, denote by G the unitary dual, which is
defined as the set of all irreducible unitary representations up to isomorphism.
More generally we consider the set % (G) of all equivalence classes of unitary
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representations and denote by %, (G) the subset of the latter set consisting of
all unitary representations without invariant vectors. Furthermore we define for
a unitary representation (m, 7) the set

n n
PL={¢" = Zg@ﬁj :n €Nandwvy,...,v, € 5 so that Z v ]|> = 1}
j=1 Jj=1
and call its elements the positive-definite functions associated to 7.

Definition 2.13. The Fell topology on % (G) is the topology generated by
any of the two subbases:

1. For f € LY(G) and ¢ € R,
FO(f,e) ={m e %(G) : [[7(llop > €}

2. For ¢ is some continuous positive definite function on GG, K C G a compact
subset and € > 0,

FO(p,K,e)={m : ||¢p™ — ¢|| k.00 < ¢ for some p™ € PL}.

A proof that these two subbases generate the same topology is given in
chapter 4.4 of [EW]. Using that G is o-compact and hence L(G) is a separable
Banach space, it easily follows that the Fell topology is second countable.

Lemma 2.14. Let (7w, 561) and (p, 74) be unitary representations of G. Then
7 is weakly contained in p precisely if 7 is in the closure of {p} with respect to
the Fell topology.

Proof. Assume 7 < p. Let f € L'(G) and € > 0 be so that p € ZO(f,¢)¢. Then

(O < Hlp(HIl <€

and so m € #O(f,¢)¢, implying that m € {p}.
Conversely for m € {p} assume for a contradiction m A p. Then there is a
function f € L'(G) and € so that

7w (Hllop > > |lp(f)lop-
Thus p € FO(f,¢)¢, yet m € FO(f,¢), contradicting w € {p}. O

Proposition 2.15. Let (7, 5 )nen and (p, ) be unitary representations of
G. The following properties are equivalent.

(i) In the Fell topology, T, — p as n — oco.
(ii) For any f € L*(Q),

linrr_1>i£f 70 (f)|lop = 112(f)|op-

(#ii) For any increasing sequence ny,

p= @wnk

keN
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Proof. Assume (i). For any f € L'(G) and € > 0, ZO(f,||p(f)|lop — €) is a
neighborhood of p and hence for large enough n, m, € FOI(f,||p(f)llop — €)
which implies (ii).

To see (ii) implies (iii) just use for f € L}(Q),

(@)

Finally assume (iii). Assume for a contradiction that m, does not converge
to p. Then there is some neighborhood U of p so that for an increasing sequence
Nk, the unitary representations m,, are outside of U. Upon using a subsequence
of ny we can assume without loss generality that U = .Z0(f,¢) for f € L'(G)
and € € R. Thus

= sup |7, (f)]]-
keN

op

[ITni (Nllop < & < [l()llop,
which contradicts (iii). O

2.2 Continuous Decomposition of Unitary Representations

We first discuss the direct integral of Hilbert spaces — a generalization of the direct
sum — and then apply the developed material to deduce a general continuous
decomposition of unitary representations. A reference for some parts of this
chapter is [Kir76], yet we strive upon giving a more detailed treatment.

Let (X, ) be a measure space and for each x € X denote by .7, a separable
Hilbert space. We aim at defining a Hilbert space

/j A dp(x)

which should consist of functions

f:Xx— %

zeX

with the property that for each z € X, f(x) € J%,. Such functions are called
sections. The inner product should be

i fo) = / (@), Fale))ore, dulz). (2.1)

However, a priori the function z — (f1(x), f2(z)) s, does not have to be mea-
surable.

In order to circumvent this issue, consider the collection of Hilbert spaces
(M) zex together with a choice of measurable sections .#. More precisely, we
require that .# is a set of sections that satisfies the following properties:

1. For all f1, fo € A, the function x — (f1(x), f2(x)) e, is measurable.

2. If f is a section so that x — (f(z), g(z))e, is measurable for all g € 4,
then f € .

3. There is a countable collection fi, fo,... in .# so that for all z € X, the
span of the collection {f,(z) : n > 1} is dense in J%,.
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From now on we always view a collection (9;).cx as equipped with a choice of
measurable sections. In dependence on .#, we define the direct integral

(&)
A X ) = /X M dp(x)

as the vector space of measurable sections f € .# that satisfy

J117@)1Re, dute) < .

The vector space #{x ) is equipped with the inner product ([2.1)).
Proposition 2.16. The direct integral H{x ,,) is a Hilbert space.

Proof. Tt is clear that defines an inner product. It remains to check
completeness. The following proof is inspired by the proof of the Fischer-Riesz
theorem, showing that any LP-space is complete.

Consider a sequence f, € #(x,,) so that

oo
M= Z Hf"”‘%)(X:u) < 0.

n=1

We aim to show that >, f, converges in #{x ).
For each n define

ha(@) =Y |1 fu(@)l|z,
k=1

Then h,, is clearly a measurable function on X as it is a finite sum of measurable
functions. By the triangle inequality,

n 2
/X (@) dpe) = [ Rall} < (ank%,m) < M2
k=1

Moreover h,, T hfor h : X — [0, co] a measurable function satisfying by monotone
convergence
[|h][3 = lim ||h[|3 < M2
n—oo

Thus for almost all z € X, the sum > -, f(z) is a well defined element of 7,
and hence we set f(z) =Y .- f(z) defined for almost all z € X.

We claim that f is a measurable section. In order to prove this we use the
second property in the definition of measurable sections. So let g € .#. Then
for almost all x € X,

n

(f(@), (@), = lim Y (fi(@), g(x))z,.

n—oo
k=1
The finite sums on the right hand side are clearly measurable as each f; € .Z .
Thus the function on the left hand side is the pointwise limit of measurable
functions and hence by itself measurable. Thus we conclude f € .#. Moreover,
as by the triangle inequality we have pointwise || f(z)||z, < h(x), it follows

1B, = [ 1@ due) < [ 11 duto) < 2%
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Hence f € H(x ;-
It remains to check that Y ;_, fr — f in H(x ), 1-e.

> e fH — 0.
k=1 X,
We note that pointwise
n 2
> fulz) = f@)|| < (20(x))?
k=1 A,

and we clearly have pointwise convergence. So we just use dominated convergence

for
n n 2
ka—fH = [ 1D fe— 1] du(a),
k=1 Hx ) k=1 Ko
which concludes the proof. O

We next discuss a few examples. We first observe that the direct integral
is indeed a generalization of the direct sum. More precisely, let (J,)nen be a
countable collection of Hilbert spaces. We view N as a discrete topological space
and hence clearly every section is measurable. Moreover we denote by p the
counting measure on N. Then the map

®
B — [ Hduln).  @uen— (N,

neN

is an isometric isomorphism of Hilbert spaces.

On the other hand, one can also view the direct integral as a generalization
of L2(X). More precisely, set #, = C for all z € X and choose .# to be
the smallest set of measurable sections that contains all sections corresponding
to measurable functions. Then clearly .# corresponds precisely to the set of
measurable functions and the map

) D
12(X) / Cdule), fr (v e X s f(2)
X

is again an isometric isomorphism.
If for each z € X, we have a bounded operator T,, € B(I,, 7,), we want
to define a bounded operator
€3}
T / T, du(z).

X

In order to arrive at a well defined operator, we need to assume for all fi, fs €
H(x,u) that the map

z e X — (Tpfi(z), fo(2)) s,

is measurable. Moreover, we assume that the function x — ||T%|[op is in L5 (X).
We denote by [|T'||o the latter L°(X) norm. Then we define T' by

(Tf)(x) = Tof ()
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for f € H(x ), yielding a well defined operator T" with operator norm ||7'[|oc.

In particular if for each z € X, the Hilbert space J#, carries a unitary
representation 7, of the group G, then if we assume that for every fixed g € G,
the collection 7, 4 = (7;), is a measurable collection of operators, then we can
define the unitary representation

53]
T=T(X,u) = /X Ty dp(x)

D
Wg:/ Tg,q AP(T).
b's

Given a unitary representation of a group G, we want to discuss how to
decompose any representation as a direct integral of irreducible representations.
In the case of abelian groups such a decomposition is straightforward consequence
of Bochner’s theorem and some ideas related in the proof can be generalized.

More precisely let (m,.%) be a cyclic representation of an abelian group G

by

with cyclic vector v. By Bochner’s theorem, there is a unique measure p, on G
so that

oT(g) = /éx(g) dpia()

for all g € G. Then the equivariant map

®
('%’ﬂ)ﬂ-) — (%X,uv) = /é (Cd/J/U(X)vﬂ-(X,uv) = /@XdMU(X)> )

which is characterized by the property that 7 v is mapped to the section (x —
x(g)), is an isomorphism of representations. To see the last claim, we note
that the only problem is to show that the map is surjective or equivalently that
(T(X,p0)> H(x,1,)) 18 @ cyclic representation. To prove this, denote by 15 the
constant section. Then notice that for f € L'(G),

(e (N)1g) () = /G FO(m(x ) g 1) () dmcs(9)
- /G F@)x(g) dme(g) = F).

As the functions {f : f € L}(G)} are dense in Cy(@), the claim follows.

Towards more general groups, we briefly review a proof of Bochner’s theorem.
Denote by Z21(G) the set of continuous positive definite functions ¢ on G with
¢(e) = 1. We assume without loss of generality that the cyclic vector v as in
the above example has unit norm so that ¢ € 21(G). Since G is abelian, each
irreducible representation of G is one-dimensional and hence corresponds to a
unique element of 21(G).

As the matrix coefficients of irreducible representations correspond precisely
to extremal elements of 21(G), by applying Choquet’s theorem we arrive at a
probability measure j, on the extremal elements of 2*(G) which represents ¢T.
By the argument in the last paragraph, we can view p as a measure on G. In
particular for each ¢ € (L*°(QG))*

() = /af(x) dpia).
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By choosing ¢ to be the evaluation map at g € G, Bochner’s theorem follows.

Proposition 2.17. Let (7, 5) be a cyclic representation of G. Then there exists
a compact metric space X with a probability measure p on X and irreducible
representations (75, 7) for x € X so that (w, 7) is unitarily isomorphic to the
representation

D D
Ay = /X A dp(z),  me = /X o dp(z).

Proof. The strategy of the proof is analogous to the above outline of Bochner’s
theorem, yet we won’t carry out the details. In contrast to the abelian case, the
irreducible representations do not have to be one dimensional and there might
be multiple extremal elements of 22!(G) corresponding to the same irreducible
unitary representation.

Assume without loss of generality that (7, 7) is cyclic with cyclic vector
of unit norm v € . Denote by X the space of extremal elements of 2!(G).
Again by Choquet’s theorem, there is a Borel measure p on X so that for all
¢ e (L>®(Q))* (with respect to the weak* topology) we have

UeT) = /X () du().

For the remainder of the proof we refer to [Kir76]. O

Lemma 2.18. Let (7, 5) be a unitary representation of G and

= /® T dp(2)

X

be an integral decomposition. Then for almost all x € X, m, is weakly contained
m .

Proof. Note that for all f € L'(G), ||x(f)]|| is the essential supremum of z
[|72(f)]]|- Thus for fixed f, ||7.(f)|| < ||7(f)|| for almost all z. The claim follows
as L1(Q) is separable. O

2.3 Induced Representations and the Harish-Chandra Spher-
ical Function

We consider unimodular groups G with an Iwasawa decomposition. More
precisely we assume that we can write G = KB for K, B C G closed subgroups,
where K is assumed to be compact. For example, if F' is a local field of
characteristic zero then the group of F-points of a semisimple algebraic group
over F' has an Iwasawa decomposition.

Denote by my the Haar probability measure on K, by mp a left Haar

measure on B and by mg) the associated right Haar measure so that

(r) _ -1 _ -1
/B £(b) dm'3) (b) = /B ) dm () = /B Ap(b™Y)f(b) dims(b)
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for all f € L'(B). Further, recall that the modular character Ap satisfies for all
f€LYB)and h € B,

/ F(hb) dm'$) (b) = A p(h) / £(6) dm3) (b).
B B

Lemma 2.19. Let G be unimodular with an Iwasawa decomposition G = KB.
Let mg be a Haar measure on G. Then there is a suitable normalization of

dmg) so that for all f € LY(Q),

_ (r)
/G f(g) dma(g) = /B /K FOkB) dime (k)dm ) (b) (2.2)
_ / / FD) A~ dm (k)dmp(b).
BJK

Proof. The presented proof can be found in chapter 8.3 of [Kna02]. Write
P = KN B and note that P is a compact subgroup of G. The map (k,b) — kb~!
descends to a homeomorphism

(K x B)/diagP — G

as multiplication K x B — G is an open map. By a slight abuse of notation, we
again denote by m¢ the pull back of the Haar measure on G onto (K x B)/diag P.
Consider on K x B the measure m defined as

/ g(k,b) dm(g) = / / g(kp.bp) dmp(p)dme(k,b),  (2.3)
KxB (KxB)/diag P J P

where dmp(p) is the Haar probability measure on P and g € L'(K x B). It is
clear that m is a Haar measure on K x B.

Finally, for a function f € L'(G) we consider the function (k,b) — f(kb™1)
so that the inner integral over P in is constant. Thus

/ £(g) dma(g) = /K 7 dmc (k) 5 1),

which implies the claim. O

In the following, we discuss how to lift a representation on B onto the
whole group G. For simplicity we only consider unitary characters xy on B, i.e.
continuous group homomorphisms x : B — S'. We aim to define the induced
representation (m,, 5%,) which also will be denoted as

Ind§ (x)-
Towards defining the Hilbert space 7%, we first consider
Yy ={f G — C measurable : ||f|x||r2(x) < oo and (2.4) holds},

where we define (2.4) to be the property that for all ¢ € G and b € B, it holds
that

F(gb) = x(b)Ap(b)2 f(g). (2.4)
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We equip ¥, with the inner product

(1, f2)%, Z/Kfl(k)mde-

Then we define %, as the completion of 7, and for each g € G we aim to
define (my )4 = my,q as the extension of the regular representation on %, i.e. the
representation
(mx.gf)(@) = f(g™ ")

for f € ¥, and x € G. However, in this generality, it is not clear whether m,
is well defined on 7,. If we require the additional property that the Iwasawa
decomposition of each element g € G is unique, then we show in the next
proposition that (7, 4) is indeed a unitary operator.

Proposition 2.20. Assume G = KB has an Iwasawa decomposition and addi-
tionally assume that

K x B — G, (k,b) — kb
is a homeomorphism. Then the map
Yo — LX(K), [ flx

is an isomorphism of inner product spaces and so in particular, ¥, is complete
and Vs, = Jt,.

Moreover, for any unitary character x on B, (my, /) is a unitary represen-
tation.

Proof. It is clear that restriction to K is an isometry of Hilbert spaces and hence
it remains to show that the above map is surjective. So let fx € L?(K) and
define for k € K and b € B the function f on G by

F(kD) = X(0)Ap()* fr (k).

The function f is well defined on G as each element has a unique Iwasawa
decomposition. In order to check let g=k'Y € Gfor k' € K and b’ € B
and let b € B be another element. Then using that y and Ap are group
homomorphisms,

Flgb) = F(EVD) = x(V'D)Ap('b)? frc (')
= x(0)250)F (x()250) (k)
= X(D) A5 (D)% f(g).

Fix g € G and write for k € K, g~ 'k = ciby, for ¢, € K and b, € B. Then
for f € I,

Flg7 k) = flerbr) = x(bk) Ap(be)® f(ck)
and

- 2 _ —17.3)2
70 12 /K Flg R dk
- /K () () f(cx) 2 dk
- / A (b)) fex) 2 d,
K
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where we used in the last line that y is a unitary character. Thus to prove that
Ty,g 1S @ unitary operator, it remains to check

2 _ 2gk = [ A 2 .
1B, = [ Pk = [ soolser
To see this consider more generally a function ¢ € L'(G). As G is unimodular,
[ [ et amucvimy’ ) = [ o amen) = [ oo™ b dme(
BJK
— [ [ eto i dmscyimis) ¢
BJK
= / / o (crbrb) dm (k)dm$) (b)
BJK
- / / (cxb) A s (be) dms (k) dm) (b).
BJK

The prove from the last equality the above claim, we again evoke the uniqueness
of the Iwasawa decomposition. Set p(kb) = |f(k)|?*¥(b) for ¢ € LY(B) with
i wdmg) = 1. Then ¢ is a well defined function on G by uniqueness of the
Iwasawa decomposition and the claim follows by Fubini’s Theorem.

Finally the continuity condition for unitary representations follows by using
that C.(K) C L*(G) is dense. O

The last proposition is useful for semisimple Lie groups, as the Iwasawa
decomposition of each element is unique. However, algebraic groups over local
fields # R usually fail to have this property. In order to also treat the latter
case, we require in the remainder the additional assumption that

Aplrknp = 1. (2.5)

If the Iwasawa decomposition is unique, then K N B = {e} and hence is
satisfied. To give an example where the Iwasawa decomposition is not unique yet
is still satisfied, consider G = SL2(Q,) = K, B,, for K,, and B, as defined
in chapter Then recall for a,b € Q, with a # 0,

ou (5 )=

K,NB, = {(8 a91> : a,b € Qp with |a|, =1 and [b|, < 1},

Thus as

it follows that indeed Ap, |x,nB, = 1.

We next aim to generalize Proposition for groups that satisfy . In
order to do so, we need to restrict to unitary characters x : B — S! that satisfy
the analogous assumption

X|Kr‘|B =1. (26)

Then one defines (m,, .74,) analogously to before.
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Proposition 2.21. Let G = KB be a group with an Iwasawa decomposition so
that (2.5)) holds and consider a unitary character x : B — S! that satisfies (2.6)).
Then (my, ) is a unitary representation.

Proof. Denote by L?(K, B) the subspace of L?(K) consisting of functions that
are right-invariant under K N B. Then we claim that

S — L(K.B), [~ flx

is an isometry of inner product spaces, which again implies V,, = J%,. To see
that the map is well defined, we observe for f € ¥, and for ki, ks € K N B that

F(kky) = x (k1)) Ap(ki) 2 f(k) = x(k2) Dp(ka)? f(k) = f(kks).

Thus indeed f|x is right-invariant under K N B.
It remains to check that the map is surjective. So consider fx € L*(K, B)
and define

F(kb) = X(0) A5 (b)* fic (k).
The function f is indeed well-defined on G as if for g € G we can write g =
k1by = koby with ki, ko € K and by, by € B, then ky 'k = bob; ' € KN B. By

@) and (2.6) it follows that y(b1)Ag(b1)2 = x(b2)Ap(b2)? and this implies
as [k is right invariant under K N B and by (2.5)),

F(kiby) = x(01) Ap(b1) 7% fxe (k) = x(b2) Ap(b2) % i (ka) = f(k2ba),

showing that f is indeed well defined. The same calculation as in the proof of
Proposition shows that f is indeed an element of 7.

To show that (my, 74 ) is indeed a unitary representation we again apply the
same proof as in Proposition [2:20] The only difference is that in the last part, we
choose 1 € L' (B) to be a K N B-invariant function with fq/)dmg) =1 so that
 is again well-defined on G. Note that such a function ) can be constructed by
averaging over K N B. O

If x is the tivial character, then we write (mo, #4) = (7y, ). We denote by
fo the element of J#), whose restriction to K is = 1. By the proof of Lemma[2.21]
fo is indeed a well defined element of 773 and of the form

fo(kb) = Ap(b)*
forbe Band k € K.

Definition 2.22. The Harish-Chandra spherical function is defined as

=(g) = (mo.0fos fo) oty = /K Jolg™ k) Folk) dm (k).

As fy is left- K-invariant, it follows that the Harish-Chandra spherical function
is bi-K-invariant. Moreover, it was proved by Harish-Chandra ([HC58]|, [HC73])
that if G are the F-points of a a semisimple algebraic group over F, where F' is
a local field, then the additional assumption holds and = € L**¢(G) for all
€ >0, i.e. = is almost-square integrable. Inspired by this property, we give the
following definition.
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Definition 2.23. Let G be a unimodular group that can be written as G = KB
for K, B C G closed subgroups, where K is assumed to be compact. We call
G = KB a Harish-Chandra group if the following two properties are satisfied:

(1) AB|K(’]B =1.
(ii) = is almost square integrable.

Lemma 2.24. A finite product of Harish-Chandra groups is again a Harish-
Chandra group.

Proof. Let G1,...,G, be Harish-Chandra groups with decompositions G; =
K;B;. Set G=G1x...xG,, K=K x...xK, and B= By X...x B,. Then
K C G is compact and G = K B. Denote by =g and =g, the Harish-Chandra
function of G and G, then for g = (g1,...,9n),

n
= H EGi (gi)v
i=1
which implies the claim. O

Corollary 2.25. Let G C GL,, be a semisimple algebraic group over Q and S a
finite set of places. Then Gg = Hpes G(Qp) is a Harish-Chandra group.

Proof. This follows immediately from the last lemma and the discussion from
before. O

We next prove a calculative lemma, of later use. Let G = KB be a Harish-
Chandra group. For f € L?(G) we define the function f as

-(/ If(gb)IQdmg)(b)f

Lemma 2.26. Let G = KB be a Harish-Chandra group. If f € L?(G), then
f € and ||f||lsa = ||f|l2- Moreover for all fi, fo € L*(G) and g € G,

|(Agf1, fa)o| < (mo.gf1. f2) o

for all g € G.

Proof. We check that fe 4. Tt is clear that f is measurable. If g € G, by € B,

1

F(gbo) = (/ | f (gbob IQdmm())
- (A3<bo> /| |f<gb>|2chnﬁgf><b>)é

= Ap(bo)? f(g).
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Moreover
1712, = /K F(R) P dmgc (k)
- / / |FO)2 dm ) (b)dme (k)
K JB
- /G F@)P dme(g) = 1112 < oo,

Thus f € 4 and || ]l = ||fll2. If f1, f2 € L*(G) and g € G,

[(Agf1; f2)2| = ’/Gfl(glh)fz(h)dma(h)

/ / F1(g b Fa(kB) dm'3) (b)dimc (k)
K JB

< /K /B | Fu(g™ kb)] | £ (D) | dmS) (b)dim (k)

< |f1(g ™ kb)|* dm) (b) :
AV )

1

( / Ifz(kb)lzdmg)(b)>2 dmc (k)

B

< / Fulg™ R Jalk) dmc (k) = (o0 s fo) o,
K

where we used the Cauchy-Schwarz inequality in the fourth line. O
We prove another lemma, which will turn out to be useful.

Lemma 2.27. Let G = KB be a Harish-Chandra group. If f € L*(G) is left
K-invariant, then

F=fll fo.
Moreover, if fi, fo € L*(G) are left K -invariant, then

|(Agf1; f2)2| < E(9)lIf1ll2]lf2]l2-

Proof. Let f € L*(G) be left K-invariant. Then f € . Moreover, as
can be viewed as a subspace of L?(K) and as the constant functions are up to
scaling the only left K-invariant functions in L?(K), the first equality follows

since || follzg = 1.
By Proposition and the first equality,

[(Agf1s f2dol < (mgfi, Jodomy < 1 Fillow || Fal Lo (g fos fo)oes = E(9)I1 Izl foll2-
O
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2.4 Tempered Representations of Harish-Chandra Groups

The aim of this subchapter is to prove the following theorem, which is the
announced converse to Theorem 2111

Theorem 2.28. ([CHH8S] Theorem 2) Let G = K B be a Harish-Chandra group
and let (w, ) be a unitary representation of G. The following properties are
equivalent.

(a) 7 is almost square integrable.
(b) 7 is tempered.

(c) For all K-finite vectors v,w € S with d, = dim((w(K)v)) and d, =
dim((w(K)w)), it holds that

(g, w)| <V dudu [[0]]|w]| Z(g)

Before proceeding with the proof, we recall that the convolution of two
functions fi, fo € L'(G) is defined as

(f1* fo) (= /fl )29 2) dme(g)
~ [ filag™) 1alg) dmcto).

Thus in particular for fi, fo € L?(G) and h € G,

Ol i) = [ Filo)felg™h) dmatg) = (= f2)(0).
Moreover if f € L'(G), we set

f(@) = fla™h), and  f*=fV.

Let (m,.2¢) be a unitary representation and for v,w € 7 write ¢ = ¢ .
Then for f1, fo € L'(G) and h € G,

(Fax b % £Y)(h) = /G Tz * )(hg™) 1Y (9) dma(s)
- /G (T2 * #)(hg) (g) dma(g)
- / / Ta(h)é(s~ ) f1(g) dme (g)dma(s)
GJG

:/G/G<7rhf1(9)7rgv,f2(s)7rsw> dme(g)dme(s)
= (mpr(f1)v, m(fo)w). o

Lemma 2.29. Let (w, ) be a unitary representation of a compact group K
and let v be a K -finite vector in J€. Then there exists a function f, € C(K) so
that
fo= fv*fv:f , ﬂ(ﬁ)l}:v
and
1full3 < do = dim({x(K)v)).
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Proof. We only consider the cyclic subrepresentation ¥ = (w(K)v). Since K is
compact and ¥ is cyclic, it follows that ¥ < Ag and hence we can view v as an
element of L?(G). Thus the condition 7(f,)v = v reads as f, * v = v.

We briefly recall the basic representation theory of compact Lie groups. For
each irreducible (and hence finite dimensional) representation o of K, denote
by (e7)icr, an orthonormal basis, where I, is an index set of cardinality n, and

by 0ij(9) = /ne¢Zs .~ € L*(G) the normalized matrix coefficient for i,j € I,,.
7,e
Then for irreducible representations ¢ and p,

(Tif, Pre) :/Uij(g)pké(g) dmg(9)

= /O’ij (g)pfk(g_l) de(g)

0 if o 2 p,
N 5i,k5j,é if o = p-

We next perform two calculations. First, note

*

o7i(g) = 0ij(g71) = 04i(9)-

Second,
(0ij % one)(2) = [ 0j(9)ore(g™ x) dmrc(g)

0ij(9)V/Ma (Tg-10€k, €2) dmi (9)

Il
—_— — —

03 (Vi S (Raties en) ens mges) dmic o)

n=1

(Wmek,en)/dij(g)azn(g) dmg(g)

S

o

I
i

3
q

<7Ta:ek7 en>§i,E§j,n = Okj (x)di,b

Il
-

n

where we expressed mye = > "7 (Tzek, €n)€y. Finally, write M, = (0; : i,j €
I,) and recall that the Peter-Weyl theorem states L*(K) = @ .z Mo.

Returning to the vector v € L?(G), by the above we can write it as v =
Zaef( vy with v, € M, and denote by J, = {o € K : vs # 0}. Then J, is a
finite collection of representations as v is K-finite. Now we are ready to construct
the function f,. Namely set

Neo
o= 2.2 70
o€y =1
Then by the above calculations,
Ny

fo=2.2.95=2. 2.7 = f»

o€d, j=1 oced, j=1
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and

Ng No

foxfo=Y_3 55 «om

oed, j=1k=1
No
=2 > 7= fn
oel, j=1
Furthermore, if we write v =" ., > af,0ke,
v »e—

Ne Ngo

Forv=>"3">" a7, (0); * ore)

o€y j=1k,t=1

Ny
=D D ak(ourow)

o€, k=1
Ne
=% ¥ o=
oed, k=1
Finally to check the last property,
1foll3 =D no < dy = dim((Ax (K)v)),
gedy,

where we used that (Mg (K)v) contains at least one copy of ¢ as v, # 0 for
o€ Jy,. O

In the remainder, we fix for each K-finite v € 7, a function f, with the
properties of Lemma [2.29

Lemma 2.30. Let G = KB be a Harish-Chandra group and let (m,.5) be a
unitary representation of G. For v,w € € K-finite vectors denote by f, and
fw functions as in Lemma . Let g, h € L?(G) with the property that

9= [foxg=Ax(f)9, and  h= fu*h=Ag(fu)g,

where the convolution is over K. Then for any x € G,

|(Aa(x)g, h)2| < Vdoduwllgll2 [1f]]2 E(2).

Proof. We consider the left- K-invariant functions g and hon G defined for z € G
by _
g(z) = sup [g(kz)|  and  h(z) = sup |h(kz)].
kEK keK

Then A (k) = § and Ag(k)h = h for k € K and for z € G,

[(Ac(x)g, h)a| =

/ g(z " y)h(y) dmea(y)
G

< / G y)h(y) dme(y) = Pe(@)F, B
G
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Using g = f, * g, it follows by Cauchy-Schwarz for k' € K,

lg(K'z)| = |(Fo * 9)(K'z)| = /K T (B)g (k= k) dme (k)

< hillze ( /| |g(k:‘1k’x)|2dm;<(k))2

<V ([ latwa) P amc(o))

Hence in particular

) < Vi ([ a0 dmic)

Finally, it follows that

Gl = ( /G |§<sv>|2dma<oc>)é

<V ([ [tk dmicyimets))

i (/K (/G g(km)|2dmg(aﬂ)> de(k)>;
— (/K (/G g(x)|2dmg($)) dw(k))é = V/d,||g]l2.

Combining all this with Lemma the claim follows:

[(Aa(@)g, hz| < [(Aa(2)g, )l

< Z@)|[gll2 [[ll2 < Vdudwllgll: ||l]2 E(=).

1
2

1
2

2

O

Proof. (of Theorem (a) implies (b) holds for general groups G by Theo-
rem [2.11] ([CHHSS] Theorem 1). To see (c) implies (a) we note that if we restrict
7 to K, we can decompose 57 as a Hilbert space direct sum of a countable
number of irreducible representations of K. As each of those is finite-dimensional,
it follows that the set of K-finite vectors is dense in . Since by assumption
the Harish-Chandra spherical function is almost square integrable, it follows that
a dense set of vectors has almost square integrable matrix coefficients and hence
m is almost square integrable.

So it remains to prove (b) implies (¢). Throughout this proof, convolution
J1 = f2 is conducted over K. Let v,w € # be K-finite vectors and set ¢ = o7 ..
Then by properties of f, and f,, and by equation ,

¢(x) = (mom(fo)v, m(fu)w) = (fox & [) (@) = (fox b fu)(@).  (2.8)

As m < Mg, the matrix coefficient ¢ can be approximated uniformly on compact
sets by sums Y ., 1; of matrix coefficients ; = (P;Gh,; for g;, h; € L*(G) with
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the additional condition
n
> gillz [Rill2 < (o]l |wl].
i=1

More precisely, assume that such an approximation holds for a bi- K-invariant set
Q C G and € > 0. As f, and f,, are continuous functions on the compact group
K and Ag(f,) and Ak (f,) are projections, it follows that we can approximate
¢ by the sums of matrix coefficients Y " | f, * ; * f,, where again by using

equation ,
(fo x i * fu)(@) = e (@) A (f2)gis Ak (Fu) i)
and

n
S A& (F)gill Ak (F )bl | < [Jo]] [fwl]- (2.9)
i=1
This follows as for instance using (2.8) and bi- K-invariance of @,

(¢ = fox ) (@) = |(fo x & = fox¥)(9)l
= |/fu(k)(¢¢)(klg) dmi (k)

< / 1o ()] (6 — ) (k2 g)| dmc (k) < <,

for g € Q.

Finally, using the properties of f,, notice that f, * A\rc (f)gi = A (fo* fo)gi =
Ak (f,)gi- Thus we have proved that we can approximate ¢ arbitrarily close
at every point by sums of functions satisfying the assumption of Lemma |2.30)
and which also satisfy . Thus we conclude using Lemma that ¢ can be

approximated at every point arbitrarily close by functions < v/d,d,, ||v]|||w]|| E,
which implies the claim. O

Definition 2.31. A representation (m, 5) of G is called m-tempered for m € N
if (@™, #9™) is tempered.

Definition 2.32. A representation (m, ) of G is called m-almost square
integrable for m € N if for a dense set of vectors v € V' we have that the diagonal
matrix coefficient ¢7 is contained in L?™*¢ for all & > 0.

We also define integrability exponents, which will we use later.

Definition 2.33. Let (7,.%) be a unitary representation of G. For ¢ € [2, o],
we say that (m, 5#) is g-integrable if there exists a dense set of vectors V C 3
such for all v,w € V the matrix coefficients ¢7 ,, satisfy ¢7 , € LY(G). We
define the almost integrability exponent ¢(7) € [2, x] as

g(m) = inf{q € [2,00] : 7 is ¢g-integrable}.
In analogy to Theorem and Theorem the following corollaries hold.

Corollary 2.34. A unitary representation with m-almost square integrable
matriz coefficients is m-tempered.
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Proof. As the generating set of the free tensors v; ® ... ® v, in ™ for
Vi, ...,Vm € S is equal to H#9™ it suffices by the same argument as in the
proof of Corollary to show that the matrix coefficients

m
®7n s
Po1®...Qum = H Pui

are in L27¢(G) for all ¢ > 0. This follows by applying the Holder inequality
m-times. Namely we apply the Holder inequality first with (m, =) so that

m
QXm
T o (22 = / [T Iem 12+ dme
G

m
= / il | i
G i=2

2+¢ de

< %, P M - i
=
By assumption || |¢] [T ]|, < oo as
sl = [ len, e dmatg) < o

It remains to show that

m

11 ¥z,

=2

2+e 2mnl+8 de < 00

/HI%L

for e’ = ™=, We next apply the Holder inequality to (m —1, 2= 2) to conclude

/ [T ler.1?
=2

As before || |o], _1 < 0. We continue this process by applying the
Holder inequality with (m—2, 2=2) (m—3, 2=%) .. (3,3),(2,2). After having
applied the Holder inequality in total m times, the claim follows. We conclude
that gpgi;'f“@% is indeed almost square integrable. In particular (@™ #®™)

is almost square integrable and hence tempered by Theorem O

" dmg < |||, PR |l

m—1
m—2

2_m o e

Corollary 2.35. Let G = KB be a Harish-Chandra group and (7, 7€) a unitary
representation of G. The following properties are equivalent.

(a)  is m-almost square integrable.
b) m is m-tempered.
( p

(¢) For all K-finite vectors v,w € J with d, = dim((w(K)v)) and d,, =
dim({(m(K)w)) we have that

—_ 1
[{mgv, w)| < Vdudw [|0]|[[w]| Z(g) ™
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Proof. (a) implies (b) was just shown for any group in Corollary (c) implies
(a) since the set of K-finite vectors is dense in % as was shown in the proof of
Theorem It remains to check (b) implies (¢). So let v, w € # be K-finite
vectors. Then v®™ := v ® ... ®v and W™ = w @ ... ® w are also K-finite so
that d,em = d}J and d,em = djy. Thus it follows by Theorem [2.28] that

[(mgv, w)[™ = (T ™™, wE™)|
< Vdprdg (o] |™ [[wl][™ Z(g).
By taking the m-th square root, (c) is implied. O

2.5 Gelfand Pairs and Spherical Representations

Let G be a topological group and K C G be a compact subgroup. Then the
Hecke algebra H(G, K) is defined as the set of bi-K-invariant functions of
compact support. We consider the L!'-norm on H(G, K). The Hecke algebra
forms a Banach algebra, when equipped with convolution. In this subchapter,
we expose content from chapter 4 of [Lan75].

Definition 2.36. Let G be a locally compact metric group and K C G be a
compact subgroup. The tuple (G, K) is called a Gelfand pair if the Hecke algebra
H(G, K) is commutative.

We first discuss some examples of Gelfand pairs.

Lemma 2.37. Let G be a unimodular group and K C G a compact subgroup.
Assume that for every g € G there exists ki, ko € K so that

9" = kigks.
Then (G, K) is Gelfand pair.

Proof. Let f1, fo € H(G,K). Then clearly fi(¢g~!) = fi(g) for all g € G and
t=1,2 and as f1 * fo € H(G, K) the same holds for f; * fo. We calculate for
h € @G,

(s 20 = [ Filbg™)Pa(o) dm(o)
B /Gfl(gh’l)fz(g’l) dme(g)
_ /G F1(9) f2((gh) ™) dma (g)

= [ h@ntte ) dmola)
= (fax f)(W71) = (fa x f1)(R),
where we substituted g by gh in the third line. O

If G are the F-points of a linear algebraic group over the local field F' and
K is a maximal compact subgroup of GG, then the assumption of Lemma [2.37
is satisfied. Thus (G, K) is a Gelfand pair. More generally, consider G a linear
algebraic group over Q and S a finite set of places of Q. For almost all primes
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p, the subgroup K, = G(Z,) is a maximal compact subgroup of G(Q,), yet we
can always find a maximal compact subgroup that contains G(Z,). Thus again,
by using the Cartan decomposition it follows that (Gg, Kg) is a Gelfand pair,

where Gg = Hpes G(Qp) and Kg = Hpes K,.
The representation theory of Gelfand pairs will later turn out to be useful.
The next result will be of particular importance.

Theorem 2.38. Let (G, K) be a Gelfand pair and let (7, 7) be an irreducible
unitary representation of G. Then the subspace of K-invariant vectors i
satisfies

dim 2% < 1.

The main idea of the proof of Theorem is to associate to (m, ) an
irreducible algebra representation of the Hecke algebra. We review the notion of
an algebra representation on a Hilbert space. If <7 is a Banach algebra and 7
is a Hilbert space, then a ring homomorphism

7w — B(AH)
is called a representation of & if for all v € 7 the map
o — I, a+— v
is continuous. In this setting, Schur’s Lemma holds.

Proposition 2.39. (Schur’s Lemma) Let (m, 7€) be an irreducible representation
of @. Let B € B(J) be a bounded m-equivariant operator, i.e.

Bonm,=m,0B
foralla € of. Then B = X-1dy for some X € C.

Proof. The proof is analogous to Schur’s Lemma for representations of topological
groups on Hilbert spaces, for which we refer to [EW] Theorem 1.25. O

In general, if (7, 5) is a unitary representation of G, then the map
7 : LYG) = B(sF), fr—7(f)

defines an algebra representation of L'(G). If f € L*(G) is bi-K-invariant and
v € Hx then 7(f)v € Hy as for k € K,

mar(fo= [ f@mgmats) = [ £0:9) momel) = w7
Thus we get a well-defined representation of the Hecke algebra
Tk : H(G, K) — B(Hk),  fr— ().

Proposition 2.40. In the above setting, assume that # is non-zero and that

H = [1(C) ).

Then 5 is irreducible as an algebra representation of H(G, K) if and only if
F is irreducible.
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Proof. This can be found in chapter 4.2. of [Lan75]. O
We now are in a suitable position to prove Theorem [2.38

Proof. (of Theorem [2.38) By Proposition [2.40} as (m, #) is an irreducible unitary
representation of G, the algebra representation (g ,.#%) of the Hecke algebra
H(G, K) is also irreducible. Using Schur’s Lemma, as H(G, K) is a commutative
algebra, every irreducible representation of H(G, K) is at most one dimensional
and hence 7% is at most one dimensional. O

We next discuss spherical functions and spherical representations.

Proposition 2.41. Let (G, K) be a Gelfand pair. Forn € H(G, K) the following
properties are equivalent:

1. The map

Yo HGK)—C,  frr /G F@yn(a™) dmel)

is an algebra homomorphism.

2. For all g1,g92 € G we have that
n(g1)n(g2) Z/Kn(glkgz)de(k).

3. For all f € H(G, K) the following property holds:
frn=xy() = (x*n)e).

Proof. The proof is straightforward and can be found in chapter 4.3 of [Lan75].
O

Definition 2.42. Let (G, K) be a Gelfand pair. A function n € H(G, K) with
n(e) = 1 and for which any of the equivalent properties of Proposition holds
is called spherical.

Proposition 2.43. Let (G,K) be a Gelfand pair and (7, ) be a unitary
representation of G. Assume that there exists a unit vector v € ¢k that generates
(m, ). Then dim 7 =1 if and only if the diagonal matriz coefficient ¢T is a
spherical function.

Proof. See [Lan75] chapter 4.4. O
Proposition [2.43] motivates the final definition in this chapter.

Definition 2.44. Let (G, K) be a Gelfand pair. An irreducible unitary repre-
sentation (7, 7¢) of G is called spherical if there exists a non-zero K-invariant
vector.

Corollary 2.45. Let (G,K) be a Gelfand pair. For each positive definite
spherical function n € H(G, K), there exists a uniquely characterized spherical
representation (1,, 7)) and a K-invariant generating vector v, € Jy so that

Y=o
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3 Spectral Gap and Tempered Representations

In the last chapter, we observed that the effective vanishing of matrix coeflicients
is related to temperdness. In this chapter, we define spectral gap of a unitary
representation and discuss the equivalence of spectral gap and the effective
vanishing of matrix coeflicients.

To introduce some further important terms, which will be defined and
discussed in this chapter in greater detail, a group G has property (7') if all
of its unitary representations have a uniform spectral gap. In similar vein, an
algebraic group G over Q is said to have property (7) if for a fixed prime p the
representations 7, ; of the groups G(Q,) have a spectral gap that is uniform
among ¢ and all possible Qp-structures of G.

3.1 Spectral Gap, Property (T) and Property (7)

In this subchapter we review some notions and results contained in [EW],
[BATHVO0S] or [LZ]. We start with some definitions.

Definition 3.1. A unitary representation (w,.5¢) is said to have a spectral
gap if the subrepresentation (7|( .+, (#&)*) does not have almost invariant
unit vectors, i.e. there is some compact subset K C G and € > 0 so that for all
unit vectors v € (%)L there is some g € K so that

Imgo — v > e.

Definition 3.2. Let (;, 5 );cs be a collection of unitary representations of G,
K C G compact and € > 0. We say that the collection (7;, 7);c; has (K, ¢) as
a uniform spectral gap if for all i € I and all unit vectors v € (J#,g)* there
is g € K so that

(m:)g0 — vll = &.

In the following we give some equivalent characterizations.

Proposition 3.3. Let (7, 5) be a unitary representation of G. The following
properties are equivalent:

(i) (m, ) has a spectral gap.

(ii) There exists a non-negative function f € L'(G) with [ fdmeg =1 so that
||7T(f)|3fé”op <1

In fact, if (7, ) has (K,¢) as a spectral gap, then for all compact B C G with
K C B° C B thereis a 6 = 6(K,e,B) > 0 depending on (K, e, B) so that the

function fp = mng) satisfies

Im(fB)l sl <1—0(K,e,B) < 1.

Proof. This is Proposition 4.23 of [EW]. The direction (i) implies (ii) is left to
the reference. We prove (ii) implies (i). In order to simplify our notation, assume



3. Spectral Gap and Tempered Representations 62

without loss of generality that (m,.#°) has no non-zero invariant vectors. So let
€ > 0 so that

7(f)llop <1 —4e < 1.
Choose K compact so that

f(g)dm(g) <e.
G\K

Then we have for all unit vectors v € 7,

[|7(flx)vl| = H/Kf(g)ﬂgvdmc(g)

= H/Gf(g)wgv dmg(g) — f(g)mgvdme(g)

G\K

<|lr(f)vll+e<1—3e.
Hence in particular
||7T(f|K)Hop <1-3e.

We claim that 7 has (K, ¢) as a spectral gap, i.e. that for all unit vectors v € S
there is g € K so that ||[mgv — v|| > €. Assume that this is not the case for the
unit vector v € . Then for all g € K we have ||m,v — v|| < e. Thus

7 (flx)o — ol = H /K Fg)myvdme(g) — v

/K F@)(mgo —v)dma(e) — | flg)vdmel()

G\K

< sup ||mgv — || +€ < 2
geK

Moreover we note that for the unit vector v,

1—=2e <[] = [[7(flx)v — vl| < |7 (flx)vl] < (|7 (flr)|lop <1 — 3,
a contradiction. O

Proposition 3.4. Let (7;, 5)icr be a collection of unitary representations of
G and let K C G be a compact subset and € > 0. The following properties are
equivalent.

(i) The collection (m;, 7)icr has (K,€) as a uniform spectral gap.

(it) The collection (| o)+, (H.a) " )ier is isolated from the trivial repre-
sentation 1g in the Fell topology.

(iii) There is some non-negative function f € L*(G) with [ fdme = 1 and
e >0 so that for alli € I,

||7Ti(f)|yfcl||op <l-—e
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(iv) If a unitary representation (m;, 7€) with i € I has (K, €)-almost invariant
vectors, then it has non-zero invariant unit vectors.

Proof. For the equivalence of (i) and (iii) we again refer to Proposition 4.23 of
[EW]. The argument given in the proof of Lemma [3.3| also suffices to show (iii)
implies (i).

Assume (i). Let (7, 5) = (m;,5;) for i € I be a unitary representation
with (K, e)-invariant unit vectors. So there is a unit vector v € J so that
[[Tgv —v|| < e for all g € K. We decompose v = vg + v for vg € H#g and
vy € (H)t. Assume for a contradiction that v is zero. Then v € (#5)+
contradicts the definition of uniform spectral gap so it follows that vg is a
non-zero element of 5. Thus (7, 7#) has invariant vectors. So we have proved
(iv).

Conversely assume (iv). We denote by (7, 5) any unitary representation
from the collection (m;, ) for i € I. We want to show that for all unit vectors
v € (M)t there is some g € K so that ||mgv — v|| > e. So assume for a
contradiction that there is a unit vector v € ()" so that ||m,v —v|| < € for all
g € K. Then the unitary representation (7|, )+, (#)") has a (K, ¢)-invariant
unit vector and so by assumption it has a non-zero invariant unit vector. However,
this contradicts the definition of #. This proves (i).

The first subbasis in Definition clearly shows that (ii) and (iii) are
equivalent. We moreover give an additional argument that (iii) implies (i).
Without loss of generality, we consider the case where the representations (7, .7%;)
do not have invariant vectors. Assume for a contradiction that the collection
does not have a uniform spectral gap. Write G = J,,~, K, for K,, C G compact
subsets. Then for each tuple (K, %) there is a unitary representation (m,, 5;,)
so that m, has (K,, %)—almost invariant unit vectors. Consider the representation

¥

n>1

Then clearly for any strictly increasing sequence (ny) in N we have that @, %,
has almost invariant unit vectors or equivalently 1¢ < @y, 74, . So it follows
by Proposition that 7, — 1 in the Fell topology. But then 1¢ is contained
in the closure of (m;, 5);cr, contradicting the assumption. O

For semisimple algebraic groups one can moreover give the following charac-
terization of spectral gap in terms of effective vanishing of matrix coefficients.

Theorem 3.5. Let G be the F-points of an almost simple algebraic group over
a local field F and G = KB an Iwasawa decomposition. Assume that G is
non-compact and let (m;, 7 );cr be a collection of unitary representations of G.
The following properties are equivalent.

(i) The collection (m;, 74 )icr has a uniform spectral gap.

(i) There exists a sufficiently large integer m so that m; is m-tempered for all
1el.

(i4i) There exists a sufficiently large integer m so that for all (7, 7) = (m;, )
with © € I the following holds: For all K-finite vectors v,w € € with
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d, = dim((n(K)v)) and d,, = dim({(m(K)w)) we have that

— L
[(mgv, w)| <V dudy [[0]| [[w][ Z(g) ™,

where the constant is absolute and in particular does not depend on v, w
andi € I.

(iv) There exists a sufficiently large integer m so that for all (7, 5) = (m;, H;)
with i € I the following holds: For all K-invariant vectors v,w € €,
1

(g, w)| < |Jo]| [[w]| Z(g)™,

where the constant is absolute and in particular does not depend on v, w
and i € 1.

Proof. For (i) implies (ii) we refer to [Nev9g| if G has property (T). In the case
G = SLy(Q,) we give a proof in chapter For the general case we refer
to [Moo87]. (ii) implies (iii) is Corollary As (iii) implies (iv) is clear, it
remains to show (iv) implies (i). Assume without loss of generality that G is
non-compact and let C be the explicit constant from the assumption (iv), i.e.
so that

1

[(mgv, w)| < Cr[[o]| [[w]| Z(g)

for all i € I and K-invariant v,w € . As G is non-compact and as = € L**¢(G)
for € > 0, there is for some 0 < § < 1 a compact bi-K-invariant subset C C G
with mg(C) =1 so that

/C 2% dmoly) < -

Set f = xc, then f >0, [ fdmg =1 and f is bi-K-invariant, i.e. f(kgk') =
flg) for all g € G and k, k' € K. If v € S, then we denote by

UK:/ kade(k)
keK

and note that |[vk|| < [, [[mev]] dm (k) = |[v]] as 7 is unitary.
So we have for v, w € 2,

(o, w) = /G £(9) (g0, w) dme(g)
= [ Tlkaghs () dma(g)
G
:/G/K/Kf(klgkgl)@rgv,w)dmg(g)de(kl)de(lcg)
- / / / F (9N v ) dimes(g)dme (k) (k)
GJK JK
= /Gf(g) (Tgvr, wi) dma(g)-
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Using the assumption of (iv) and the properties of f we conclude

(o, w)] = /G £(9) {mqvic, wic) dma(g)

< /G F@) [(myok, wic)] dma(g)

<o (/ =% de) sl e
C

< o[ [Jwl]-

In particular
7 (Fllop <0 <1

Thus by Lemma [3.4] it follows that the collection (7;,.%%) has a uniform spectral
gap. O

On the other hand, for real Lie groups we get the following additional
equivalent property.

Corollary 3.6. Let G be a semisimple non-compact Lie group and (m;, 76)icr a
collection of unitary representation of G. The following properties are equivalent.

(i) The collection (m;, 74 )icr has a uniform spectral gap.

(i) There exists a sufficiently large integer m so that w; is m-tempered for all
1el.

(iii) There exists a sufficiently large integer m so that for all (m, ) = (m;, H6)
with i € I the following holds: For all K-finite vectors v,w € & with
d, = dim({(7(K)v)) and d, = dim({7(K)w)) we have that

—_ L
[(mgv, w)| <V dudy [[0]| [[w][ Z(g) ™.

(v) There exists a sufficiently large integer m so that for all (7, ) = (m;, ;)
with © € I the following holds: For d > dlmT(K) and all smooth vectors

v,w € J we have

1

[(mgv, )| < Sa(v)Sa(w)ZE(g)™ .

Proof. We already know that (i), (i) and (iii) are equivalent. (iii) implies (iv) is
proven in [EMVQ9] in chapter 6.3.2. (iv) implies (ii) as the set of smooth vectors
is dense. 0

Definition 3.7. A locally compact Hausdorfl group G has property (T) if
every unitary representation with almost invariant unit vectors has non-zero
invariant vectors.

Example 3.8. Every compact group has property (T). Moreover, let G C GL,
be a linear algebraic group over a local field F' that is connected, almost simple
over F' and has F-rank > 2. Then G = G(F') has property (T). For a proof of
these examples see [BAIHV0S].
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We next discuss some equivalent characterizations of property (T).
Theorem 3.9. The following properties are equivalent.
(i) G has property (T).
(i) If a unitary representation (w, 7€) satisfies 1g <, then 1g < 7.

(iii) The collection of all unitary representations of G has a uniform spectral
gap.

Assume that G has property (T) with uniform spectral gap (K,e) for K C G
compact and € > 0. Then we furthermore have the following equivalent properties.

(iv) If a unitary representation has (K, )-almost invariant unit vectors, then
it has mon-zero invariant vectors, for some K C G compact and € > 0.

(v) The trivial representation of G is isolated from % (G) in the Fell topology
on % (G), i.e. 1g is not contained in the closure of % (G) with respect to
the Fell topology.

Proof. (i) and (ii) are equivalent by the last chapter. Moreover, (iii), (iv) and (v)
are equivalent by Proposition We note that (iv) clearly implies (i). We show
that (i) implies (iii). Assume for a contradiction that the collection of all unitary
representations does not have a uniform spectral gap. As G is o-compact, it
follows that we can write G = UZOZI K, for K,, C G compact subsets. Since we
do not have a uniform spectral gap, for each n there is a unitary representation
(7n, H;,) without invariant vectors but with (K, +)-invariant vectors. Then
consider the representation
& .,

n>1

which has almost invariant vectors but no invariant vectors. This contradicts
the assumption that G has property (T). This implies the theorem

We moreover give the following argument for (v) implies (i). So assume
that (v) is satisfied and for a contradiction that G does not have property (T).
Then there is a unitary representation 7 of G so that 1 < 7 but 1g £ 7. So
7w € U(G). By Lemma it follows that 1¢ € {7}, which is contained in the
closure of %, (G). But this contradicts the assumption that 1g is isolated from
the closure of % (G). So G satisfies property (T). O

Corollary 3.10. Let G be the F-points of an almost simple algebraic group over
a local field F'. Then the following properties are equivalent:

(i) The group G has property (T).

(ii) There exists a sufficiently large integer m so that all unitary representations
without invariant vectors are m-tempered.

(i4i) There exists a sufficiently large integer m so that for all unitary repre-
sentations (w, ) without invariant vectors of G we have the following
property: For all K-finite vectors v,w € € with d, = dim((w(K)v)) and
dy = dim((r(K)w)) we have that

[(mgv, w)| <V dud [[0]][w]|Z(g) ™.
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Proof. This is a combination of Theorem [3.9] and Theorem O

We return to considering G C GL,, a simply connected almost simple
algebraic group over Q.

Definition 3.11. The algebraic group G is said to have property (7) if for
each place p for which G is isotropic over @, there exists a constant 7g ;, so
that the following holds: For all algebraic groups G’ that are isomorphic to G
over Q, the representations m, ¢ for £ > 0 of G'(Q,) satisfy

q(Tp.e) < TG p-

Combining work of of Selberg [Sel65], Kazhdan [Kaz67|, Burger-Sarnak
[BS91] and Clozel [Clo03], it follows that every such algebraic group over Q has
property (7). The proof of the latter result is beyond the scope of this thesis,
however we aim to explore techniques developed by [GGN] to give a new proof
of property (7) for Q-forms of SLs. In fact, we will prove the next theorem.

Theorem 3.12. Let G = B! be the unit norm elements of a quaternion algebra
B over Q. Then
q(ﬂ'p’g) < 24.

Moreover, if B is a division algebra, then

q(ﬂp’g) < 4.

Proof. See chapter [5.5 O

As a final remark, we state the well-known and still open Ramanujan-
Petersson conjecture for Q-forms of SLs.

Conjecture 3.13. (Ramanujan-Petersson conjecture for Q-forms of SLy) Let
G be a Q-form of SLy. Then for all p and £ the representations mp ¢ are tempered.

3.2 Complementary Series Representation of SLy(Q,)

Let p be any place Q and write G = SL2(Q,,). The classification of irreducible
unitary representations of SLa(Q,), as conducted for instance in [GGPS], yields
that the non-tempered and non-trivial irreducible unitary representations can
be parametrized by s € (0,1). More precisely for each s € (0,1) we denote by
(vs,-7%) the complementary series representation with parameter s. Then,

o — —

SL2(Qp) = {1} U {tempered o € SLy(Q,)} U{~y* : s € (0,1)}. (3.1)

Before giving a precise definition of the complementary series representation,
we discuss some central properties and state the main results of this chapter. For
any unitary representation (m, 7) of SL2(Q)), we define the complementary
series exponent as

c(m) =sup{{0} U{s € (0,1) : v* <7}}.
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Theorem 3.14. For a unitary representation (mw, ) of SL2(Qp) without almost

mvariant vectors,
(m) = —
)= ———.
e 1—c(nm)

Moreover, (w, ) has a spectral gap if and only if q(7) < oo or equivalently
c(m) < 1.

Write K = SO2(R) if p = co and K = SLy(Z,,) for a prime p. Moreover we
denote by

t n
Aoo:{at:(% eot):teR} and Ap:{anz(po pon):nEZ}

for p a prime number. Let A > 0. If p = oo, then we set Ay = {a; : 1 < et < h}
and if p is a prime Ay = {a, : 1 < p"™ < h}. For any place,

B, = KALK.

We will prove that mg(By) <, h?.

Returning to the complementary series, we will show that for any s € (0, 1)
the complementary series (s, 5¢;) is a (non-unitarily) induced representation and
hence spherical. Denote by F; the element of J#, which arises as the extension
of the function =1 on K and write by ¢s the matrix coefficient gp}

Proposition 3.15. Let p be a place of Q and s € (0,1). Then the following
properties hold:

(i) The function ¢, is bi-K -invariant, satisfies for g € G

?s(9) =p.s llg] |S_1

and is in LY(G) if and only if ¢ > % More precisely, there ezists a
continuous monotonously decreasing function cp(s) on (0,1] with c,(s) — oo
as s — 0 so that

()9l <p bs(9) <p cp(8)*[lglI° (32)
In fact,
() 571 if p = o0,
cp(s) =
P (1—p=5)~Y ifp is prime.

(i1) For s € (0,1),
HFsHifs =p cp(s),

for cp(s) the function from (i).
(iii) For h > 0 denote by fp, = —2i—. Then

ma, (Bn)
Hrys(th,)”op =p,s hSil-
The principal aim of this chapter is to establish Theorem [3.14) and Propo-

sition Assuming these two results, we discuss an application for later
use.



3. Spectral Gap and Tempered Representations 69

Theorem 3.16. Let (m,5¢) be a unitary representation of G, = SL2(Qp)
without almost invariant vectors. Assume there is p > 0 so that for any bi-K,-
invariant set B C SLa(Q,),

17 (f5)llop <5 mp(B) =7+,
where fp = % and § > 0. Then q(m) < max{%,2}.

Proof. Let v < 7 for some s € (0,1). Then the assumption of the theorem
implies for § > 0,

17 (fB)llop < l|m(f5)llop <5 mp(B)~7*°.

Using B = By, for h > 0 and mg,(By) =< h* we conclude by using Proposi-

tion 315 (iii),

hsfl <5 h72p+25

for all A~ > 0 and hence in particular 1 — s — 2p + 2§ > 0 or equivalently
s <1—2p+26 for all 6 > 0. Thus it follows ¢(7) < max{1 —2p,0} and by using

Theorem |3.14]
(m) 2 < ma; ! 2
)= ——— <maxq — .
BT = =

O

From the dynamical viewpoint, if (7,.#) is a Koopman representation (see
the first paragraphs of chapter [4| for a discussion of Koopman representations),
the assumption of Theorem [3.16] can be viewed as an effective mean ergodic
theorem. Therefore, Theorem says that an effective mean ergodic theorem
implies a spectral gap. In our proof of property (7) for Q-forms of SLy we will
use the following subtly more general version of Theorem In fact, we will
prove in chapter the assumption of Theorem with p = i (and p = % in
the case of division algebras) uniformly for all the dynamical systems in question.

Theorem 3.17. Let (m,5¢) be a unitary representation of G, = SL2(Q,)
without almost invariant vectors. Assume there is p > 0 so that for any v* <7
and h > 0,

[7* (fB)lop <6, mp(Bh>_p+6-

Then q(m) < max{%, 2}.
Proof. The proof is identical to the one of Theorem [3.16 O

For the proof of Theorem [3.14] and Proposition we proceed as follows.
First we deduce Theorem by assuming Proposition Then we give a
construction of the complementary series and prove Proposition first in the
case SLy(R) and then in the case SLy(Q,) for p a prime. Thus in the following
we assume Proposition [3.15] and the properties of the Harish-Chandra spherical
function, which will be proved later on in this chapter.

Lemma 3.18. Let (m, ) be unitary representation of G = SL2(Qp) with
q(m) < o0o. Then m ®~* is tempered for s € (0, ﬁ) N (0,1). Moreover, for all
K-finite vectors v,w € 2,

=(

9)
(g, w)| <p Vduduy 0] 0] 7557

gl
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where the constant does not depend on s. Hence in particular for e > 0,

2
-+
[(mgv, W) Kpe v/ dudu [[0]] [[w]|]g]] =7

Proof. Choose ¢ > 2 so that ¢() < ¢ < 2. Then there is a dense set of vectors
W C 2 with the property that all matrix coefficients of elements in W are
in LY(G). Moreover, the subspace W5 = (v, Fs : g € G) C J is dense by
irreducibility of ZS and as G is unimodular, all the matrix coefficients of elements

in Wy are in LQ(G) as 135 < 132. Moreover the subspace W ® W is dense
in 2 x . ’

Let ¢ be the matrix coefficient of v ® Fy and w ® Fs for v,w € W. By
Theorem [2.11] it suffices to show that ¢ is almost square integrable for all such
vectors. Note ¢(g) = @7, (9)6s(g). Thus by using LP(G) - LP*(G) C Ln+73 (G)
for p1,p2 > 0, it follows that ¢ € LP(G) for

2
. ql_% _ 2q _9
Q+1,22 Q(l_%)‘i'Q

q

which implies the claim.
With the notation as above, it follows by Theorem [2.28] for K-finite vectors
v,w € J that

$(9) < Vdudy |[vll [Jw]] [IFs1, Z(9)-
Then using Proposition (i) and (ii),

E(9)
(g0, w)| < v/ dydu |[V]]]|w]] || Fs]1 3
¢s(9)
S E(9)
<<P dﬂdeUHHwH HgHs_l'
for all such s, which also implies the last claim since Z(g) <. ||g||~1T=. O

Lemma 3.19. For s e (0,1),

In particular, (%, 54) is non-tempered for any s € (0,1).

Proof. This follows quickly from Proposition [3.15 and Lemma [3.18] As +* is
irreducible, the subspace Wy = <’y§Fs : g € G) is dense and by Proposition
matrix coefficients of all the vectors in Wy are in L%SJFE(G) for all € > 0 yet
not in L. This shows a(v*) < %

Towards the other inequality, we first show that g(v*) > 2, which also implies
that v° is non-tempered. For a contradiction assume that g(v*) = 2. Then by
Lemma for all t € (0,1), the unitary representation v* ® ! is tempered.
This leads to a contradiction by choosing t € (1 —s,1) so that s+¢ > 1. Namely
with such a choice of ¢ it follows by considering the matrix ¢ coefficient of Fy ® Fy,

gl1*T 7% <post 05,0(9)0t0(9) = D(9) <p,sit Eg),
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where we also used Theorem and Lemma As s+t —2 > —1, this
contradicts Z(g) < ||g|| T, Thus q(v*) > 2.
2

The same argument also shows that ¢(y*) > 1=;. In fact, assume for a

in particular there is ¢ > 2 so that ¢(7®) <
2
q(7®) )
established above 2 < ¢(7*) < co. Using Lemma we conclude that v¢ ® v*
is tempered which is again a contradiction by considering the matrix coefficient
¢ of Fs ® F2 and noting
q

2
1-s?

q < 12 or equivalently 0 < (1 —s) < % <

contradiction that g(v%) <

< 1, where we used as already

24 -
llgl17+ 72 <pus,q $(9) <psg E(9).
O

We turn to Theorem [3.14] Towards the proof, we define decay exponents of
a unitary representations (7, 7). We say that (7, ) has k-decay for k > 0 if
for all K-finite vectors v € %”GJ-, it holds that

5 (9)] = [(mgv, )| < do [[0]*[1g]| "

for all g € G, where the constant is allowed to depend on 7 and k. Then we
define the decay exponent of (7, ) as

k(m) =sup{k € [0,1] : (7, H) has r-decay}.

Theorem 3.20. For any unitary representation (mw, ) of SL2(Q,) without
almost invariant vectors,

The proof of the theorem splits into three part. First we show ¢(7) = ek

then ¢(7) = —2s > —2— and finally ¢(7) =

2 2
" 2 Toe(m wm S T

Proof. (of q(7) = %) Assume initially ¢(m) = oo. The condition x(7) > 0
clearly implies ¢(7) < 0o — a contradiction. On the other hand, if k(7) = 0 and
q(m) < oo, then since (m,.#°) does not have almost invariant vectors, (7,.7) is
m-almost square integrable for large enough m and hence Corollary implies
K(m) > 0.

In the remainder of the proof we assume ¢(mw) < co. Then Lemma
shows that x(m) > %ﬂ). For the other inequality assume for a contradiction

that ﬁ < g(m). Then choose k > 0 so that ﬁ < k < k(7). Then the matrix

coefficients of all the K-finite vectors are % + ¢ integrable for all € > 0 as in the
case G = SLy(R),

JUll)# e matg) < [ etremretan < oc.
0

A similar calculation holds in the case G = SL2(Q),) for p a prime number. Thus
it follows that ¢g(7) < %, which contradicts our assumption on k. O
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Before embarking upon the proof of ¢(w) = % > ﬁ(ﬂ), we start with a
preliminary observation concerning the definition of weak containment. Consider
two unitary representation (7, 74 ) and (p, 54) of a Harish-Chandra group G =
K B, where we assume that (7, 54) is irreducible. Recall that by Proposition
as (m, ##) is irreducible, 7 is weakly contained in p if and only if for any vector
v € JA, compact set Q C K and £ > 0, there exists a vector w € J% with

[|lw|] = ||v|| so that
ey — @hlle,e <e.

We strengthen this condition under the assumption that v is K-invariant and
Q is a compact bi- K-invariant subset of G. In this case, set wx = [} mpw dmg (k)
so that for all g € Q,

67 (9) — @b (9)] = ’ / / o7 (kighs) — o, (kgha) mc (kY (kz)

<1/

<e.

@y (k1gka) — @b (k1gka)| mx (k1)m (k2)

Thus we conclude that under the above assumptions on m,v and @, that the
matrix coefficient ¢} can be approximated arbitrarily close on @) by K-invariant
elements of w € 4% with ||w|| < ||v||. The same condition also holds if we drop
the assumption of irreducibility. Namely, in this case, it holds for K-invariant
v € S, bi-K-invariant () C G and € > 0, that there exist K-invariant vectors

Wi, .., wy, with Y00 |Jwi]|* < [[v]|* so that
n
Spg - Z QOZJL < E.
=1 llQ.eo

This observation, together with the classification of irreducible representations
(3.1), yields the following consequence of general interest.

Proposition 3.21. Any unitary representation (w, ) of SL2(Q,) without
non-zero K-invariant vectors is tempered.

Proof. The above discussion shows that v* is not weakly contained in 7. More
precisely, this follows as the matrix coefficient ¢4 cannot be approximated by
K-invariant vectors of SLy(Q,), as there do not exist any non-trivial ones. The
same argument also shows 1g A m. Hence by all the irreducible unitary
representations weakly contained in 7 are tempered. As 7 can be approximated
in the compact-open topology by irreducible unitary representations weakly
contained in 7 and since all the latter irreducible representations satisfy < A, it
clearly follows that m < . O

Proof. (of ¢(w) = ﬁ > #(ﬂ)) We prove k() < 1 —¢(n). If k(7)) = 1,
then it follows that 7 is tempered and hence ¢(7) = 0. On the other hand if
c(r) = 0, then as 1g 4 7, it follows that all the irreducible representations
weakly contained in 7 are tempered. Thus 7 is tempered, which implies ¢(7) = 2
and s(m) = 1. Thus we assume in the remainder of the proof that ¢(7) > 0 and
K(m) < 1.
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For a contradiction, suppose x(m) > 1 — ¢(w). Then choose s € (0, 1) with
v¥ <mand ¢(n) >s>1—k>1—k(nm) for kK < k(m) < 1 so that 7 has x-decay,
where we use that ¢(m) > 0. By irreducibility of v* and the discussion before
the proof, there exists for each bi-K-invariant () C G and € > 0 a K-invariant
vector w € € with ||w|| < ||Fs|| s so that

l|ds — ‘PZ;HQ,OO < e. (3.3)

As —k < (s — 1), the decay of ¢ is slower that the one of ¢I. We show
how this decay discrepancy leads to a contradiction of implying that
k(m) <1 —c(m). To see this, recall that by the definition of k-decay and as w is
K-invariant with ||w|| < ||F|], it follows |7 | <z [|w]|? [|9]] 7" <r.ns [lg]] 77
Denote by ¢; = ¢1(m, k, s) the constant so that |¢T| < ¢1]|g||~". Moreover, we
write ca = ca(p, s) for a constant so that ca||g||*~! < ¢s(g). Next choose a large
enough compact and bi-K-invariant set @) with the property

< = (3.4)

for some g € @, which is possible as —x — (s — 1) < 0. For an element g € @
which satisfies ((3.4)),

o | 1 N )
wnl < erllgl~r < 2 < 049,

Thus it follows for a compact set () C G chosen as above and all K-invariant

w € H with ||w|| < ||Fs|| that ||¢s — ¢7||0.00 = infgeq ¢52(9) > 0, contradicting

v <. O

For the final part of the proof, we evoke integral decompositions.
Proposition 3.22. Let (7, 5) be a unitary representation of a group G and

T = /69 T dp(x)

X

be an integral decomposition. Denote by q(x ) the function x — q(m;). Then

q(m) = llax, ) lloo-

Proof. We first prove q(m) < ||q(x,u)||oo- Write for simplicity ¢ = |[q(x .)||cc and
let ¢ > 0. Then there exists for almost all x € X a dense set of vectors v, so
that ] € L9¢. The collection of vectors

v:/Xva:du(x)

where for almost all x € X the vector v, is from the above dense subset is again
dense in 7. Then for each such v,

()i = /X (72)7 dpu(z) < o0
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and hence ¢(7) < g+ ¢ for all € > 0.

For the other inequality, assume for a contradiction that ||q(x. .)[lec > () +
g > q(m) for £ > 0. Then there is a set of positive measure of representations
with g(m;) > q(m) + . This leads to a contradiction. O

Proof. (of q(m) = ﬁ < %(W)) Let 7 = ff 7 p(x) be an integral decompo-
sition into irreducible representations. By Proposition almost all 7, are
weakly contained in 7. Thus by Proposition [3.22] and Lemma

2
1—c¢(m)

Note that we can only conclude < since it does not have to be the case that if
~v® < m, that then +* appears in the above integral decomposition. O

a(m) = llacemlloe < max{z, s qw)} _
vELT

Theorem 3.23. A unitary representation (7, 5€) of SLa(Qp) without almost
invariant vectors has spectral gap if and only if q(w) < oo.

The main observation for the proof of Theorem [3.23|is the next proposition,
which also shows that SL2(Q,) does not have property (T).

Proposition 3.24. Let c € (0,1]. Then the collection of unitary representations
U.={~° : s<c}
has a uniform spectral gap if and only if ¢ < 1.

Proof. First assume ¢ < 1. Then using Theorem [3.20] and Lemma [3.1§] the
collection of unitary representations %, has a unlform effectlve decay of matrix
coefficients. Thus using precisely the same proof as in the direction (iv) implies
(i) of Theorem it follows that %, has a uniform spectral gap.

It remains to show that the collection %4 does not have a uniform spectral
gap. Assume for a contradiction that it has (Q,¢) as a uniform spectral gap.
Then choose m > 1 large enough so that Q) C B;, C B,,, where B,, is the ball
around e € G of elements of norm < m, for a bi-K-invariant matrix norm of G.
By Proposition there is § = 0(Q, e, m) with

I (fB,)llop <1 =6 <1
for all s € (0,1). In particular for a natural numbers n,
I (B Mo < [7° (B, )" < (1 —0)"™
Observe that fz" has mass 1. Using that fz" is bi-K-invariant, one concludes
lop =p.s (fB,,L) Fy)
/me g) dmg(g)

n(s—1) )

v (f5,,)

>ps M
Thus there is a constant ¢ = ¢(p, s) > 0 only depending on p and s so that

m"e—h < e(l—0)"
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for all n > 1. Hence taking the logarithm as n — oo, it follows that

log(1 — 0)
== Nogtmy

In particular it follows that 1 <1+ kffg(j;();) < 1, which is a contradiction. [

< 0.

Proof. (of Theorem The proof follows from Theorem and Proposi-
tion

First assume that ¢(m) < co. Then by Lemma the matrix coefficients
of 7 vanish effectively, which implies a spectral gap again by the proof of the
direction (iv) implies (i) of Theorem [3.5

On the other hand if (7, 5#) has a spectral gap, then the collection of all
irreducible representations weakly contained in 7 has a uniform spectral gap.
Thus by Proposition (or more precisely its proof), it follows that ¢(m) < 1
and hence by Theorem q(m) < 0. O

Combining the last two theorems yields Theorem We now turn to
proving Proposition first in the case G = SLy(R). On SLy(R) we consider
a bi- K-invariant matrix norm, which for example is constructed by averaging
the sub-multiplicative matrix norm

(¢ I = 2max(|al, [b], [c], |d])
for (¢%) € SLy(R).
In the following paragraphs denote
K:aumz{m=<mw‘*mgzeem%%,

sinf  cosf

t0
A:{atforteRandat:<€O 6t>}

N=U=du=(} %) . zer
=U=qu={, 7]:® .

By the Cartan decomposition, we have G = K AK. More precisely, every g € G
can be written as g = kpaiky for 6,9 € [0,27) and for ¢ > 0. With this
assumption the element a; is uniquely determined by g.

We discuss the Harish-Chandra spherical function on SLy(R). Before doing
so, we prove a calculative lemma.

Lemma 3.25. Lett € R and 0 € [0,27). Write

and

—1
a; ke = kya,uy

forto,z € R and ¢ € [0,27). Then

to=1In (\/e—zt cos? 0 + e2t sin® 0) , (3.5)
sin(26) sinh(2t)

- . b
=2t cos? 0 + €2t sin?

—2t ng2
1) = arccos \/ e P cos”d . (3.7)

=2t cos? 6 + e2t sin? 6
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Proof. The Iwasawa decomposition reflects the Gram-Schmidt algorithm. More
precisely, if g = (v1,v2) € SLa(R) for vy, vy € R?, then by using Gram-Schmidt
we arrive at

1 (v1,v2)
v = ——uy and vh = ||v|live — ——"Lg
P ol 2= [l [Joa]|

where the vectors v] and v} are orthogonal. As

o T e
V1,0 = v1 v1
( 1 2) g 0 |

o]

still has determinant 1 and v} has norm 1, it follows that v4 also has norm 1

and hence (v, v5) = ky € K. Moreover, setting to = In(||v1||) and = = <\1\);11|)|22>
we can write
JU_ga_t, = ky
or equivalently
g = kg, Uy
In the concrete case, where
e — e tcosf —etsind

9= N0 =\ etging et cos

one calculates
to = In(]|v1]]) = In (\/e*% cos? @ + e2t sin? 9)

and

(v1,v2)  —e 2tsinfcosf + €2 sinf cosd

xTr = =
[|v1]]2 e—2t cos? 0 + €2t sin? 0
sin(20) sinh(2t)
e~2tcos2 0 + et sin® 6’
Finally, it follows that
(cos ¢> ko 1 Y 1 (e‘t cos 9)
) = kye; = 1= . .
sin [[o1]] Ve2tcos2d + e2tsinZg \ € sinf
Thus,
—2t 2
e *"cos” 0
cos® ) = —
e~ 2t cos? 0 + e?t sin” 0

which concludes the proof. O

Proposition 3.26. For G = SLs(R), the Harish-Chandra spherical function =
satisfies for all € > 0,

E(g) =< gl (1 +log(||gl])) <e [lg||~**=.

Moreover, Z € L**¢(G) for all e > 0.
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Proof. Recall that

so((; ) =wr

for all a € Rzp and b € R and so in particular, using the notation from chapter
fo(kasug) = Ap(ay)2 = et. Recall that = is bi-K-invariant.

By the Cartan decomposition, it suffices to prove the claimed estimate only
for elements g = a; for t € R>o. We calculate using Lemma

E(at) = <7Tatf07f0>~7ﬁJ
= [ folag 1) o(k) drsc (4

1 27 )
o7 /. folay ko)
1 27 1

= % ) AB(at0)2 do
1 27 N

= % . AB(at0)2 df
1 27 -1

= — (\/e*% cos? § + 2t sin? 9) do
27T 0

4 (3 _1
= — (e_zt cos? 6 + €%t sin? 9) 2 de.
2'/T 0

Observe
e %' cos? 0 + €' sin? § < max{e”? cos® 0, e* sin® 6}

2

and the latter maximum is e?* sin? # unless tan®# < e~* or equivalently tan§ <

e~ 2. Thus
arctan e =2t . 5 .
E(ar) < / (e7% cos?0)72 df + / (e*sin?0)~ = df.
0 arctan e~ 2t

As t > 0, arctane™2* < 1. Hence on the interval [0, arctan e~2'] it holds that
% < cosf < 1. Moreover on [0, 3]7 g < sinf < 6, which allows us to deduce the
estimate

™

2 1
— df
rctan e —2¢ ‘0|

=< e'arctane™* + e~ (In(%) — In(arctane ")) .

Z(a;) < e’ arctane 2" + 7! /
al

Recall that on [0, 1], £ < arctanz < x. Thus it follows

z
2

(1]

(a) et +et=eTH(1+1).

As ||as]| < €, the first claim follows.
For the second claim, we again use the Cartan decomposition and coordinates
given by g = keaiky for 6 € [0,27), ¢t € [0,00) and ¢ € [0, 7). Then

o2t _ o2t
dmg = Cme (2) df dt dip = ¢, sinh 2t df dt d.
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Thus we conclude for € > 0,

/ (2(9))*** dmalg) < / h (2(ay))*** sinh 2t dt
G 0

<5 (67’5(1*5))2+E et dt

_ /Oo M=CHIA=842) gy < o
0

for § sufficiently small so that —(24¢)(1 —d) +2 < 0. O

We next define the complementary series representation for SLy(R). For
5 € (0,1) the non-unitary character x5y on B = {asu, t,r € R} is defined as

X(s) (atum) = e
for ayu, € B.
Consider the space 75 consisting of all functions f : G — C with the
properties:
(i) f is smooth.
(i) f is even, ie. f(—g) = f(g) for all g € G.

(iii) For g € G and b € B,
Fgb) = x5 (D) Ap(b)% f(9)-

Then we define the operator v, for g € G as the regular representation so that
for all f € 75
(v £)(h) = f(g™"h)
for h € G.
As the character is non-unitary, the standard inner product on L?(K) does
not yield a unitary representation. Thus we need to define an alternative scalar
product on ¥5. The scalar product we define is

(f1, f2)w / / f1(ko) Fa(ks,) 6 dbs (3.8)

|sin(fy — 62)|1—*

27 27
47T2/ / f1(ke,) f2(ko,) 40,0,

|sin(6; — O2)|1—>

In [EW] chapter 9.5, it is shown that (-, ), is a scalar product on ¥;. The
complementary series is then defined as the completion 5% of ¥;, and we
again denote by v® the extension of v* defined on ¥; to ;. Also in chapter 9.5
of [EW] it is shown that (44,~°) is an irreducible unitary representation.

For n € 2Z, the function F , is defined to be the element of ¥ given by

Fs,n(kﬁatum) _ efineef(erl)t

for 6,t,z as usual. Furthermore, denote the diagonal matrix coefficient of Fj ,,
as .

Psn = P, -
Then clearly |¢s n| < |¢s,0|- In particular, using the notation from the beginning
of this subchapter, F; = F; o and ¢5 = ¢ 0.
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Lemma 3.27. Fors € (0, 1) the matriz coefficients ¢ is bi-K -invariant, satisfies

¢s(g) =5 ||g]**
2

for g € SLa(R) and belongs to LY(G) if and only if ¢ > 1=. Moreover, the
following explicit estimate holds:

|sl

1 \S '
S

llg]
S

< ¢s(g) <

In particular, ¢s(g) > 0 for all g € G.

Proof. We use a similar calculation to the one of Proposition 3.26] As F; has
K-weight zero, it is clear that ¢, is bi-K-invariant. Thus it suffices to consider
g = ay for t > 0. Note that

Fy(a; 'ko) = Fy(kypar,ug) = e~ (T

—(s+1)
= (\/e*% cos? § + 2t sin? 9)

= max (e~ *|cosf],e’[sinf]) (1),

Thus analogous to the proof of Proposition [3.26

¢s(ar) = <’Yath,F

1
at k91 (k92)

= d6,do

7r2/ / |sin(6y — O2)|1—* 12

// max (e~t| cos 01|, ef|sin 0;])°" d01d02

|sm 91 — 92)|1 S

X

_ 61 —(s+1) [T 1
,\/0 max (e "| cos 1|, e'| sin 61 ) /0 Sn (0 = 63— dfsdb

z —(s
=, / max (e*t cos 61, el sin 01) (s+1) dbq
0

—2t

arctan e 5
=, / (et cos 91)*(5“) df, + / (€' sin 01)*(”1) do;
0 arctan e~ 2t
2 1
=, ! arctan e 4 ¢~Hs+1) / sl
arctan e 2t 0"

o —i(s 1 — —s T\ —S
S G +1);((arctane NTE=(5)7)

o el LRTC) =, D,
S

/ b(5)(9) dma(g) =< / b(s)(at)? sinh 2t dt =< / =12 gy < o0,
G 0 0

The latter integral is finite if and only if (s — 1)g+ 2 < 0 or equivalently ¢ > %_S
The explicit estimates for ¢, follow by using the next lemma. O



3. Spectral Gap and Tempered Representations 80

Lemma 3.28. For s € (0,1),

1
F.%, < =.
1E3, =

Proof. Observe

2 (21
% = (FoF =~ | ———— a6,
|| H;%”b < >=9f> 7T/0 |Sin0|175

To bound the latter integral, notice % <sinf < 6 on [0, §], yielding

%25—1 1
Fi|%, < —
1Py, = [ s o<

Towards the next lemma, we recall that for h > 0 we defined
Ap={a; : 0 <t <log(h)} and B, = KA K.

Then

log h
ma(Bh) = Cmg / sinh(2¢) dt
0

logh
_ Cmg / 6215 o 67215 dt

2 0
logh logh
I I
2 0 2 0

Cme 2 -2
= —(h"=14+h""-1
2 2( + )>
= fme (2 4 pm2 - 9)
4
= h2.
Moreover write fg, = nf(Bth).

Lemma 3.29. For all s € (0,1),

17* (fB.)llop =5 h*7.

Proof. As fp, = fB,, the operator v*(fs,) is self-adjoint. Thus

I (fB)llop = sup  |(v*(fB,) S FI-
fE,

s
[ f1loes <1

Moreover, since By, is bi-K-invariant,

v (FB)llop = 1(v* (FB,) s, Fo)l-
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The estimate of the lemma thus follows as

[(v* (FBi) Fs, Fi)| = (Vg Fs, Fs) dma(g)

)
1

<o [ llall* ma(o)
By,
1 logh
=, ﬁ/ ||a¢||*~! sinh(2t) dt
0
1 log h (s1)
=, — ets ) gy
h? Js
=, h* L.

O

Combining the last three lemmas, we have proved Proposition for SLa(R).
We next discuss the case G = G, = SL2(Q),) for a fixed prime number p. Denote
by || - || the bi-K-invariant matrix norm from chapter As in the real case,
we first discuss the Harish-Chandra spherical function. Recall the notation for

n € 7,
_ (0
w= (1)
Moreover we write K = K, = SLy(Z,), At = Al = {a, : n € Z>o} and

U:N:{uwz((l) T) :xe(@p}.

Finally denote by B = B, the upper triangular matrices. Then the modular
character on B is given by

so((s ) =wi

Proposition 3.30. For G = SLs(Q,,) the Harish-Chandra spherical function
satisfies for n € Z>q and ki, ke € K,

for a € Q) and x € Q.

E(k‘l&nkg) = E(an) =p pin.

Moreover, Z € L**¢(G) for all ¢ > 0.
Proof. Recall that fy is the element of J7) that satisfies fo = 1 on K. Then
fo(kb) = Ap(b)z for all k € K and b € B and

=(an) = /K Folank) dm (k).

Denote by k = (1Y) € K an arbitrary element of K. We want to calculate
fo(a—nk). In order to do so we need to know the Iwasawa decomposition of the

matrix
_(p "z pTy
a-nk = (p”z p"w) ’
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If [p~"x|, > |p™2|p, then the Iwasawa decomposition is given as
p"z p"y\ _( 1 0\ [(pT"x py
an pnw - pQ’I’L% 1 0 pnl,fl

folank) = |p~ "t = p~ "z, .

and

On the other hand if [p~"x|, < |p™z|, then the Iwasawa decomposition is given
as

p—nx p—ny B p—an 1 an pnw

ptz  ptw ) 1 0 0 p Tzt

fola—pk) = p"z[; " = p"|2]; .

and

To summarize,

fola—nk) = max(|p~"zl,, [p"2l,) " = p~" max(|z|,, p~>"[2],) "
and

S(a-) =" [ (el 2]) 7 dmc )

As
], < max(|z],, p~"|2],) < max(|z[p, |2],)

it follows that

72"‘Z|p

jz], " > max(|z],, p )7t > max (|, |2],) !

and hence indeed
[ (el ™|z} diic ) =, 1.

which implies the first claim.
For the second claim we evoke the integration formula from Proposition
Thus for € > 0,

/G (E(9)*™ dma =p > p*"E(an)* <, > p " < 0.

n>0 n>0

O

We now turn to the complementary series of SLa(Q,). Choose again s € (0,1)
and consider the character on B defined as

t =z s
X(s) ((0 t1>) = [t],

for t € Q) and x € Q. Denote by ¥; the space consisting of functions f : G — C
with the properties:

(i) f is locally constant.



3. Spectral Gap and Tempered Representations 83

(ii) fis even, ie. f(—g) = f(g) for all g € G.
(iii) For all g € G and b € B,

F(gb) = x(5)(0) LA R(B)2 f(g).

In order to equip 75 with an inner product, we denote for two vectors v, vy € QZ
by
D(v1,v2) = det(vy, v2).

Then for f1, fo € ¥; we define the inner product as

J1(k1) fo k’2)
(f1, f2) 7. / / Dlkrer. koer) [0 dm (k1)dmg (ka),

where we denote by e; the vector (§). As before, for g € SLa(Qy), write v} for
the representation on 75 given as

(vs f)(h) = f(g~"h),

where f € 75 and h € G.

The completion (J%,~°%) of (¥5,~°) is called the complementary series
representation of SLy(Q,) with parameter s € (0,1). We refer to [GGPS| for
a proof that (J%,~®) is indeed an irreducible unitary representation. Moreover,
it is clearly spherical and we denote by Fs the extension of the = 1 function
on K, which is a spherical vector, and by ¢, the diagonal matrix coefficient
associated to Fj.

Lemma 3.31. Fors € (0,1) the matriz coefficient ¢, is bi-K -invariant, satisfies

¢5(9) =p.s [gl/*™"
for g € SLa(Q,) and belongs to L1(G) i

2 .
7= More precisely,

Proof. Let k1 = (%) € SL2(Qp). Then in the proof of Proposition we

showed that
a  *
a_nkl = k <O a_l) .

for some k € K and a € Q) satisfying
lal, = max([p™"z|p, [p"z[p)-
Hence
Fy(a—nky) = max(|p~"z|p, [p"2lp) " = p7 T max(|z],, p2"|2],) T,

Observe moreover that if kq is fixed, then

1 1
— de kg de(kQ)
& |D(kier, kaer)|p K |D( 61,/€ Ykgey ) |pt—s

s d k
/ \D 61,k261 mic (k2)
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does not depend on k1 and is a fixed positive number, which we estimate explicitly
next.
In order to do so consider the primitive vectors of Zg defined as

a
@onin = {(§) €22+ lay =101 b, = 1}.

Then SLy(Z,) acts transitively on (Zg)prim preserving the restricted volume
probability of Z2. The stabilizer at the vector (§) is (§1) < SL2(Zp). Thus

writing again as ko = (32 42 ), we conclude,

s d k S k
/ |D 61,141261 mic (k) = /K|22|p mic (k2)

=p /(z 2oyt dmyzz),,,,,, (22, 22)

)prim

=p Z/ |2alp ™ dmzz) i (T2, 22)

22€p"ZX

—n(s—1) 77117

1)

=p (1—p"

=p (1—p7 1)+ (

where we used that mgz, (p”Z;f) =p (1 —p~1). Thus we conclude

1
s d ko) < .
/ |D 617]@261 mic (k) =y 1—p=s

We next calculate
®s ( n) = 'Va,LFs,FS>
(a—nk1)Fs(k
/ / |D 1 ( 2) de(kl)de<k2)

kie, kaer)|p”

||M8

xp,s/ Fo(a_nkl)de(kl)
K
S| 2y Y dme ()
||, >p=27z|,
+pn(s+1)/ 2], Y dm (ky).
||, <p=2n|z|

The same method as before is used to calculate the latter two integrals. As at
least one of z and z is an element of Z), it follows that in the second integral,
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|z]p = 1 and hence the integrand is the constant function. Thus

/Il <p—2n|z| |z]p dm (k1) :/I o 1dmg (k1)
xp7P7 n Zp zp7p7 .
=p /I L 1dm(zg)prim(x,z)
fL’p_p n

=p Mz, (Z;)mZP (pzan)
=, (1—p Hp™™"
=p p_2".

The first integral is calculated by integrating over the |z|, = 1 part and the
||, # 1 part:

Lo ) = ol & e )
z|p>p=2"z]p

lel,=1 and |z],>p~2"|z],

+ / ol Y dmc (k)
|#|,#1 and |z|,>p—2"|z],

= -+ [ ol O dnsc )
p2n <z, <1

2n—1
=p (1=p~") + (1 +> 0 pl)p“)
=1
=, p°"°.
To summarize, we conclude the rough bound
s(an) <p,s p"7Y
and the more precise bound

pn(s—l)

Pl = =y

The final claim follows as for ¢ > 0,

[ 6.0 dmate) =y 3 gD

n>0

Thus ¢ € LY(G) if and only if ¢(s — 1) + 2 < 0 or equivalently ¢ > 135' O
Corollary 3.32. For s € (0,1),

1
2
1Fs[15, =p T

Proof. This was proved in Lemma [3.31 O
Next fix h = p™ for some m € N and recall
Ap ={an, : 0<n<m} and B, = KA K.
so that .
ma(Bp) < ZpQ” =, h%.
n=0
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Lemma 3.33. For all s € (0,1) and h = p™ for m € N,

H’Y(th)Hop =p,s Rt

Proof. As in the proof of Lemma [3.29] we just calculate

|<’78(f3h,)FSaFS>| = ’

/ (13 Fa, Fa) dme(g)
By

ma(Bn)
- izm: 2n, n(s—1)
=ps 73 2 PP
n=0
1
- m(s+1) _ ps—1
=p,s ﬁp ( ) = h .

O

This concludes the proof of Proposition for SL2(Q,) and hence the proof
of Theorem In fact, we have improved Proposition (i) to the statement

¢s(9) =p cp(s)lglI" ™"
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4 Effective Ergodic Theory and Spectral Gap

In ergodic theory one studies the action of a group G on a space X preserving a
probability measure p. A central aim is to understand the Birkhoff averages

1 -1
m[ef(g ) dmg(g)

for a set of positive measure B C G and for f € L}L(X ). If the system is ergodic,
one wishes to show convergence of the latter expression, either pointwise or in
L?, to the mean u(f) = [ fdu as B 1 G. Results on the convergence properties
of the Birkhoff averages are referred to as ergodic theorems.

In the above setting, one is lead to consider the Koopman representation,
which establishes a link between ergodic theory and the theory of unitary
representations. The Koopman representation is given on the Hilbert space
Li(X ) by

(mgf)(x) = flg~ )
for f € Lﬁ(X ), g € G and x € X. Dynamical properties of the measure preserv-
ing system (G, X, u) can be translated to properties of the unitary representation
(7. 2(X)).

For example, if one considers the subspace L§(X) = {f € L2(X) : u(f) =
then the measure preserving system (G, X, u) is ergodic if and only if (m, L3(
has no non-zero invariant vectors. Moreover, the matrix coefficients of (m, L3(
vanish as g — oo if and only if (G, X, 1) is mixing.

From this viewpoint, the results from the last chapter establish the remarkable
statement that if G = SL,,(Q,) for n > 3 (or more generally the F-points of
a higher rank almost simple algebraic group over a local field F'), then every
ergodic G-systems is automatically effectively mixing.

The aim of this chapter is assume effective mixing of a G-system in order to
establish effective ergodic theorems. In chapter we prove a general L?-ergodic
theorem for Harish-Chandra groups. Then, in chapter [£:2] we apply the theory
of spherical functions to establish a more effective L?-ergodic theorem for the
representations m, . Finally in chapter we discuss an effective pointwise
ergodic theorem, following [EMV09].

)

4.1 The Kunze-Stein Phenomenon for Harish-Chandra Groups

Let G = K B be a Harish-Chandra group. In this chapter, we will derive a general
mean ergodic theorem for a large class of probability measure preserving systems
equipped with a G action. The main engine is the Kunze-Stein inequality, which
is discussed next. We note that a function v € L'(G) is called bi-K-invariant if
Y(kgk') =(g) for g € G and k, k' € K.

Theorem 4.1. (Spherical Kunze-Stein inequality) Let G = KB be a Harish-
Chandra group and (7, ) be a tempered unitary representation of G without
invariant vectors. Then for all p € [1,2) and all bi-K -invariant 1 € L*(G) N
LP(G),
() lop <p [[2]p-
In fact,
7w ()llop < [[Ellgll41l

for q the Holder conjugate of p.



4. Effective Ergodic Theory and Spectral Gap 88

Proof. We follow [EW] chapter 8.8. As 7 is tempered, ||7(¥)|lop < [|AN¥)||op
and thus it suffices to show that

AW op < [I=lql[2]]p-

The latter term is finite as ¢ = ijl > 2 and hence ||Z||; < 0.
Let fi, fo € L?(G). Denote by fX the K-invariant function

K— | \efs k).
i /K rkfimi (k)
By the Cauchy-Schwarz inequality,
152 < / s Fir My £2)| dimge (e (k)
< /||Ak1fi|\ ko fil| dimege (Yl (k) = | il 2.
As 9 is bi-K-invariant and G is unimodular,
W) fr fa) = / W(9) A 1, f2) dmc(g)
G
- /G Blkrghy )N fr f2) dm (g)
- / / / Blkrghy V) (Mg fr. f2) dm (g)dimc (ky)dmpg (k)
GJK JK
— [ ][ 6@yt 12 dimctg)dmic e k)
GJK JK
- / / / B(9) Ngka f1 Mo f2) i (g)dime (ky )dmg (k)
GJK JK
- /G Blg) 0 FE £ dma(g).
Now using Lemma [2:27] and the Holder inequality,

(W) f1, fa)] < /G (o) [ 5, £ dma(g)

< ( [ o E(Q)|dmc(9)) 1FE a1

< Ellgll¢1lpll fll2] f2ll2-
The last inequality implies [|A(¥)]|op < [|Z]|q]|9]]p- O

Before proceeding with the next corollary, we prove the following lemma of
immediate use.

Lemma 4.2. Let G = KB be a Harish-Chandra group and (w,.7) be a unitary
representation of G and m € N. Then for any bi-K -invariant ¢ € L'(G) with

¥ >0, 9" =1 and [, dme =1,
I @)11ep < 17 =™ (%) op-
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Proof. As ¢¥* = 1, the associated operator is symmetric and hence
)

I ()llop = sup [(w(s)v, v)].
veEN
[lv]I<1
The lemma essentially follows by Jensen’s inequality. More precisely as t — t2™

is convex and by integrating over the probability measure ¥ (g)dmg(g), it follows
fOI' f17 f2 S %7

2m

(a0 o, f) P = /G (o s f2)0(g) dme ()

IN

/ (o 1. 22" 0(g) dma(g)
G

- /G (rE2m f22m FS2mY(0) dme (g)

:|<ﬂ_®2m(w) ?2771, éX)Qm>|.

In particular,

lw()l25 = sup [(w(¢)v, v)[*"
vES
[lv]|<1

< sup [(E2 ()2, 0E2) | < [7D2 ()] [op-
vEI
[lv]|<1

O

Corollary 4.3. Let G = KP be a non-compact Harish-Chandra group and
(m, 7€) be a unitary representation of G without invariant vectors and almost
integrability exponent q(m). Let m € N be an integer so that q(m) < 4m. Then
for p € [1,2) and a bi-K -invariant function ¢ € L*(G) N LP(G) with ¢ > 0,
U =1 and [¢Pma(g) =1,

7 (@)llop <p (19|

L
2m
Do

Proof. By assumption, for a dense set of vectors V' C 7 the matrix coefficients
@7 for all v,w € V satisfy o7, € L*™(G) € L*™*(G) for all € > 0. Thus by
Corollary it follows that 7 is 2m-tempered, i.e. that 7®2™ is tempered.
Using Theorem [£.1] and Lemma it follows that

I ()lIes" < 172" (@)lop <p 191l

_1
and so in particular ||7(¥)|]op <p ||90][3™ - O

Finally, we use the latter corollary to establish a mean ergodic theorem. Let
(G, X, 1) be a measure preserving system. If B C G is a set of non-zero finite
measure, then we denote by
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so that for ¢ € L?(X),

(U))@) = s [ ola™) dmy ().

Theorem 4.4. (Mean Ergodic Theorem for Harish-Chandra Groups) Let (G, X, )
be an ergodic probability preserving system, where G is a non-compact Harish-

Chandra group. Assume further that the Koopman representation (W,Li(X))

satisfies q(m) < 4m < oo for m € N. Then for 6 > 0, bi-K -invariant, symmetric

sets B C G with and all ¢ € L%(X),

_ 1
17 (f8)¢ — 1(@) - 1x||L2 (x) <5 ma(B) ™76l 12 (x)

Proof. As (m,L3(X)) has no non-zero invariant vectors, by Corollary it

follows for p € [1,2) that

I (fB)lz3(x)llop <p [1/BII5™ -

" = (/G (msz)Y dmc)ﬁp

= (mg(B) ")

=mg(B) #t o,

We calculate

/5]

As p € [1,2), we can choose 6 > 0 so that fﬁ +4§= f% + ﬁ. Then

.
17 (f8)lLz ) llop <5 ma(B) ™30,

Applying this inequality to the vector ¢ — u(¢) - 1x implies the claim. O

4.2 Spherical Functions and the Mean Ergodic Theorem

We return to considering a simply connected, almost simple algebraic group
G C GL,, over Q. For a prime p, write as usual G, = G(Q,) and denote for
¢ > 0 coprime to p by m, ; the unitary representation of G, on LZ(XPJ).

The aim of this chapter is to exploit the theory of spherical functions to
improve the bound of Theorem @ for the representation 7, ;. In order to do so
we introduce the spherical integrability exponent,

4p.0(G) = inf{g > 2 : VK -invariant v,w € L3(X,.¢) it holds @7 € LY(G,)}.

We note that it is possible that g, ¢(G) > ¢(mp¢). The main aim of this chapter
is to prove the following theorem. To simplify the notation we shall make no
difference between the operator m, ¢(f) and m,.0(f)[L2(x, ,)-

Theorem 4.5. In the above setting, let B C Gy be bi-Kp-invariant and of finite
non-zero volume and denote by fp = (B JXB- Choose (5 > 0. Then

|| 7p,e(FB)|]p <5 Mp(B) @t
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In view of Theorem this is the optimal rate for the mean ergodic theorem
provided that g, ¢(G) = ¢(mp¢). The main reference for this subchapter are

chapters 3 and 4 of [GGN13]. We denote in the following by é; the unitary
dual of G, i.e. all the unitary irreducible representations of G),. Moreover, we

denote by C/% the subspace of spherical irreducible representations.
For the spherical function 7, associated to the spherical representation (7, )
of Gp, we denote for f € L'(G,) by

f(n:) = / f(g)n-(g) dmy(g)-

Proposition 4.6. Consider a unitary representation (w, ) of G, and f €
LY(G,) a bi-Kp-invariant function. Then

(£ < sup{/[F* ) F(no)] : 7€ G and 7 < }.

Proof. The main claim of this proposition is that if f is symmetric, i.e if f* = f
so that 7(f) is a symmetric operator, then we have that

e (Ol < {f ()] : 7 € Gl and 7 < 7).

Assuming this claim for a moment, we note that for a general bi-K,-invariant f,
the C*-property of the algebra of bounded operators on a Hilbert space yields

I (HIP = [l7(F)* = (DIl = llx (= HIl-

As f* x f is symmetric, it follows if we assume the claim that

(Al = VIIr(F* HIT < sup{/[(F (o) = 7€ Gy and 7 < 7).

Hence the statement of the proposition follows as

(f**f)(n7)=/c(f « £)(h)ne () dimy (h)
F(9) f(g~ " h)n-(h) dmy(h)dmy,(g)

h)n-(gh) dmy,(h)dmy,(g)

/ n:(gkh)dmg, (k) dmy(h)dm,(g)

F(9)f (h)n=(g)n-(h) dmyy(h)dmy,(g)

=f* m)f(nf)

where we used bi-K-invariance of f and the equivalent characterization of
spherical functions of Proposition [2.41

L

L

- / / / £ (k) (e (ghkh) dmy (h)dimy (g)dmc, (k)
=[]

-1/



4. Effective Ergodic Theory and Spectral Gap 92

In order to prove the claim, let f be bi-K,-invariant and symmetric. Recall
that by Lemma |2.10)

Ix ()l < sup{[|7(H)I| : 7€ G, and 7 < 7},

We show that if the irreducible unitary representation 7 < 7 is not spherical,
then ||7(f)|| = 0 and if it is, then ||7(f)|| < |f(n:)|. This then implies the claim.
So consider (7,4¢;) an irreducible unitary representation of G,. Then we
observe
r(f) A © A,

as by bi-K,-invariance we have for v € 5 and k, € K, that
o= [ omeamyle) = [ 5 9)mudmyle) = (.

Moreover, as 7(f) is symmetric it follows that 7(f)(s4 7))L c (J£57)L and
hence 7(f)(4"7): = {0}. If there are no K ,-invariant elements, this show then
that 7(f) = 0. Thus we can assume that (7,.7%;) is spherical. In this case we
can decompose w € J; as w = wp + w;- for w, € %”TK” and w:; € (g%”TK”)J-.
Then as 7(f) is self-adjoint,

T (DIl = sup [(7(f)w, w)]

[Jw]]=1
= s (7 uy + 7Py + )
= sup (T (f)w, w)]

K.
weA P [jw]|=1

= sup
K
we P ||lw||=1

= [f ()],
K

where we used in the third line that 7(f)(% *)* = {0}. Moreover in the last

line, we used that dim .4 % = 1 and hence for any w € /4" with [lw|| =1 it
holds that

/ £(9)(r(g)w, w) dmy(g)
Gp

n-(9) = (T(g)w, w).

Proposition 4.7. For all ¢ > ¢, ¢(G),

sup{||n-|lq : T € ég and T < Ty} < 00.

Proof. We refer to chapter 3.3 of [GGNI3]. The proof requires the classification
of spherical functions. O

We are now in a suitable position to prove Theorem
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Proof. (of Theorem We aim to show

R )
[I7p,e (fB)I| <5 mp(B) e 70

Let 7 be a spherical representation weakly contained in 7, . By applying the
Hoélder inequality for ¢ > g, ¢(G) for the tuple (g, q;—l) we conclude

1
‘fB(nT)‘ = HfB777—||1 = ‘ﬂlp(B)/G XBanmp

p

1

— _m,(B)" Nr
mp(B) :D( ) H ||q

1
< myp(B) " [nrlg-

Note that the same estimate holds for f5(n.). Thus the claim follows by
Proposition [f.6] and Proposition .7} O

4.3 The Effective Birkhoff Ergodic Theorem for Semisim-
ple Lie Groups

In this subchapter we apply the results obtained in the last chapter to a con-
crete setting in order to obtain effective results on Birkhoff’s ergodic theorem —
following chapter 9 of [EMV(9]. We will use Sobolev norms and Sobolev spaces
as discussed in appendix A. Consider a semisimple Lie group G arising from
an algebraic group over Q and an arithmetic lattice I' < GG so that we have a
probability measure u on G/I'. We assume that the left regular representation
7 of G on LE(G/T) is (m — 1)-tempered so that there is some dy so for all
f,g € L3(G/T) we have

1

(g f; 9)| < Sao (f)Sae (9)E(g) ™ T, (4.1)

where the constant only depends on dy. For simplicity we sometimes write

(g f)(x) = gf(x) = f(g7 @)

We choose a unipotent one-parameter subgroup u : R — G so that

E(u(t)) <e (1+ )71
So in particular we have

_a

(e fr )] < (L [¢]) " Sag (f)Sa, (9)- (4.2)
Next choose M = 20m. Any M = c¢m for large enough ¢ will also be sufficient
for our purposes. We first want to estimate the following quantity:

TI\/I+1

1
T, hndi- /X fdn.

Lemma 4.8. For any s > 0,7 > 0 and f € H¢(X) we have that

Dr(f)(z) =

p({z € X [Dr(f)(@)] 2 s}) < 57T 784, (f)%.
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Proof. We assume without loss of generality that f is real valued. Throughout
this proof write < for the interval [T™ (T + 1)M] and denote

| &+ | =length(+s) = (T + )M —TM,
O for the cube [TM, (T + 1)M)? and finally by
10| = vol(O) = (T 4+ 1)M — 7M)2.
The binomial expansion of (T + 1) shows that

TMfl

< | PN | <<T]\/[71 and T2M72 < |D‘ < T2M72.

The lemma follows by a series of elegant calculations. First we note

2

wt)f, 1) — (/deu> - <u(t) <f/fdu> ,f/fdu>
< (1 [t) ™7 Say (1)

Second, using Fubini we conclude,

Jien@pa= [ & ([ f(u(—t):c)dt>2
nfse e )
\D| 5 o)) dsi (/de“y
=& [Lorue) - ( /. fdu>2 dsdt
=5 [Ltt=9r.5) - (/deu)stdt

1 !
<<—/(1+|t—s\)—m8do(f)2dsdt
0l Jo

Finally we split O into [t — s| < T% and |t —s| > TZ. By observing that
vol(ON{[t—s| <T%}) <« TM~*% and on |t — s| > TZ we have (1+ |t —
s|)"m < T~ 2w, it follows

1
JDr() @R g [ (11— o) S (1) dsc
1
< = o (L[t = s)77 Sy, (f)? dsdt
IOl Jje—sj<1 ¥
1

= TM(1+|t—s|)*#sdo(f)2dsdt
t—s|>T 2

2
< ‘;‘:1201\(4@2 (TM L+4 | peM— 2——)

< T84, (f)%
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This allows us to conclude

plfe € X De(P@)] =) = 5 [ 2 dp

O

To formulate the next theorem, which is the main theorem of this subchapter,
we use the following definition.

Definition 4.9. A point x € X is called Ty-generic with respect to the Sobolev
norm Sy if for all n > Ty and f € HE(X) we have that

1Du(f)(@)] < n™'Sa(f)).

Theorem 4.10. (Effective Birkhoff Ergodic Theorem) Let d be a sufficiently
large integer. Then the set of points that are not Ty-generic with respect to the
Sobolev norm Sy is < Ty *

Proof. We choose d > d’ > dy sufficiently large so that
tl"(Sd/ y Sd) and tl"(SdO y Sd/)

are finite. Recall that by Proposition A.19 there exists a trace class and hence
compact operator Opg , s, so that

<f7 g>Sd’ = <Op3d/,3d0 f7 g>3d

for all functions f,g € HE(X) C H¢ (X). We note that Ops,, s, is self-adjoint
as it is positive definite and hence by the spectral theorem we can choose an
orthonormal basis fi, fa,... of HI(X) consisting of eigenvectors of Ops,, s,
Thus f1, fa, ... is an orthonormal basis for S; and orthogonal for Sz, so that

WSS = 3 Swlf)P <00 and  t(Si,Sa) = 3 eln)

n>1 n>1 Sar(fn)?
We apply Lemma [£.8] to conclude that the set

E = U {z € X : n|Dn(fi) ()] = cSar(fr)}

n>Ty,k>1

for some ¢ > 0 to be chosen later satisfies

n? Sa,(fr)?
E) < E VP el <« T
MO s ST

We now want to show that if x € X is not Ty-generic then z € FE, which
then implies the statement of the theorem. To see this assume x ¢ E and let
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f = > 1>1akfe. Then we have by using the Cauchy-Schwarz inequality for
n Z TO7 -

| Do (f)(@)] < cSar(f) = |ar|Sar (fr)
E>1

1
2

Sc D oSa()?] (Do lanl?] < Sa(h),

E>1 k>1

1
2

using the constant ¢ so that ¢ (Zkzl Sy (fk)Q) < 1. So z is Ty-generic and
hence the claim follows. O
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5 Diophantine Approximation

This chapter is the main part of this thesis. We first prove results on Diophantine
approximation by applying an effective mean ergodic theorem (Theorem [4.5)).
Then we discuss discrepancy bounds for Diophantine approximation. Finally we
explain how results established by the circle method imply certain discrepancy
bounds and then deduce property (7) for Q-forms of SLy. The main references
for this subchapter are [GGNT3| and [GGN].

5.1 Notation and Lower Bound

Throughout this subchapter we consider G C GL,, a simply connected, almost
simple algebraic group over Q and the homogeneous space

Xpe = (G(R) x G(Qp))/rp,e-

Write as usual G, = G(R) and G, = G(Q,). Furthermore, denote by mx, , the
Haar probability measure on X,,. We consider on G the norm

llelloo = | max ;]
and on G, the norm
llellp = | max aijlp.

The first aim of this chapter is to prove the following theorem.

Theorem 5.1. Let G C GL,, be a simply connected almost simple algebraic
group over Q and assume that G is isotropic over Q,. For almost all x € G(R)
the following property holds: For all § > 0 there exists eo(x,0) so that for all
0 < e <eg(x,0) there exists some z € 'y ¢ so that

|z — z|lo <€ and ||2|]p, < e~ cwetd)

where 0, ¢ ¢ 15 a positive constant only depending on p, £ and G.

The proof of Theorem is deferred to the next subchapter. In this sub-
chapter we are concerned with discussing a lower bound for Diophantine approx-
imation.

Let Y C G be a bounded subset. For ¢ > 0, we denote by D(Y,¢) the
smallest number of e-balls with respect to || - ||oo needed to cover Y, which is a
finite number as Y is bounded. We then define the Minkowski dimension of
Y as

dv(Y) = lim inf w
e—0t log(e1)

Lemma 5.2. For any bounded measurable subset Y C G of positive measure,

Proof. It suffices to consider bounded measurable subsets Y C R? of positive
measure and the Lebesgue measure. We note that dy(Y) is well defined as Y is
bounded and hence D(Y¢) is finite for any € > 0. Observe that

vol(Y)

m — 1< D(Y,e).
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As
vol(Y) d

vol(B.(0)) ‘Y€
for some constant cqy depending only on Y and d, it follows that d < dum(Y).
To show <, we note that as Y is bounded there is some Y C B.(0) for some

¢ > 0. Observe dy(B.(0)) < d as B.(0) can be covered by (2¢)%-many e-balls,
which implies the claim as dy(Y) < dy(Bc(0)). O

In the following we again consider a bounded subset U C G,. We define

. log(Ap(Y; 1))
U) = sup 1 :
ore(U) = pup B =Gy

where the supremum is taken over all open subsets Y C U and where we set
Ap (Y h) = {z €T, NY : ||z]|, < h}|

We furthermore define
ap(G) = sup ape(U),
UCGw
where the supremum is taken over all bounded sets of G,. Finally we denote
for x € G, and € > 0,

wp(x,e) =min{||z||, : z €Ty and ||z — 2|[e < e}
and set for a subset Y C G,

wp,e(Y, €) = sup wp(y, €).
yey
Lemma 5.3. Let Y C G be a bounded subset and Y C U be open so that
B.,(Y)CU. Then for all 0 < € < €,

D(Y,e) < Apo(U,wpe(Y,€)).

Proof. Fix 0 < e <. If Ay ¢(U,w,p (Y, €)) is infinite, there is nothing to show.
So assume that A, ¢(U,wy ¢(Y,¢)) is finite and that

{zelpnU : |[2llp S wpe(Yie)} = {21, 2a}

We claim that Y C [J;-_; B(z;), which implies the claim. Assume for a contradic-
tion that this is not the case. Then there is some y € Y so that y & |J;_; Be(2;).
By definition of wy(y,¢€), there is some z* € T', 4 so that ||y — 2*||s < € and
[12*||p = wpe(z,€) < wp (Y, e). We note that z* ¢ U as otherwise, since z € T, ¢
it follows that z* = z; for some i. But then y € B.(z), contradicting the
assumption on y. So we conclude that z* ¢ U D B.(Y), contradicting that
lly — 2||eo < €. O

Putting all this together we derive a lower bound for Diophantine approxi-
mation.
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Proposition 5.4. Let Y C G be a subset of positive measure so thatY ¢ I'y 4.
For every § > 0, there is some €9(0) so that for all 0 < € < £¢(9),

~ dimg(Q)
e T <wp(Yie).

Proof. As'Y ¢ T4, it follows that wy, ¢(Y,e) — oo as € — 0". Thus we can
choose for each 1,52 > 0 some close enough open subset U D Y so that for all
0 < e <eo(U,d1,02), using the last two lemmas, we have that

e~ A+ < D(Y,e) < Ay o (U, wp (Y, €)) < wp oY, )G F02,

which implies the claim. O

5.2 Diophantine Approximation for Groups at almost ev-

ery point
In this subchapter we use exactly the same notation as in the last subchapter.
We set )
O = 2(G)re(C)
P 2ap,0(G)

The main aim of this subchapter is to prove Theorem which we restate here
for convenience by using the notation introduced last subchapter.

Theorem 5.5. Let G C GL,, be a simply connected, Q,-isotropic almost simple
algebraic group over Q. For almost all x € G(R) the following property holds:
For all § > 0 there exists eo(x,0) so that for all 0 < e < go(x, ),

wp,[(l‘, 5) S 67(9G,p,1’,+5) )

The main ingredients for the proof Theorem [5.5]are the mean ergodic theorem
for the p-adic extension (Theorem and the so called duality principle, which
we discuss next. To simplify the notation we write for the remainder of this
subchapter X = X, and I' =T, 4.

Fix a bounded subset 2 C Go,. We denote by cq > 1 a constant so that

|2 gllo <callglle and  flz7" - gllec < ca - [lgll

for all g € Go and z € Q. In fact we can take co = n - sup,cq |zi;|. For 6 >0
we denote by Bs(e) = {g € G : ||g — €| < ¢}. Further, for € > 0 we set

®. = B (€) x G(Z,) C Goo x Gy

and ®.pr = ®.I' C X. Finally for h > 0 we denote B, = G(Z,){g € G, :
llg —ellp = llgllp < h}G(Z,). Now we are ready to state and prove the duality
principle.
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Proposition 5.6. If x € Q) satisfies Bglx*1 N®.p # 0, for e > 0, where we
view B;lx_l as projected onto X, then there is z € I' so that

le—sllw<e  and |zl <h.
Moreover, if 0 < e < 1 then

mx(q)ap) =0 €dimQ(G).

Proof. Assume that = € ) satisfies the above property. Then there is z € I' and
b € By, so that
(z712,b712) € &, = B=(e) x G(Zp).
cQ

So we have that z € bG(Z,) and hence ||z||, < ||b||, < h. Furthermore we have
that [|z712 — e]|oo < — and hence

Iz = 2lloo = [[z(e = 2712) o0 < calle = 227 | <e.
To prove the second claim, we note that if we have some v € I' with
O yNP, =0

then there is g1, g2 € G(Z,) so that g1y = go and so v = gy ‘g2 € G(Z,). Using
~v €T, it follows that v € G(Z). As G(Z) < G(R) is discrete, there is some €9 > 0
so that v & B, (e) for all v € G(Z)\{e}. Thus we conclude that if = < &g then
Oy NP, =0 for all v € I'\{e} and hence we have that

dimg (G) N .
mX((I)gI) X MG %G,y ((I)E) = (m) =q € img( ).
If on the other hand g9 < = <1 then we set &’ = e < €9 and hence

mx ((I)EI) = mx(tb?,) = (ggo)dimQ(G) — Edim@((}).

O

We observe that we can also prove a converse to the above proposition. For
this denote for € > 0 the set

U, = B .(e) x G(Zp) C Goo x Gyp

and
V.r=vTIcCX.

Proposition 5.7. If 0 <e <1 then
mx(\l’?) =Q EdimQ(G).
Moreover, if for x € Q there is some z € I' so that

l2llp <k and flr—zllp <e,

then B, 'a=' N W £ 0.
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Proof. The first statement is proved completely analogously to Proposition [5.6
For the second statement, we first claim that

(zz71,€) € Bege(e) x G(Z,).
This follows as clearly e € G(Z,) and as
lle =27 2| = [l27" (2 = €)lloo < calle = zllo < ca e

So it follows as (x712,e) = (271, 271)z that (z71,271)[ € ¥, and also clearly
as ||z||, < h that (=1, 271) € B, 'a~ . O

We next investigate the volume growth of By,.

Lemma 5.8. Let Q) C G4 be bounded. Then there exist constants ¢ > 0 and
ho > 0 so that for every h > hy

Apj(Q, h) <0 mp(BCh).
In particular, for every § > 0 and h > hy(p, 9)

mP(Bch) >5 hap’[(G)_é-

Proof. We consider the set
Ape(Qh) ={y e TN QxGp) : |[llp < h}.

As T is a discrete subgroup of G, ,, it follows that there is some open bounded
neighborhood O of the identity so that Oy N O = 0 for all v € I'. Thus we have

that
ma., ,(OA,(Q,h))
mGP’N(O)

Furthermore we note that there is ¢ > 0 and bounded €’ D Q so that

Ape(,h) = [Ap (2, h)] <

O‘AI)»@(th) C O(Q X Bh) cQ x B.p,
and hence the claim follows as O and Q' are bounded. O

Finally, the proof of Theorem uses the Borel-Cantelli lemma, which we
recall for completeness.

Lemma 5.9. (Borel-Cantelli) Let (X,Bx,u) be a probability space and let
A, € Bx be a sequence of measurable subsets so that

Z u(Ay) < oo.

n>1
Then the measurable set

limsup 4,, = ﬂ U Ap, ={w € X : w is contained in infinitely many Ay}
n>1lm>n

has zero measure.
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Proof. We use dominated convergence to see that

[ v dn= 3 utan) < .

n>1 n>1

Thus it follows that

ZXA" < 0

n>1
almost everywhere, which implies the claim. O
Proof. (of Theorem [5.5) We fix throughout this proof some bounded  C G .
As G C GL,(R) is o-compact, it suffices to prove the statement for almost all
points of Q. Furthermore, the statement is easily implied if we have proved the

statement for a sequence of ,, — 0. Thus we set ,, = 27". To further simplify
the notation, we write throughout this proof

T = Tpe, q=qpe(G) a=ape(G).

We denote by fg, =
we have for every 6’ > 0

%. By Theorem as By is bi—G(Zp)—invariant
||7T(th)Hop <<§/ mp(Bh)75+5 .

Thus using Lemma it follows that there is ho(p, §’) so that for all h > ho(p, '),

17 (f5,)op <o BT (5.1)

We set h., = e epetd) g
X,={eeX:Blzna., =0}

We aim at showing that limsup X,, has measure zero. By the Borel-Cantelli
lemma, it suffices to show that

Z mx (Xp) < oo.

n>1

So we need to estimate the measure of the sets X,,. By (5.1]), we have that for
hen > ho(p75/)7

2
/ ’W(fB—l )Xae., —mx(Pe,) - 1X’ dmx
X

he,

2
= |[7(/52 e, —mx(@2,) 1x||
2

= H”(fB;;,L)

llxe., 13
op

/

— ey o
g he, " mx(De,).

2We assume here that K;, = G(Z,). It is straightforward to circumvent this issue if we only
have Kp D G(Zp) by simply considering a bi- Kp-invariant norm.
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If x € X,,, then we have that
m(fpt I, () =0
and hence it follows that

2
mx(Xam (@0, < [ [r(ias Yo, —mx(®.,) - 1x] dm

hep

,24+
<<5/ h mx(égn).

Thus it follows that

—2a4 -1
mx(Xn) <s he,” mx(®e,)

Using Proposition [5.6] and the definition of h., we have that

2a ’
—2a45 _ 05 5
he,™  mx(®.,) ! < e’

for

05,50 = —(0G.p,e + 0)(—22 + ') — dimg(G)
= (4me(@a 4 5)(22 — ') — dimg(G)
— 527{1 . 5/(dimgl(lG)q + 5)

So we choose ¢’ small enough so that 85 > 0. Then it follows that

ZmX(Xn) = Z mx (Xp) + Z mx(Xn)

n>1 he,, <ho(p,8") he,, >ho(p,5")
9 ’
D S e ST St
he,, <ho(p,d") he, >ho(p,8")
<5 Z mx(X,) + Z 9—nbs,s/
he, <ho(p,d") he,, >ho(p,d”)
< 00,

as 05,5 is positive and as h., — oo so that for only finitely many n we have that
he,, < ho(p,d’). Thus we conclude that the set

Xo = limsup X,

has zero measure. We now show that this easily implies the claim of the theorem.
Denote by XO the lift of Xy onto G X Gp. Then again XO has zero measure as
T" is countable.

We consider the subset

QO ={ze€Q: 3y e G(Z,) such that (z',y) & Xo}.

Note that as .
(Q\Q) x G(Z,) C X,
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and as G(Z,) has positive measure in Gy, it follows that Q\Q’ has measure zero.

Thus it suffices to show that every x € ' satisfies the claim of the theorem.
Assume that z € Q. Then there is y € G(Z,) so that (z71,y) & X,. So there

is some ng(z,d) so that for all n > ng(x,§) it holds that B,;ln (7L y)nd., #0.

As y € G(Z,), note B,:l y C B,;l and hence it follows that m_lB,;l Nd., #0.
Hence by Proposition there 1s z € I" so that

1z = 2||oc < he,, = €;(GG=P+5) and [12]lp < en.

This shows the theorem. O

5.3 Diophantine Approximation for Groups at every point

We alter the result of last subchapter to approximate all points in G(R), however
with a weaker exponent. Namely, we need to multiply the exponent from before

by 2, so that we set
L ape(G) '

We then have in similar vein to the last theorem the following result.

Theorem 5.10. Let G C GL,, be a simply connected, Qp-isotropic almost simple
algebraic group over Q. Fiz a bounded subset Q) C Goo. Then we have for all
d > 0 some €9(£2, ) so that for all 0 < e < g9(R,0) and all x € Q there is some
z €T so that

|z —2lo <e  and  ||z||p < e Cowetd),

The proof is similar to the one of Theorem [5.5] The main difference is that we
need an altered version of the duality principle. In this subchapter we consider
the constant cqg > 1 characterized by

|z - gllee < callglloo and g - zlloe < callglle
for all x € Q and g € G,. We then set for € > 0

o, = (e) x G(Zp) C G x G

and ®.p = . C X.

Proposition 5.11. Fiz 0 < e < 1. Let B C G}, be a bounded measurable subset.
If x € Q satisfies
B7Y @) et nd.p £ 0,

then there exists z € I' so that

|z = 2lloc <& and [12]lp < max{[b]]p.

Moreover, as 0 < € < 1, we have that mg_xa,(P:) <q edime(G) gnd for all
T €Q, ma_xa, (z71®,) >q elime(©),
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Proof. The estimates on the volume follow similarly to Proposition To
prove the first claim, if x € € satisfies the property, then there is z € T,
(¢, ') € . = Bt (e) x G(Z,) and b € B so that

(07012, b 7 (@) 1) € Be = Biar(€) X G(Zy) C Gow % G

Then we have that z € ¢'bG(Z,) and so ||z||, < ||b]], < maxpep ||b]|,- Observe
( ) € Ox(1). Thus we have that

19+ Blloc < - lglloo - llloo < 72 [|gloo,
for all g € GL,,(R). We conclude,
|72 = 2lloo < |l = 26|00 + |2 — 2]l
(€ = 9)loo + [lzple — ¢~ 27 2) |0
< ca (lle = ¢lloc + lldle — o7 a7 2)]])
<CQ(|I€—¢I|oo+n||€—¢ o2 |)

E

( + 1)c + (n+€1)cQ)
O g

<(n
<e.
O

Proof. (of Theorem . The proof is similar to the one of Theorem We
again write

™=, q=qp(G) a = ape(G).
Fix Q C G4 bounded. Let 6 > 0 and £ > 0 and set

dimg (G)
he = e~ (Pcpetd) — —(FE—+9)

We denote for 0 < e < 1,
X.={zeX : B lznd.pr =0}
Similar to the proof of Theorem it follows for he > ho(p,d’),
mx(X:) g, %

dimg (G 2
05,5 = — <lm%( Ja , 5) (—q“ + 5') — dimg(G)
2 dimg(G
_ dimg(G) + 022 _ & (lm@Uq N 5) .
q a
Now choose ¢’ small enough so that 655 > dimg(G). By Proposition we
have for all € {2 that
edme(®) o my (@) 1).

Thus there is £9(£2, 0) small enough so that for all 0 < € < £¢(£2, §) we have that
he > ho(p,d’) and mx (X.) < mx((®.)~t2~!). This implies that (®.) oz~ ¢
X, and x’l(q)s)’lB};l N®.r # 0 and hence the claim is implied by the last
proposition. O

for
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5.4 Discrepancy Bound for Diophantine Approximation

We proceed with the same setting as in the last subchapter, however change
the metrics on G and G,. On G we consider a left-invariant metric do
induced by a left-invariant Riemannian metric, whereas on G, we turn the
matrix norm from before into a bi-K),-invariant one by averaging, where K,
is a maximal compact subgroup containing G(Z,). Moreover, we fix a Haar
measure my, on G, that assigns unit volume to the set K,. Then we choose a
normalization of Haar measure my, on G, with the property that the Haar
measure mg,, xG, = Moo X My descends to the probability measure mx, ,, i.e.
so that for all f € L'(Goo x Gp),

| X f@dny, = [ ) dma_c, o)

yel

We again write throughout this subchapter X = X, o and I' = I', ,. We
further write I'y for the ¢-congruence subgroup of G(Z) and denote by

I(h)={yel :|hll, <h} and Bn={g€G, : |lgll, <h}.
For z € G, denote
B.(z) :={y € G : doo(,y) < €}
We note that for all x € G, and € > 0,
Moo (Be (7)) = Moo (€B:(€)) = Mmoo (B:(€)).

Theorem 5.12. There is €9 > 0 so that for all 0 < ¢ < g9 and Q C G
bounded,

[T'(h) N B:(")|
mp(Bh)

[NE

— Moo (Be(€)) a5 (Moo (Be(€))) 2my(By) 0@

L2(9)

Moreover, if Q) is T'p-injective, then the bound does not depend on €.
Proof. The result follows by expressing the quantity

[D'(h) N B:()]
my(Bp)
in terms of the operator 7, ¢(fp,) and then applying Theorem Choose ¢
small enough so that in G, we have B, (v) N G(Z) = {v} for all v € G(Z). The

set
b, = Bs(e) x K, C G X Gp

is left-I'-injective and denote by x. the characteristic function of ®.. Write

Pe(g) = Z Xe(97)

yel’
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for g € Goo x Gp. The function ¢. is well defined on X. By our normalization
of the Haar measure on G,

/¢edmx—/(G o) > x=(97) dmx(g)

/T ~el’

= / Xe dma. xa, = Moo(Be(e)).
Goo xG
Moreover, if € G and z € K, then

be(x™t, g7 2) dmy(g) =Z/B Xe(@ ™1y, g7 27) dmy(g)

B ~veT

= Z my(27K, N By)
YEBe(x)
= [[(h) N Be ()],
where the second line follows as (z7'v,¢97'27) € B:(e) x K, implies that

v € Be(z) and g € zvK, and the last line follows by K,-invariance of the norm
[ 1lp- Set fm, = %. These two equations combined yield

[T(h) N Be ()|

my(Bp,) — Moo(Be(€)) = p,e(fB, )¢ (2", 2 / ¢ dmx. (5.2)

Furthermore,

lodg= [ Y xelomnelone) dms(s)

Y1,72€l

/ > xe(g7)x=(979) dmx (g)

v,6€l’

—Z/ > xelgy)xe(g76) dmx (g)

del yel

= [ 3 xelo)dmclo)

X yel’
= Mo (Be(€)).

The mean ergodic theorem (Theorem gives

——1__45
[7p,e(Fri)llop <o mp(Bp) .
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Thus we have for fixed z € K, that

I°(h) N Ba()
—— " — Moo (Be
mp(Br) A 12(@)
1 1
=\|l—== (g 2)d e d
my(Bn) Jp, 99 (g / be dmx L2@)
1 . /
=\|l—s= (g )d e d
my(Bn) Jp, @<l (g Ps dimx 2(OxK,)

= (th ¢E 7' /¢8 de )

L2(Q-1xK,)

<q

m(fB,)o /¢s dmx

X)
- o 1 — eyt
<5 |[@e|l2mp(Bp) ot :(moo(Ba(e)))émp(Bh) ot

where the bound does not depend on  if the set is I'p-injective. O

The next result assumes the consequence of Theorem [5.12] and has as implica-
tion almost a mean ergodic theorem. In view of Theorem |3__]7|, if G, = SL2(Qp)
the next result almost implies a spectral gap. Before proceeding, we review a
general fact from measure theory.

Lemma 5.13. Let G be a locally compact metric group with Haar measure me.
Let f € LY(G). Then for almost all x € G,

o/ dma
lim 7fBE( ) =

o e By

Proof. We briefly review the proof given in Corollary 2.14 of [Mat95]. Consider
the measure p defined for Borel sets A as

= /Afdmg.

Since p < mg, there is a Radon-Nikodym derivative F'(mg, ) so that

/AF(mG,M) dmg = p(A) = /Afdm(;-

Hence f = F(mg, ) almost everywhere. The claim follows as the Radon-
Nikodym derivative F(mg, 1) satisfies at almost all points = € G,

o i(Be(z) fBE(m)fde
F(vaﬂ')(x) - g%m = gli% m
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Theorem 5.14. Assume there is some p > 0 so that for all T'g-injective Q C Go,

[C(h) N B:()]

o mee(Be(€)

<<5 mp(Bh)_p
L2(9)

Let T be an irreducible representation of G, contained in L3(X). Then

I (fB)llop < mp(Br)™"

Proof. By equation (5.2)), the assumption is equivalent to the condition that for
z € K, fixed

<Le mp(Bp)~”
L2(Q)

Tp,e (th ¢a ) 2 / Pe dmx

Thus, using similar arguments to the proof of Theorem [5.12

Tp, é(th ¢6 a' / Pe dmx < mp(Bh)*p,

L2(F=1x Kp)
by choosing a fundamental domain F~1 for I'y < G(R). As the class number of
G is finite,

e myp(Br)~*
L2(X)

Tp,e th /¢sde

We furthermore denote by ¢, . the function on X defined as

bac(9) = Y Xae(97),

~el

where X ¢ is the characteristic function of B.(z) x K,. Then by left-invariance
of d, it follows that

< mp(Bh)ip. (53)
L3 (X)

ﬂpye(th)d)x,s - /X¢6 de

Consider an irreducible unitary representation 7 contained in L3(X). If 7 is
not spherical, as By, is bi-Kp-invariant, 7(fp,) = 0. So we assume without loss
of generality that 7 is spherical and that v, € L3(X) is an associated unit K-
invariant vector, which is unique up to a multiple of S, and 7, (g) = (7yvr, v;)
be the associated spherical function. Recall that

|mp(13h)/B n-(g) dmy(g)|-

Then as 7(fg, )v- is K,-invariant it follows by one dimensionality of K ,-invariant
vectors that

Ir(fB)ll = KT (fB,)vr, v2)| = [0 (fB,)| =

T(th)vT = nT(th)UT
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Set f(g) = v-((g,e)T) for g € Go. As v; is Kp-invariant, it follows that f is
a well defined measurable function f € L?(G) and f # 0. Further, again as f
is Kp-invariant and as X, is the characteristic function of B.(z) x K,

<¢x,67'07’> = /X ZXQ:,&(Q’Y) mde(g)

yel’

- / Xoe(9)0r(9) dme xc, (9)
GooXGp

[ T in(o)
B.(x)

Thus it follows by Lemma that for almost all z € G,
(U7, Dae) STy

M (Be(@)) 1@

as ¢ — 0. So we fix some zg, depending on 7, so that f(xg) # 0 and choose
some £g so that
(Pag,200 V7)

Moo (Be, (20))
is close to f(xg) and in particular non-zero.
Using that v, is orthogonal to the constant functions,

<7Tp,€(th)¢wo,eo - /X (bgo de,UT> ‘

WP’Z(th)(bwo,Eo - ‘/)(¢60 dmx

|<7TP,Z(th)¢$0,€0 ) UT>| =

<5

L2(X)
Lreo Mp(Br) 7.

Moreover,

‘<7Tp,f(th)¢wo’€o7UT>| = |<¢zo,sov7rp,f(f§h)v‘r>| = nf(féh) : |<¢mo,€o7vﬂ'>|~

As n, is symmetric, 0, (fp, ) = 1-(fp,) and so we obtain the following:

(Bl = 1 (fB,)] Kre I My (Bp) ™" Kreq myp(Br)~".

Gxo.e05 U‘r>|

O

The next corollary combines Theorem [5.14] with Theorem [3.17] using the
additional assumption G = B! for B as usual a quaternion algebra over Q.
Towards our proof of property () for Q-forms of SLs, we replace the condition

of Theorem with (5.4).

Theorem 5.15. In the above setting, assume that G = B! and let p be an
isotropic place of G. Assume that there is some p > 0 so that for all x € G
and e > 0,

o5 my(By) P (5.4)

WP,E(th>¢$,e_A¢5 de

L2(X)

for all 6 > 0. Then q(mp ) < max{%ﬂ}.
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Proof. We recall that by [Bor97], we have a decomposition

Lg(Xp7Z) = L%cm(XP,Z) @ @ g,
O'Eé;, O=<Tp,¢
o not tempered
for L2, (X,,) a tempered subrepresentation. Thus the conclusion of Theo-
rem implies the assumption of Theorem [3.17] and hence by Theorem [3.17]
we conclude ¢(m, ¢) < max{%, 2}. O

5.5 Property (7) for Q-forms of SL,

In this subchapter we consider a quaternion algebra B, ; over Q for a,b € Q*.
Without loss of generality, we assume that a,b € Z. We moreover drop the
a,b in the notation and just write B = B, ;. As usual denote by G = B! the
algebraic subgroup consisting of elements of unit norm and for simplicity we
denote Z* = B(Z). As we assume a,b € Z, the algebraic group G can be viewed
as an affine Z-scheme. Throughout this subchapter, we fix a prime p with the
property that G is isotropic over Q, so that in particular G, = SL2(Q,). The
central aim is to show that g(mp ¢) < % for all p and ¢, where

(L i GSL,,
7L ifBis a division algebra.

This proves Theorem and in particular implies property (7) for Q-forms of
SLs.

The strategy is to prove the bound for the above choice of p by using
results established by Heath-Brown’s [HB96] approach to the circle method. This
implies gq(mp.¢) < % by Theorem [5.15 The main observation is that the norm Nr
on B(R) is an integer quadratic form in four variables. To link bounds as in
to counting the number of integral solutions of quadratic forms in four variables,
consider a positive smooth compactly supported function w : B(R) — R and the
function ¢, on X, , defined by

bu(Goor 9p) = Y w(gocV)Xr(2,) (9p7)5
yel 0

for (goo, gp) € G(R) x G(Qyp). Then we observe as in the proof of Theorem
for fixed g € G(R), u € G(Zp) and h,

bulg™ h 7wy dmy0) = 3 [l v (0 ) dmy(h)

By,

> wlg™ Mmy(Br N urG(Zy))

YELp ¢
= > wlgn= > w(),
YELp eNBp Y€l ¢ NBy,

where for simplicity we write w,(-) = w(g~'-). The relation between the latter
sum and the number of solutions of the norm-form is given by the following
bijection:

TpeN By — {z €1+ (Z)* : Nr(z) = h?}, v — hy.
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Thus it follows,

Sulg  h ) dmy(h) = Y we(y) = Y we(hz).  (5.5)
Y€, eNBp z€I+(42)*
Nr(z)=h>

By,

In order to deduce (5.4)), it suffices to understand the latter term as compactly
supported functions are dense in L?(R*). To introduce further notation, write

Np(wg) = Z wy(h™ 7).
zeI+(¢z)*
Nr(z)=h?>

The latter sum can be estimated by the methods developed by [HB96]. In
chapter m we will expose [HB96] and prove in chapter the necessary results
on the sum Nj(wg). In the remainder of this chapter, we state the latter results

and deduce from them (|5.4)) for p.
Write

1
Ooo(Nr,w) := lim — w(z) dz, (5.6)
€0 26 JiNr(a)—1|<e

where we refer to chapter [7] for a discussion around such integrals. Moreover,
write £ =[], L imeP"””. Then we denote by M, (p*) the number of solutions of
the equation

Nr(z) = h* mod p*

for x € {1,...,p"*"»}* under the additional assumption z = I mod p*». Finally
write .
M
op = lim h:gf )
k—o0 p
and

o(Nr, b2 1) = ] o

p prime
where we again refer to chapter [7] for convergence issues.
Corollary 5.16. For every £, there exists a measurable subset Q C G(R) that

surjects onto G(R) /Ty so that for all € > 0 and all suitable compactly supported
functions w : B(R) — R (see the discussion in chapter[7),

<<w,Z,Q,s h%+€-
L (Q)

| |Nh(wg) - Z%UOO(NL w)o(Nr, b2, I)h?

If moreover B is a division algebra,

w0 hite.
L2(Q)

‘Nh(wg) - e%aoo(Nr,w)o(Nr, h? I)h?

Before proceeding, we recall that we denote by m18™ and mgam the Tamagawa

measure on G(R) and G(Q,), which is induced by a fixed gauge form on G.
Moreover, we recall that as G is simply connected,

m™(GR)/G(2Z) [T mp™™(G(Zy)) = 1.

p prime



5. Diophantine Approximation 113

In the following, we use a more explicit choice of the compactly supported
function w. In fact, we fix some compactly supported function on G(R), which we
denote by wg. Then we choose a compactly supported function w : B(R*) — R
with the property

Ooo(Nr,w) = / wg dmIem,
G(R)

Lemma 5.17. In the above setting for h = p™,

1

7 — 000 (N1, w)o (N1, h?, T)h? = mp(Bh)/ G dmyx, ,.

Assuming the lemma for the moment, together with Corollary [5.16] it follows
by dividing by m,(Bp) together with equation (5.5)) that

Lw,b,e mP(Bh)_p+€a
Q(Xpl)

Tp,L th / Ow mMX,.

which then implies

Cwite mp(Br)PTE.

Tp,e(fBy)Pa,e — / ¢edmx, ,
Xp.e

L2 (Xp,e)

Thus by Theorem it follows that g(mp,¢) <

1
5
Proof. (of Lemma [5.17) Throughout this proof we introduce the more precise
notation Mj,(q*, ¢"») for the same quantity as Mj,(¢").

Let ¢ be a prime number. We aim to calculate o4, which will be done by a
case distinction. First assume that ¢ is coprime to £ and h. Then

|G(Z/¢"Z)| = |{z mod ¢* : Nr(z) =1 mod ¢"}|
= |{z mod ¢* : Nr(z) = h?> mod ¢"}|.

Thus it follows by Lemma [1.23

My (q", q")
q3k
M (g%, 1
= lim 7}1(3]6’ )
k—oo q

k
— |G(%Iég Z)| :mgam(G(Zp)).

04 = lim
k—o0

If ¢ divides ¢, then as £ is coprime to h for k > vy,

Mi,(¢*, ¢"1) = ¢*e|{z mod ¢* : =T mod ¢"» and Nr(z) = h* mod ¢"}|
= ¢*"|{z mod ¢" : z =h? mod ¢"» and Nr(z) =1 mod ¢"}|
w, 1G(Z/4"7)|
G(Z/qZ)|"
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where 1/ is an inverse of h modulo ¢*. Then again by Lemmam

k v
L n(q”,q")
9q = klggo g3k
My (g%, 1
= lim h(gk’ )
k—o0 q
_ Ay ‘G(Z/qu)‘

PG D)
q4uq am
" G )

Moreover if ¢ divides h (i.e. ¢ = p), then v, =0 as h and ¢ are coprime. Thus
by Lemma
0q = h_Qm;Fam(Bh).

Putting all this together and by using the Tamagawa volume formula, it follows
as h = p=”,

o(Nr,h? 1) = H o

q prime
4vg
_ mTam Q(7Z q mTam Q(7Z h72mTam B
, 1t]);i[mC q ( ( p))q 1t]);i[mC IG(Z/QV‘IZ)| q ( ( p))q ]£[mc q ( h)
(¢,0)=1,(¢g,h)=1 qle qlh
h=2¢ - T
= me(Bh)mpam(G(Zp)) H qum(G(Zp))~
YA
h—2e T 1
= me(Bh)mosm(G(R)/G(Z))_ :

As the probability measure on G(R)/T is induced by mz.jlml(g((g/)égﬁz))*l dmIam

the claim follows. More precisely,

1 _ m" (G(R)/G(Z)) !
ﬁam(Nr,w)a(Nr, h?, 1)h? = m,(By) G (Z)12) Ooo (N1, W)
—m mgoam(G(R)/G(Z))_l w mTam
=B G gy e

= mp(Bh)/ Z wa(gy) dmaw)r,(9)
GR)/T, [T,

= mp(Bh) L ¢w dep,l'
p,l

O

As a final remark, we observe that if B is a division algebra over Q, then
an improvement of Corollary implies Conjecture [3.13] This observation is
formulated in the next theorem.
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Theorem 5.18. Let B be a division algebra over Q. Assume that for every ¢,
there exists a compact subset Q@ C G(R) that surjects onto G(R)/T'y so that for
all e > 0 and all suitable compactly supported functions w : B(R) — R,

<<u1,€,Q,s h1+8-

1
| |Nh(wg) — 21000 (N1, w)o(Nr, h? I)h?
L2(Q)

!

Then Conjecture holds for G = B'.
Proof. This follows from the above. O
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6 The Hardy-Littlewood Circle Method

In this chapter we give an expository account of the circle method. Good
references for the circle method are [Dav05], [Vau97|] and [Nat96], which contain
the entire content of this chapter. In the next chapter we will discuss Heath-
Brown’s [HB96] version of the circle method.

The circle method, as exposed in this chapter, is concerned with understanding
the number of solutions to integer-valued equations. One of the motivating
questions is Waring’s problem, which we introduce in the following paragraphs.

Denote by g(k) the smallest number n so that every positive integer can be
written as a sum of n terms consisting of k-th powers of positive integers. By
considering numbers mod 8 it follows that integers of the form 8n 4 7 cannot be
written as a sum of three squares. Thus ¢g(2) > 3. By Lagrange’s four squares
theorem it hence follows that g(2) = 4.

More generally we claim that

To prove the claim observe that

SCIRR(GIREE

where the left hand side of the latter equation is clearly the representation using
the least number of k-th powers as it maximizes the number of times the term
2% is used. This shows the claim.

In fact, one conjectures that for all £ the above inequality is an equality so

]

However, this is only proved for almost all values of k (see the references in
[Vau97]), yet in the other cases a small alteration of the above formula for g(k)
is known to hold.

To summarize, the number g(k) is rather well understood. Instead of g(k), it
is more interesting to study the number G(k), which is defined to be the smallest
number n so that every large enough positive integer can be written as a sum
of n terms consisting of k-th powers of positive integers. By the above argument
it again follows that G(2) = 4. In contrast to g(3), the precise value of G(3)
is only known to be > 4 and < 7. A well-known result by Davenport [Dav39]
states that G(4) = 16.

The central aim of this chapter is to show G(k) < 2% 4 1. This is by far
not the optimal result, yet the proof provides a good introduction to the circle
method. Better results are for example due to Vinogradov [Vind7], who showed
for k > 2 that G(k) < 3klogk + 11k. Even more refined estimates are known
today. The reason we focus on the proof that G(k) < 2¥ 4 1 is that the explored
methods have structural similarity to the techniques developed by Heath-Brown,
which are discussed next chapter.

g(k) = 2" +
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For fixed positive integers k and n denote by 7 ,(m) for m > 1 the number
of positive integer tuples z1,...,z, > 0 so that

m:m]f+x’2€+...+:c’;.

In order to show that G(k) < n it suffices to show for large enough m that
Tpn(m) > 0. The main result of this chapter is an asymptotic formula for
7k.n(m) under the condition that n > 2% + 1. Namely, we will show the Hardy-
Littlewood asymptotic formula: There exists 6 = d(k,s) > 0 so that

() = Cinin (mymA = + O (m7170),

where oy, ,(m) is the singular series, a function depending only on k and n
which satisfies 0 <, 0 n(m) <k, 1. The constant Cj ,, has the explicit value

D(144)"

Ck:,n = T T1ny
I'(%)

where as usual for ¢ > 0,

F(t):/ 'l du.
0

The above asymptotic formula clearly shows for m large that ry ,(m) > 0
provided that n > 2k 4 1.

Before starting to develop the theory, we briefly comment on the strategy to
establish the asymptotic formula. Denote by A C N a set of positive integers
and consider for z € C with |z| < 1 the following converging sum

F(z) =) 2"

a€A

For a positive integer n one observes

o)
Fayi= 30 sttt =3 (m)
=1

ai,...,an, €A

for r4,,(m) the number of representations of m as a sum of n-elements of A.
Recall from complex analysis that

r m 1 M dz
AT /IZI—p

T 2mi Zm+1

for p € (0,1). In the original approach by Hardy and Littlewood [HL], this
expression of r4 ,(m) was analyzed by analytic methods.

Vinogradov observed the following simplification. Namely, in order to study
ra.n(m), instead of the above power series F(z), it suffices to consider the
polynomial
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so that
T(a)" = Z e((ar+ ... +ap)a) = Z Tiﬁz(m)e(ma),
a1,...,an€EA m=1
a; <N
(N)

where 7, (m) is the corresponding number to r4 ,,(m) where one only considers

elements of A that are < N. As the elements of A are positive, it holds that

7“[(41\,2(771) =714 n(m) for m < N and 7“1(4]?’12 (m) = 0 for m > nN. Thus it follows

that

nN
T(a)" =3 ') (m)e(ma)
m=1

By the basic orthogonality relations
1 .
1 ifk=¢
/ e(ka)e(—La) da = 1 ’
0 0 ifn#/t

one concludes for m < N

TA,n(m)Z/O T(a)"e(—ma) da.

Returning to Waring’s problem, we consider the set A;, = {n* : n € N}
so that 7 ,,(m) = 74, n(m). In order to calculate ry ,(m) it thus suffices to
consider the sum

P
T(a) = Z e(an®)

n=1

for P = [m*]. By the above

1
Tk,n(m):/o T(a)"e(—am) da.

So we have reduced the calculation of 7, (m) to evaluating the above integral
on the circle. In this chapter we develop methods in order to prove the Hardy-
Littlewood asymptotic formula by analyzing the latter integral.

In this exposition we mostly follow [Dav05], yet also consult [Nat96].

6.1 Weyl’s Lemma and Hua’s Inequality

Throughout this subchapter we consider a polynomial
flz) =az® + a1z 1+ ...+ ap.

The first aim of this subchapter is to estimate the sum

for P some large integer and with the additional assumption that « has a suitable
rational approximation.
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Let P> 0 and let Py, P, € Z so that 0 < P, — P, < P. Then we set

Ps

Sk(f) =Y elf(@)),

rz=P;+1

where we suppress in our notation the dependence on P, P; and P for convenience.
Observe that trivially |Sk(f)] < P, yet we aim to improve the latter bound. For
x,y € Z we write

Dy f(x) = flz+y) - ()

and for y1,...,yn € Z we inductively define

Ayl ..... ynf(x) = Ayn (Ayl ..... yn71f(1.))‘

Notice that by the binomial expansion formula, A, f is of the degree k —n.
Proposition 6.1. Forv >0,

P
1Sk(FIF < PP PP N (S (D F-

Y15y =1

Proof. We calculate,

1SK()P = Sk(N)Sk(F) =D elf(w2) - Y e(—f (1))

z2 1

= 3 elflaz) - fan)

Z1,T2

=P, — P +2Re Z e(f(z2) — f(21))

Z1,T2
T2>T1

P
Py Py 4 2Re (Z ) e(Ayf(x))> ,

y=1 =z

where in the last line we relabeled the variables as z = x; and y = x2 — 1 so that
x varies over the interval [Py +1 —y, Po —y] N [Py + 1, P2]. The only observation
of importance is that x varies over a possibly empty interval depending on y,
whose length is bounded by P. In particular,

P

1Sk(FIP <P +2> [Sk-1(Lyf)].

y=1

By the same argument, we prove

P
|Sk-1(By )P S P42 |Sk-a(Ly,f)]

z=1
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and hence

P 2
1Sk = (ISk(N)P)? < <P+2Z |sk1<Ayf>>

y=1

P P 2
=pP%4 4PZ [Sk—1(Ay f)] +4 (Z Sk—l(Ayf”)

y=1
P
<5P% + 8PZ |Sk—1(Ay f)I?
y=1
P
<45P% £ 32P > [Skoa(Ly 2 f)

y,z=1

y=1

P
< P3_|_P Z |Sk_2(Ay,zf)|7

y,z=1

where we used in the third line the inequality (3°1, |z;|)? < 2n ) ., |z;]?. By
the same proof, the claim follows inductively. O

Before stating and proving the first major result, we discuss a couple of
lemmas.

Lemma 6.2. It holds that

Aylv---vyk—lf(x) =klayy ... yp—17 + B3,
for B a collection of terms independent of x.

Proof. Tt suffices to consider the case f(z) = az*, as the lower order terms either
vanish or contribute to 5. Moreover, we also assume without loss of generality
a = 1. Then by the binomial expansion formula,

Dy f(z) = (@ +y1)* — 2% = kyua ™ + Bz
for Bx_o terms of degree < k — 2. Proceeding,
Dyr o f () = k(k = Dy1y2a® % + Brs
and by continuing this process the claim follows. O

Lemma 6.3. For a € R and N1 < Ns,

No 1
e(an)| < ——,
2= A

where ||a|| denotes the distance of « to the nearest integer.



6. The Hardy-Littlewood Circle Method 121

Proof. We calculate by using the formula for geometric progressions,

o :E27:E171
> elan)| = lelafmr +1)) Y efa)”
r=x1+1 n=0
_le((wg —x1)a) — 1 2
B e(a) =1 = le(a) — 1
_ 2 _ 2
le(5) —e(—9)] |2i sin e
B 1 B 1 1
~ |sinmal  sinT|lal| T 2[|ef|’
In the last line it was used that 2z < sinzz for 0 < z < % O

As usual, we denote by d(m) = 3_,,, 1 the number of divisors of m.

Lemma 6.4. For any e > 0,

d(m) <. m°.
Proof. Write m = pi\lpg‘2 -... and observe
me = H pe)\i < Hl 2eX; <e 1’
! pi<2e

where the first inequality follows as if p§ > 2, then p; © < % and hence omitting
the term for that ¢ just makes the total product larger. The last inequality
follows as for each & > 0 the product is finite and also 275*(\ + 1) is a bounded
function. O

Lemma 6.5. Assume that o is a real number that has a rational approximation
% for coprime a € Z and q € N that satisfies

a < 1
a——| < —.
q| = ¢?
Then .
—= < 3qlogq.
2z, Tl
=r=3

Proof. The lemma clearly holds for ¢ = 1. So we assume g > 2. For each integer
r, there exists s(r) € [0, ] and an integer m(r) so that

-4+ (OZ —m(r)) .

As (a,q) = 1, it follows that s(r) = 0 if and only if » = 0 mod ¢ and hence
s(r) € [1,4] if r € [1,2]. We only consider r € [1, 4] for the remainder of the
proof.

s(r)

q

ar

q
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Choose —1 < 0 <1 so that o — % = ({% and similarly choose ¢ = % with
|60'] <1 so that
_ar o o ¥
YT eE T T
Thus using that [|a + B|| < ||a|| 4 ||8]] for all real numbers a and f,

ar 0 s(r) ¢
ar||=||—+ =—|| =||m(r) £ — +
lar]| % “() i
/ /
s o L[] ||
q 2q q 2q
Ls) 1
q 2q

Let 1 <7y <7 < 4. We note that s(r1) = s(r2) only if r; =72 mod ¢ and
hence s(r1) = s(r2) only if 1 = ro. Therefore it follows that

{ :1§r§g}_{%?:1§r§g}_{2:1 s

Hence the claim of the lemma follows as,

ar
q

IN

IN
NSRS
—

Z 1 < 1 _ 1
Jor = &2, 50 07 2. SOL
1<r<g 1<r<g ¢ 2q 1<s<i 4 2q
=2 1 <2 1
— 2s —1 — g s
1<s<d 1<s<g
q
2 1
<2q|1+ Ed:c (1+1logq)
1
< 3qloggq

O

Lemma 6.6. Assume that « is a real number that has a rational approximation
% for coprime a € Z and q € N that satisfies

a
o — —

1
q a2

< —.
q

Then for any non-negative real number P > q and non-negative integer h, we
have

1
min —— | < 9P +qloggq).
23 (P o) < o +atono

Proof. Write again a = £ + 5 9 for || < 1. Then

(hq+r)—ah+£+9fh+9r
q q q
—ah+?+w+zg_ah+ar+wh]+6(7’)
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for —1 < §(r) ={0h} + gq—’“ <2

For each r = 1,...,q there is a unique integer r’ so that
ar + [0h] + o(r
{athg+ ) = TEELES

Let0<t < 1—%. Ift <{a(hg+r)} < t—&-%, then gt < ar—gr’'+[0h]4+06(r) < qt+1.
This shows that

ar —qr' < qt —[0h] +1—6(r) < qt — [0h] + 2
and
ar — qr' > qt — [0h] — 6(r) > qt — [0h] — 2.
It follows that ar — gr’ lies in the half-open interval J of length 4, where

J = (gt — [0h] — 2,qt — [0h] + 2.

If1<r <ry<qgandar, —qrj =ary— qr2 then ary = ars mod ¢ and so
r1 = ro. Thus it follows that for any ¢ € [0, £ ] there are at most four integers
r € [1,q] so that {a(hg+7)} € [t,t + 5}.

Next we note that ||a(hg +7)|| € [t,t + %} if and only if either {a(hq+ 1)} €
[t,t + %] or 1 —{a(hqg+r)} €t t+ 1] The second inclusion is equivalent to
{a(hg+r)} e [t', ¢ + ] for0<t' =1—=—-t< 1 . To summarize, it follows
that for every t € [1, - 2211 there are at most eight 1ntegers r € [1,q] for which
[[{a(hg+7)}|| € [t,t+ a]. In conclusion, if we set J(s) = [2, “’H] fors=0,1,...,
then ||a(hq + r)|| € J(s) for at most eight r € [1, ¢g].

This observation implies the estimate. More precisely, if ||a(hg + 7)|| € J(0),
then we use the inequality

1
min(P,——— ) <P.
( IIa(hq+r)|)

If ||a(hg + 7)|| € J(s) for s > 1, then

win (. g 7)<

As ||la(hg +7)|| € J(s) for some s < €, it follows that

. C]
Z mm( ”CY(hCI'f‘T)H) 8P +38 Z 9(P + qlogq).

1<r<gq 1<é<q

The first major result of this subchapter is Weyl’s Inequality.

Theorem 6.7. (Weyl’s Inequality) Assume that « is a real number that has a
rational approximation 2 for coprime a € Z and q € N that satisfies
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Then for any e > 0 and K = 2F1,

P
Y elf(x)

Che P1+5(P—1 —|—q_1 +P_kq)%

Proof. We assume g < PF as otherwise the result follows from the trivial bound.
Applying Proposition [6.1] and Lemma [6.2] yields

P P
dYoef@)| <w PEHHPEE YT 151y f ()]
z=1 Y1,---Yp—1=1
P
< PE-1 4 pEF Z [S1(Klays . .. yk—1)]
Y1,---Yp—1=1
kipF-t
< P14 PETRN " min(P, |lam]| ),
m=1

where we used in the last line Lemma [6.3] together with the trivial estimate < P.
The task at hand is now to estimate the last term by using the Diophantine
condition on a.

The sum over m is divided into blocks of g consecutive terms so that the

number of such blocks is < # + 1. We only consider the sum over any such
block, which will be of the form

me( E—

for h some non-negative integer. Using Lemma the claim of the theorem
follows:

K kPRt
< PE-1 4 pE-k Z min(P, [|am||™1),

m=1

Pkfl
<, PR 4 pEoh <q + 1) (P + qlogq)

k—1

P
Lpe P71 4 pE-hte ( + 1) (P+q)

Pk
Lp e P71 4 pE-hte (q + Pl py q)

Pk
<<k:,a PKfl +PK7k+€ (
q

e PEYFE(P 4 ¢7 4 P7F),

+PE 4 q>

where we used that as ¢ < P*, we have logq <. P*. O

Theorem 6.8. (Hua’s Inequality) For k > 1 and o € R, consider

P
= Z e(azk
r=1
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Then .
/ ()" dov < e P22,
0

Proof. Denote for v =1,...,k by

1
L,:/ IT(a)|* da.
0

We show by induction the claim
IV <<k,1/,s PQV_V+E

forallv=1,... k.
The case v = 1 is straightforward, as

I = /|T )? da = 2/ % — 28))da = P.

T1,T2= 1

Next assume that the claim holds for 1 < v < k — 1 and we want to prove the
claim for v + 1. As in the proof of Lemma [6.2] it follows

IT())? <, P21 4 P¥""'Re ( Z Sk )
Lyu=1
for

Sk_, = Z e(aAyl,w,yu (xk))

x

where x ranges in an interval depending on yi,...,y, yet contained in [1, P].
Multiplying both sides of the inequality by |T(«)|?” and integrating, it follows

Iy <, P27, 4+ P2 vt Re (/ Sk—v|T()*" d( >)
Notice that the last integral is of the form
k 2./7172”’1
Z Dy, (7)1 () T(a) dov

/ Z ,,,,, (2M) Z elaul + ...+ aub, e(—avt — ... —avh, 1) d(a),

where the u; and v; go from 1 to P. The latter integral is equal to the number
of solutions of

Dy @)+l o dub, s =0 — =0k =0,
Denote by N the number of solutions for all possible values of y1,...,9,.

Then
I, <, PP 1,4+ P¥ 771N,
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We next estimate N. As the y1,...,y, range over [1, P] they are positive and
as z is also positive, it follows that A,, ., (z¥) > 0. Also, the latter number
is divisible by v, ...,¥y,. Fix for the moment ui,...,ug9v—1 and vy,...,v9v—1.
Then the corresponding sum uf + ... —of — ... is contained in [-2"P¥, 2 Pk].
Since each y; divides the latter sum, we can only choose y; in the set of divisors
of the latter sum which satisfies by Lemma <k,e P?. So there are only
Lp,ve P many possibilities for y1,...,y,. Furthermore, since A, . 4, (CUk) is
strictly increasing in x as v < k — 1 there is at most one possibility for z. As
the number of possibilities for u; and v; is < P2” it follows that

N <<k:,y7€ P2V+l/€.
Combining all this, it follows that

v__ v_ v_. v_ v+1_
II/+1 <<k7l/78 P2 1P2 V+€_|_P2 v 1P2 ve <<k,y7s P2 (l/+1)+l/€'

6.2 The Singular Series
For a,q € N with (a,q) =1 and m > 1 we define
q k q n
az Se am
Sug=3 e () A= Y (q) ’ <_) |
z=1 q a=1 q q

(a,q):l

Using this notation, we define the singular series for m > 1 as

oo

) =3 An(@) =3 Y (5) (_m) .

qg=1 g=1 a=1 q q

We also introduce the notation for @ > 1,

q n
S, am
mn@m =% 3 (%) (-2,
<@ a=1 q q
q<
(a,9)=1

As a consequence of Weyl’s inequality (Theorem [6.7) we prove the first
lemma.

Lemma 6.9. For k > 2 and a,q € N with (a,q) = 1,

_ 1
Sa,q <<k,a ql xte

for K = 28— Moreover, for n > 2 4+ 1 the singular series converges absolutely.

Proof. To bound S, , we notice that the assumptions for Weyl’s inequality are
clearly satisfied. Thus

_ _ _ 1
Sag <re @ (@ g g FgE
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Using this estimate, we bound the singular series:

|Jkn |<<kez Z |q715aq‘n

a=
(a7q) 1
<<kez Z q K+E<<k Zq 7+ < oo,
L@
for suitable € where we used the assumption that 1 — & < -1 asn > 2k, O

We next investigate multiplicative properties of the expressions S, , and
Anm(q)-

Lemma 6.10. Let b,r € N so that (q,r) = 1. Then
Sqr ar+bg — Sq, Sr b-

Proof. By the Chinese remainder theorem, since (¢,7) = 1, every congruence
class of gr can be written uniquely in the form xr + yq for 1 < x < ¢ and
1 <y <r. Thus it follows that

qr q r
S = 3o ((TEIOE) g ((ortaller ey

z=1 r=1y=1 ar
T k
:;y_le<(ar+bq ;@ ) ) )
-3 ;e((‘”;*’”«m + (ya) ))
_ ZZ(@;)) (b(y;))
:zzq:_le(f>§e(bz> Sq,aSrb

Lemma 6.11. If (¢,r) =1, then

Am(qr) = Ap(q) Ap(r).

Proof. If (¢,qr) = 1, then ¢ is congruent modulo ¢r to a number of the form
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ar + bq where (a,q) = (b,7) = 1. Thus by the last lemma it follows that

wian = 3 () ()

c=1
(c,qr)=1

Q
I
—

S () () () ()
= Z —= el——)el——
b—1 q r q T
(a,q)=1 (b,r)=1
= A7rL(q)A7rL(r)~

For fixed m and for a prime number p we denote by M,,(q) the number of
solutions to the congruence

2+ 428 =m modq
for integers 1 < x; < ¢. For a prime p, we set

o = lim Mm(®)
P {00 pé(n—l) ’

Lemma 6.12. Let n > 2% + 1. For every prime p, it holds

Proof. We first check that the right hand side converges. To see this we use
1
again S, ¢ <k, ¢'7 X7 and hence

q 1
A (a) Knie qE-nE = qrom)

for & small enough. This clearly shows that the right hand side converges.

Next notice that if (a,q) = d, then
q k q k
)5 ()
— q — q/d

=1
q/d k
a/d)x
dZe(( //zi >:d5q/d,a/d-

r=1 q

S‘Lq

Recall that the geometric series implies

1zq:e<am>_ 1 ifm=0 mod gq,
g~ \q¢/) |0 ifm#0 modg.
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Thus for any integers z1,...,x, it follows

lzq:e<a(xlf+...+xﬁm))_ 1 ifz¥ 4+ ...+ 28 =m mod g,
q: q 0 ifzb+...+28 £m modgq."

With this observation, we can write

1 1 a(@¥ + ...+ 2k —m)
M..(q) = .. - e( L n >
:vlzzl mnzzlq; q
Iyt oy (and azy) , (Zam
X e () e (7))

53 3 () ()

In particular,

Y Awmla/d) =" " Mu(q)

dlg

for all ¢ > 1 and so for ¢ = p,

£
LY An() =Y An(p'/d) = p" =" M, (p"),
j=1

d|p*
which implies the claim as k — oo. O
Corollary 6.13. Forn > 2% + 1, it holds that

Okn(m) = H Op-

p prime

Proof. This follows immediately by the last lemma and since A,,(q) is multi-
plicative for coprime numbers. Hence

oo

Trn(m) =Y Am(@) = ][] (HZAm(p%)
q=1 =1

p prime

H Op-

p prime
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Corollary 6.14. If n > 2% + 1, there exists a prime po = po(k) so that

Proof. We already know
for 6 = §(k). This implies
|Up - 1| <& prf(1+5) <k p7(1+5)'

=1

In particular, there is a constant ¢ = ¢(k, s) so that

1-—— <o, <1+

p1+6 - p1+5

for all p. Thus the claim of the lemma follows if we establish that the product

I ()

P>Ppo
converges. To see this just apply the logarithm and recall that In(1 4+ z) < z so
that
c c c
(It ) = S (14 ) <5y <
p p p

O

The last corollary implies that oy, (m) is bounded from above independently
of m. Towards proving that the singular series is bounded from below, we discuss
some congruence lemmas. For the moment fix a prime p and write

k=pTko
with (ko,p) = 1. Then define

T +1 ifp>2,
TT\ 42 itp=2

Lemma 6.15. Let m be an integer not divisible by p. If the congruence
z¥ =m mod p”
1s solvable, then the congruence

y* =m mod p"

1s solvable for every h > ~.
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Before proving the lemma, we prove the claim that if a, b, c € Z are non-zero
integers and a = 0 mod (b, c¢) then there is an integers ¢ so that b¢ = a mod ec.
To see this denote by d the integer with the property a = d(b,c). As (bbc) is

coprime to ¢, on concludes,

0= d0.05 ((bi))l = <<b,bc>)l mod ¢

which proves the claim.

Proof. Denote by ¢(n) the Euler function so that ¢(p") = (p — 1)p"~!. Assume
first that p is an odd prime. Then for h > v =7 4 1, it holds

(ko) = (k,(p— D)p" ") = (k, (p — 1)p") = (k, o(p"))-

Recall that as p is odd, the group (Z/p"7Z)* is cyclic and it consists precisely
of all congruence classes that are relatively prime to p and hence has order
o(p") = (p — )p"~L. Let g be a generator of this cyclic group, then g is
a primitive root modulo p” and hence also a primitive root modulo p?. If

¥ =m mod p? then (z,p) = 1 and hence we can choose integers r and u so
that
z=g¢" modp" and m=g¢" mod p".
Then
ku =71 mod ¢(p”)
and

r=0 mod (k,o(p”)) and r=0 mod (k,e(p")).

Hence, by the argument before the proof, there exists an integer v so that
kv = r mod p(p").

Then setting y = gV proves the claim.

Now assume p = 2 so that m and z are odd. If 7 = 0, then k is odd. As y
runs through the odd congruence classes of 2" then so does y* as otherwise one
derives a solution to the equation y* =0 mod 2" which cannot exist. Hence the
congruence y* =m mod 2" is solvable for all h > 1 and any odd m without any
hypothesis. If 7 > 1, then k is even and m = 2% =1 mod 4. Also z¥F = (—2%)
and hence we can assume without loss of generality that + =1 mod 4. The
congruence classes modulo 2" that are congruent to 1 modulo 4 form a cyclic
subgroup of order 2”72 and 5 is a generator of this subgroup. Then choose
integers r and u so that

m=5" mod?2" and z=5“ mod 2".
Then z* = m mod 27 implies
ku=r mod 2772

So 7 is divisible by (k,27) = 27 = (k,2"~2). It follows analogously to before that
there exists an integer v so that

kv=r mod 2" 2

which again implies the claim by setting y = 5. O
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Lemma 6.16. Let p be a prime number. If there exist integers ay,...,a, not
all divisible by p so that

ay 4 ...+a* =m mod p?

then
op > p7=1) 5 0.

Proof. Suppose that a; 0 mod p. Let h > . For each i = 2,..., n there exist
p"~7 pairwise incongruent integers x; so that

z; = a; mod p".

As the congruence

F=moak— . —ak

mod p”
is solvable with z1 = a; # 0, it follows by Lemma [6.15] that the congruence

k — k k
TI=EM—2Ty —...— T

mod p”
is solvable. In particular this implies that
Mm(ph) > plh=7(n-1)

and so

Lemma 6.17. Assume n > 2k for k odd or n > 4k for k even, then

(=m >0

op>p”
Proof. By the last lemma, it suffices to show that the congruence
a¥ +...+a* =m mod p?

has a solution in integers a; not all divisible by p. The proof has similarity to
previous arguments and is omitted here. See chapter 5.7 of [Nat96]. O

Combining all this, the following result is readily implied.

Theorem 6.18. Let n > 2F + 1. There exist positive constants C; = Cy(k, s)
and Cy = Cy(k, s) only depending on k and s so that

Ci < O'kﬁn(m) < Cy
for all m. Moreover, there is some § > 0 so that for sufficiently large m,
Ty (PY'ym) = 0 (m) + O n(P7°)

forv>0.
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Proof. In the proof of Lemma it was shown that oy, (m) <k, 1. To prove
the a lower bound on the singular series we combine Lemma[6.14]and Lemma[6.17]
to deduce

orn(m) =] o > % [[on= % I[»" ™ >o.
p

p<po p<po

To prove the last claim, just choose 6 > 0 so that A,,(¢) <k n q11+5. Then

1 —v
Tkn(m) = ok (PYym) = Y Am(q) <km Y o5 <km P77
q>Pv q>Pv q

6.3 Major and Minor Arcs

Throughout this chapter fix some § small, P > 2 and £ > 2. Around every
rational number % in its lowest terms, we consider

< Pk+5} .

m- U U m,

1<q<Ps 1<a<q
(a,q)=1

a
o — —

Ma g = {a €[0,1] :

Moreover we set

and call the latter set the major arc. The intervals are contained in [0, 1], yet
we think of the point 1 as the same point as 0.

We claim that the intervals 91, 4 in the definition of 91 are disjoint. To see
this assume for a contradiction that o € M, , N My o for a,q and o', ¢’ as in

the definition of 2 and with the assumption that £ 7 Z—:. Then |ag’' —a'q] > 1

and

/

a a !

a
a— —
’
q

1 < ! <
P25—qq/—

2
< _Z

a
a-- = pr=se

q

<

+

Q
Q

which is a contradiction for P > 2 and k > 2.
The minor arc m is defined as the complement of 9 in [0,1]. As before we
consider

P
T(a) = Ze(amk).
=1
The inequalities of Weyl and Hua readily imply the next claim.
Proposition 6.19. Ifn > 2F +1,

/ ()| s PP
m

for &' > 0 only depending on §.

Before proving this proposition, we recall Dirichlet’s classical result on Dio-
phantine approximation.
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Lemma 6.20. (Dirichlet) Let o and Q be real numbers, QQ > 1. Then there
exist coprime integers a,q so that

1<¢<@

and

Proof. Let N = [Q] and suppose that {ga} € [0, —1) for some posmve integer
g <N <Q. If a=[ga] then 0 < {ga} < ga—[ga] =qa—a < N+1 and so

A similar argument also works if {ga} € [N+1’ 1) for ¢ < N < Q. Namely, if
so, then set a = [ga] + 1 so that

<{gqa}=qa—a+1<1.

N+1
This implies that
1
—al < ——
g —al < 5=
and hence the claim.
Finally if {ga} € [§, N+1) forall g =1,. N then each of the N numbers

{ga} lie in one of the N — 1 intervals [ ’+ s Lyfori=1,...,N —1. Thus
thereex1sts1<z<N—1and1<q1<q2§Nsothat

7 1+ 1
{gna}, {ga} € N1 N+1>

Then choose
g=q—q €[1,N —1], and a = [ga] — [q10]

and observe finally,

1

ma—MZK@a—MM)(ma—MMN—H@M-{mM%<N11<§-

O

Proof. (of Proposition [6.19) By Lemma [6.20} every « has a rational approxima-
tion ¢ with (a,¢) =1 and

1<qg< pr-o and

Moreover we can choose 1 < a < ¢ whenever 0 < a < 1.
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As the last inequality is stronger than the one in the definition of 9, 4, it
follows that o € M, , if ¢ < P?. Hence if o € m, it follows ¢ > P°. As in that
case [a — ¢] < q~? we can apply Weyl’s inequality (Theorem D to T'(«) and

as PTk > P‘S, it follows
IT(a)| <, P75
for K = 2k=1. Then using Hua’s inequality (Theorem7 it follows as n > 2% —1

/ ()" dor = / ()2 [T ()

1
Cpe P(n—2’“)(1+6+%)/ ‘T(Q)Fk do
0
Cpow P2t 5) p2i—hae’

oot pr—ktn(et )2 (e+f)+e i pn—k—d'

for a suitably chosen ¢’. O

We next study the major arc. In order to do so we recall the notation

k
()

z=1
and introduce for ¢ € R,
P
I(c) = / e(cx®) d.
0

Lemma 6.21. For o € My q setting a = c+ ¢, it holds

T(a) = q 1S, ,I(c) + O(P%).

Proof. We collect the values of x in the sum defining T'(«v) that are in the same
residue class mod q. So set x = qy + z for 1 < z < ¢ and y runs through an
interval depending on z which corresponds to 0 < x < P. Thus

T(a) = ie(amk) - zz:ze (<Z + c) (qy + z)k)
ie <azk) > elelqy + 2)b).

z

We next want to replace y by a continuous parameter. In order to so recall
that for any differentiable function f on the interval [A, B], it holds by using
the mean value theorem for intervals of length 1,

B
/A faydn— S fw)

YyEZL
A<y<B

_ !
< (B—-A4) e | (@)| + max |f ()]
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Using this for the function f(n) = e(c(qn + 2)*) on the interval € [0, g] with
the property

max |f'(z)] < qlc|P*"!  and  max [f(z) =1
z€[0, 2] z€[0, 2]

it follows that

47 80,0 1(0) — T(a)| = Z (q) - <q1 / (et da ;em) |
= ;e <a2k) : (/OP e(e(qn + 2)*) da — qu) ‘

P
< q (qqlclPk_1 + 1) < qP% < P,
where we used a substitution £ = ¢n + z in the second line and in the last line
we used |c¢| < P~ and ¢ < P?. O

Recall the notation

Moreover set

J(P?) = /|~,|<P5 (/01 e(yx®) dm)ne(—v) dry.

Proposition 6.22. It holds,
/ T(a)"e(—ma) da = P *gy, ,(P°,m)J(P°) + Ok,n(P”_k_‘;/)
m

for some §'.

Proof. Fix for the moment a < P°, ¢ coprime to a and o = ¢ + g € M, q with
lc| < P=%+9. Then using |¢~1S, ,I(c)| < P, it follows by Lemmam

T(a)" = (¢ Suq)" ()™ + O, (P"1F29). (6.1)

Multiplying by e(—ma) and integrating over M, ,, i.e. over |c| < P~F¥9 the
main term in the last expression gives

am

(47 Suq)e (-4 /chPM (1(0))"e(—me) de.

Thus summing over all a and ¢ in the definition of 91 gives that the main
term is
(PP, m) / (1(c))"e(—me) de.

lc|<P=k+5



6. The Hardy-Littlewood Circle Method 137

We can replace in the integrand m by P* only with a small error. Indeed, as
m — P* < P*~1 it follows that

le(—em) — e(—cP*)| < |¢| PPt « P71H°

as |c| < P7%+9. Thus the error in the integral is < P~¢T9PnP1=%  Using that
trivially o, (P°,m) < P?%, this leads to the final error P"~*~1+4% and so is
negligible. Thus the integral of the main term is up to a negligible error

P n
/|<Pk+5 </0 e(cxk)dl“) e(=Pre)de = PRI (),

where we used the substitutions z = P2’ and ¢ = P~¥~. Thus the main term is
of the form we desired.

It remains to deal with the error term of . Integrating over |c| < P~F+9
it becomes <« P k=139 and finally as summing over all ¢ and ¢ are < P2’
summands, the error term is < P*~ k=150 <which implies the claim. O

6.4 The Asymptotic Formula for Waring’s Problem
We proof the main theorem of this chapter. Recall
L1+ )"
Ck,n = ( +nk)
I'(%)

Theorem 6.23. If n > 2% + 1, the number i, ,(m) of representations of m as
a sum of n positive integral k-th powers satisfies

Fean () = Clntn(m)m® 1 + Op(m=1-5)
for some fized &' = §'(k,n) > 0.

Proof. Recall that we fixed P = [m*] and

P
T(a) = Z e(azh).

=1
As discussed in the introduction to this chapter
1
Ten(m) = / T(a)"e(—am)da = / T(a)"e(—am) da+/ T(a)"e(—am) da.
0 m m

Using Proposition [6.19] and Proposition [6.22] it follows
Frn(m) = P" oy o (P2, m)J(P°) + O, (P70, (6.2)

As P = [m%], the error term is negligible and hence we can focus on the main
term.

To analyze .J(P?), we calculate by first performing the substitution £ = z*
and then replacing & by ¢,

1 1 1 1 v 1
| etitydo =it [Tetbetgde =kt [Tt e de
0 0 0
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We claim that the integral in the last expression fg 5*1+%e(§) d§ is a bounded
function in 7. To see this write e(¢) = 2™ = cos(27¢) + isin(27¢) and note
that | f(;' cos(27€) d¢| < 10 for all 4. As €—1+ % is a monotonically deceasing
function, Dirichlet’s criterion for the convergence of an integral applies. Thus it

follows that
1
/ e(yz®) dzx
0

0o 1 n
_ -1 —1+% _
Jk,n—[w (k /0 13 e(vf)dé) e(—v) dy.

Then using the last estimate it follows that

<k |V|7F

Set

e =P < [ IRy i PO
y|>

In the next lemma we will prove Ji,, = Cj . Also using Theorem we
conclude from (6.2 that

Tn(m) = Crn P F g (m) 4 Op (P70,

Finally replacing P by m* has also negligible error and so the theorem follows.
O

Lemma 6.24. In the notation of the proof of Theorem[6.28, Jxn = Ch.n-

Proof. Since we only care for the fact that Ji , > 0, we only give a sketch of the
proof. For more details, see [Dav05] and [Nat96]. Observe

A .

sin 2w Ap

/ e(py)dy=——.
A\ Uy

Using Fubini,

)\ n
k" Jgn = lim (/ & 1+ke('yf) §> e(—v) dy

A—00

:gnolo/ / flc/16(7(51+...+§n—1))d7d§1...d§n

= hm/ / (61--'§n)71+%81n2ﬂ)‘(€1+...+£n71)d£1-..d£n

A—00 7T(£1++£n—1)

= li ~144 S0 2mA(u — 1)
—Alggo/ / (U —& — . = &)) TR wu—1) g ...
L sm27r)\u—1)

—Jgf;o/¢ -1

where we used the substitution v = & + ... 4+ £, and denote by ¢ the function

/ / baa(u— €= — ) dg g,

d&n—1du
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where the integral is taken aver all values of £1,...,&,_1 so that &, =u — & —
..—&n—1 €[0,1]. We note that ¢ is of bounded variation. This follows if one
sets & = ut;, then

= ’U/?_l/ /“ .. n 1 ]. — tl — tnfl))_l—%% dtl .. .dtnfl,

where the integral is taken over tq,...,t,_1 with 1 — % <ti+...+t,—1 <1
Thus ¢(u) is the product of u* ~! and a positive monotonic decreasing function
and hence has bounded variation.
Recall Fourier’s integral theorem for finite intervals, which states that if ¢
has bounded variation then
B sin 27\ (u — C)

B A e sy

du = ¢(C).

Thus it follows k™ Jy , = ¢(1) > 1 and moreover,

/ / b1l =& — = 1)) TR dE L dE

- F(%) ’

where the integral is over the domain 0 < & + ... 4+ £,-1 < 1. The last line is
proven analogously to identities of the from

! p—1 _xqfl x_F(p)F(Q)
/om (=) d C Tlp+q)’

which we leave to discussion in the reference [Dav05] (page 22). O
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7 The Heath-Brown Circle Method

The aim of this chapter is to expose the central results of the paper [HB96]
by Heath-Brown and to apply the developed methods to deduce the necessary
bounds (Corollary for our proof of property (7).

The circle method, as exposed in chapter [0 deals with counting the number
of solutions of equations of the form

k k
Ty + ...tz =m

for n > 2F 4+ 1. Tt is not too difficult (see [Dav05] chapter 7) to use the same
methods in order to deduce an analogous asymptotic expression for solutions of

k k
cxy +...tcpx, =m,

where we still assume n > 2¥ 4+ 1 and fix some positive non-zero integers
C1,...,Ccn. The main statement of this chapter is an analogous result for non-
singular quadratic forms in n > 4 variables. In fact, we will prove an asymptotic
formula for the number of solutions of such a quadratic form with an effective
error rate. This is an improvement to the results accessible by the techniques of
last chapter, as the latter theorems only apply to positive-definite quadratic forms
in > 5 variables and the error rate in the asymptotic formula is non-effective.

In order to further elaborate on the main results of this chapter, denote by
F a positive-definite quadratic form in four variables. Then we will show as
m — 00,

{z € Z* : F(z) =m}| = Cpo(F,m)m + Op(m3i*e), (7.1)

where C'r is a positive constant only depending on F' and o(F,m) is the singular
series. Moreover, the results of this chapter also provide a counting statement
for a general non-singular quadratic form in n > 4 variables for the quantity

= ()

v/
F(xz)=m
where w : R™ — R is a suitable smooth compactly supported function. The
structure of the proof of these theorems will reflect the theory developed in
chapter [6}

The effectiveness of the error term of is a crucial part in our proof of
property (7) for Q-forms of SLs. In rough terms, the coefficient % in the error
term of (and of the asymptotic formula of (7.2)) leads to Theorem
Connecting to the discussion at the end of chapter [5.5] an improvement of the
error term to O F,s(m%“ ) is likely to imply the Ramanujan-Petersson conjecture
for division algebras over Q (Conjecture .

Finally, we remark that the methods exposed will also be sufficient to treat
quadratic forms in three variables with moderate additional effort. We refer for
these results to the original paper [HB96] as for our application the case of four
variables is sufficient.
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7.1 Counting the Number of Solutions of Quadratic Forms
in Bounded Domains

Let F be a polynomial with integer coefficients in n variables. The first aim of
this subchapter is to derive an analytic expression for

> w(x),
€™
F(z)=0

where w : R™ — R is a compactly supported smooth function.
Write
1 n=0,
Op =
0 n#0,

Z w(x) = Z W(Z)0p(a)-

zeL™ TEL™
F(x)=0

and observe

Thus, in order to derive an analytic expression of the latter sum, we first deal
with §, on R. The following result is due to [DFI93] and is also discussed in
the paper [HB96], whose proof we roughly follow. As usual, we write for any
integers n and ¢, where ¢ is non-zero,

27in

eq(n) = e(n/q) =e 1"

Theorem 7.1. There exists a function h € C*((0,00) x R) with the property
that for all Q@ > 1 there is a positive constant cq with

0n=cQ 7> Y egan)h(Q ', Q n).

q:l a:l

=1

The constant cq satisfies
cq=14+0n(Q")

for N > 0 and the function h has the property that
h(z,y) < 32z~ "
for all y. Moreover, h(x,y) is non-zero only if x < max(1,2]yl).

Before proceeding with the proof of Theorem [7.1] we discuss some calculative
lemmas.

Lemma 7.2. Let n be an integer. Then for all positive integers q > 0,

li e (an) = 1 if g divides n,
q:= I ~]o if ¢ does not divide n.
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Proof. If ¢|n, then e,(an) = 1 and the claim follows. If ¢ does not divide n, then
¢~ 'n is not an integer and hence

1 I~ .
6 Z eqan) = g Zeq(n>

a=1 a=1

Lemma 7.3. Let f,g: R — C. Then

D> fata)g@) =D > > FG )glkd)

g=1la=1 Jj= k=1
1

,_.

T
Il
-

Proof. The idea is to reduce ¢~ 'a to lowest terms by writing k = (a,q), ¢ = kj

and a = ki so that (i,7) = 1. Then

iif(j) o) :f;zf (920 (0ol
Qg(agﬂf(’zi;’)g(m

where the second line follows by setting & = (a,¢) and reordering the sums

accordingly and the third line follows by setting j = £ and i = . O

Lemma 7.4. For all x € (0,00) and y € R,

oo 1 o0
Z Z <1 and Z
= k=1

k< 2

lk L 1
T<k<§ %< <L

<1

| =

Proof. The first inequality follows from the second by setting y = % The main

observation is that there are at most (% - %) many integers % <k< %
Thus -
Lo (2|y| _ y|) Ty
w2z, B T )



7. The Heath-Brown Circle Method 143

Proof. (of Theorem We denote by wg the smooth function defined for z € R

as -
o [T el <,
Wol\T) =
0 0 |z > 1.

Notice, 0 < wg < 1. Set ¢y = f_oooo wo(x) dz and observe L < ¢y < 1. Finally set

1
dwo(4x —
w(z) = 2oldz =3)
Co
Then w € C*°(R) is supported in [1,1], 0 < w < 16 and [*_w(z)dz = 1. If

Q@ > 0, by the Poisson summation formula
ZU/(Qf1 Z (@ ') Z/ e(—nz) dx.
g=1 q€EZ nez

We analyze the sum over n. If n =0, then [~ w(Q 'z)e(—nz)dr < Q. For
non-zero n, integration by parts yields

/00 w(Q 'x)e(—nx)dx = 1 /00 w' (Q 'x)e(—nz) dr < Q(Q|n|) !

Performing integration by parts N-times,
/OO w(Q tx)e(—nz)dr <n Q(Q|n|)~N
Setting cg = %, we conclude by the above discussion
cQ = Q “(N—
Q+ON(Q-(N=D)
1

If n is a positive integer, then as g runs over the divisors of n, so does ¢~ ' n.
Thus

=1+0N5(QN).

Mg

(W@ ') —w(@Q ¢ 'n)) =0.

QR
3 L

Similarly if n < 0,

o0

> (w(@'g) —w(@ g n)) =
T

In the case n = 0, w(Q ¢~ n) = 0 as w(0) = 0 and

Y (W@ ) —w(@g0) = > w(@Q ') = c5'Q.
g=1 q=1
ql0

Thus it follows,
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By Lemma [7.2]
e} o] 1 q
> Q') —w(@7'q ) = > - > eqlan) (w(@'9) —w(Q'q InD)-
‘Z|:1 q=1 " a=1
qln
We define

o) =3 ki ~ w((hka)y)). (73)

(w(kQ™"5) — w((kQ™"5) 1 Q>n|))

(e

o

B
3
3

E
I
—

A
%
M- $10-
=
]

<

Il

—
—
D
S
2l
I =
MR

It remains to check the properties of h(z,y). To see that h is infinitely differen-
tiable, we use that w is supported in (%, 1), which implies

gy = 52 20k) 5 wllln) )

kx kx
k=1 k=1
Ly ow) S u) )
kx kx
l<kz<t 5 <(kz)~tyl<1
w(kz) i w((kz) " yl)
. kx kx .
5 <k<i Il o 2l

If we fix (x,y), the latter sums are in fact finite around a small neighborhood of
(z,y). Thus h(z,y) is locally the sum of a finite number of smooth functions,
showing that h € C*°((0,00) x R). Moreover, if z > max(1,2|y|), then clearly
the above sums are empty. Finally using that 0 < w < 16 we derive an explicit
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bound for h(z,y) in terms of z~1. In fact,

e Y DL S el

A

>
]
Tl

_|_
M8
Tl

o <k<i Wl o< 2yl
< 16z7* Iy f: 1 <500
- 55 <k<g g Lyl o2yl Mo ’
where we used Lemma [Z.4]in the last line. O

We introduce the notation

NO(Fw) = Z w(x).

In dependence of F', we set for ¢ € Z",

q q
> > eqlaF(b) + (b.c)), (7.4)
a=1 b=

(a,q)=1beZ™

where we denote by the inner sum all the integers b € Z™ so that all components

are between 1 and ¢, and

10(c) = / w(@)h(Q e, QT (w))ey(~{e,a)) d, (7.5)

where dx is the Lebesgue measure on R".

Theorem 7.5. (Theorem 2 of [HBIG]) Let F' € Z[ X, ..., X,] andw € C°(R™).
Then

[e%e] q
N(O)(Fw ) =cQ~ QZ Z Z z)eq(aF (z))M(Q ' q,Q 2 F (z))
q=1 a=1 x€Zm

(a,9)=1

= Z q~"S,(e) IV (o).
VAL

Proof. The first equality just follows by writing

NO(F w) = Z w(x) = Z W(2)0F(z)

z€L™ rEL™
F(z)=0

and using Theorem Writing © = b + ¢ - y, we express
q
> w(@)eg(aF(@)h(Q ', Q> F(x Z eq(aF () > foly)

TELN b= yEZN
beZ™



7. The Heath-Brown Circle Method 146

where we used that F' has integral coefficients and denote

foly) = wb+q-»h(Q™q,Q*F(b+q-y)).
By the Poisson summation formula,
S A= filo) = / fow)e(~(cv)) dy.
yEL™ ceL™ ceZ™
Substituting * = b+ ¢ -y and dz = ¢"dy,

0 = [ wlb+a-ph(@ 0. Qb+ g w)e(—e.u)) dy

- / w(@)h(Q g, Q2 F(x))e (‘<C’ - 7 b>) o

= g "eg((b,0) | w(@h(Q7'q, Q72 F (@))ey (—(e,x)) da

= q "eq((b, NI (©).

To summarize,

> w(@)eq(aF (2)h(Q g, Q*F(x))

RASYAL

1M

A
Ze
2

M- L
M=

>

ca(aF () D foly)

g=1 a=1 b=1 ezn
(a,q)=1beZ™ Y
%] q q
:E g E eq(a E g "eq({b,c) I(O)()
g=1 a=1 b=1 ceZ™
(a,q)=1beZ"™

q

S eg(aF®) + (be)) | I9(e)

I
M8
Q

4

ceZm qg=1 a=1 b=1
(a,q)=1bezZ™
=D a7 "SI (e).

Q
m
N
3
<
Il
—

O

We next introduce an additional parameter P > 0. Instead of investigating
NO(F,w), we consider

N(F,w,P)= > w(P '),
zeZ™
F(x)=0

where we understand P as tending to infinity. In dependence of P we set for
cez”,

1)) = [ w(P (@ 0 Q P F@)e(~(ea)dr. (T0)

In analogy to Theorem we have the following corollary.
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Corollary 7.6. Let F € Z[X;1,...,X,] and w € CZ(R™). Then

q

N(F,w, P) = cqQ@? Z S S w(P ey (aF (0)h(Q " q, QP (x)
= am T
=cQ ) Z g " Sq(e)Iq(c).
c€L™ q=1
Proof. The same proof as the one of Theorem applies. O

Assume that F' is a polynomial of degree k in n variables. Throughout the
rest of this chapter we will assume that F' is of the form F = F(©) — m, where
F(0) is a fixed form and m tends to infinity. Fix throughout this chapter P = me.
Moreover, we set G = F(©) — 1 so that G(z) = P~*F(Px).

Lemma 7.7. In the above setting, assume that VG # 0 on supp(w). Then the
lomat .
UooGw—hm—/ w(x) dx
(G, w) = lim S (z)
exists. Moreover, if w > 0 and takes a strictly positive value for some x € R"
with G(x) = 0, then 0o (G,w) > 0.
Proof. See Lemma, and Corollary O

Throughout the remainder of this chapter, we only consider compactly
supported functions w : R" — R, that satisfy the non-singularity condition of
the above lemma. Denote by M,,(p*) the number of solutions to the equation

F°(z) =m mod p*

in [1,p*]". Then we write

and define the singular series in this setting as
o(FO m) = H Op-
p prime

For further discussion on the singular series see chapter We next state the
central result of this chapter ,which is Theorem 4 of [HB96], and defer its proof

to chapter [7.6]

Theorem 7.8. Let n > 4 and F© be a non-singular quadratic form in n
variables, m be a positive integer and w : R™ — R be a compactly supported
function that satisfies the condition of Lemma . Set ' = F©) —m. Then as
m — 00,

et 2 u()

1

= OOO(G,U))O'(F(O), m)m?2 1 + OF(O)’w’E(ng *e).
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7.2 Properties of the Function h

We recall the definition of the function h(z,y) as defined in (7.3). Set w(x) =
dwoldr=3) "Thep h(z,y) is defined for z € (0,00) and y € R as

hry) = 3 o (wlka) — w((ka) ).
k=1

We aim at proving the following result, showing that h(z,y) behaves like a §
function for small x.

Proposition 7.9. Let f be a smooth function on R. If x < 1, then for any
M >0,

/ F)h(e.y) dy = £(0) + Op s (=M.

Towards proving Proposition we estimate the derivatives of the function
h. The main tool we use is the Euler-Maclaurin summation formula which for
a,b € R and f € C*([a,b]) takes the form

b
> f) :/ F(t)dt+ ({a} — 5)f(a) — ({b} — 3) £ (b)

a<n<b

al _1\N b
+; g| [Py, - (]\1,? /aPNf(N)(t)dt, (7.7)

where {a} and {b} are the integer parts of a and b and P,(t) is the ¢-th periodic
Bernoulli polynomial so that Py < 1.

Recall that we have shown in Theorem [7.1] that the function h(x,y) vanishes
ifx>1and |y| <z/2.

Lemma 7.10. If |y| < /2, then the function h(z,y) does not depend on y and

> w(k)
h(z,y) = wé ) < 16271
k=1 z

Moreover, for |y| < £,
O™h
Aggigﬁg,ggnx_m_l
ox™
Finally, when |y| > z/2,
anv+n

Wh(%y) SO i

Proof. As in the proof of Theorem if |y| < /2, then
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Since % < kx <1it follows k& < % and hence for £ > 1,

0w(kx)
ozt

and together with the Leibniz formula

)am L 1
axf dxm—t g

0( )
(m)l —(m—t1) b

= k' (k) < z7*

am

dxm

MSZME

(m—t41) 0 w (k)
Ozt

(m—0)lx~
‘

L

m

IN
3 “MS

<
where ¢, is a constant depending only on £. As by Lemma

1

>, <!
%<kx<1
it follows that

" h(z,y) g—m-1 S
6%‘77”‘ <<m ) Z T X .

§<k‘l’<1

To prove the final claim, assume |y| > z/2. Then

wW(RT w CEil
TR R N S (i}

., x .\ A kx
5 <kx<l 5 <(kx)~llyl<1

w

The sum 1 1 ka<l gﬁ only contributes for < 1. By the first part,

w(kz
E : ggx ) <<m x—m—l <<m,n xm—l‘yl—n7
%<kw<1

using |y| < § < 1 so that |y[~" > 1. It remains to deal with
3 w(((kz) " |y|)
kx '
L<(kz)~1]y|<1

One shows by induction over m that

P S (0 o (3,
=0 - v

oz Y™ T zk

for certain constants ¢, n.¢. In particular, as w is a Schwartz function,

()" w0 () et
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it follows )
o+ w((wk) " yl)

dxrm oy x

L "y

Thus we conclude using Lemma [7.4]

o w(((kz)"yl) —m—1), |- 1
Dz Iy Z L <Lmn T [yl Z k
I<(kz)~1]y|<1 I<(kz)~1]y|<1

<<m,n x—m—1|y|—n.
O

Proposition 7.11. Let N,m,n be non-negative integers. Then for all (z,y) €
(0,00) xR,

am-‘,—n h( ) m—n—1 N T N
z,y) K ,m,n LA " 4+ min 1, () R
Oz dy" Y 1yl

The term ¥ on the right may be omitted for n # 0.

z

Proof. Assuming |y| < £, the function does not depend on y and the result
follows from Lemma If § <|y| <, then also by Lemma

8m+n

Gz ) Ko T YT L 2L

L o L

Hence we only need to treat the case |y| > x > 0 or equivalently - m
Moreover, if n = 0, then also by Lemma the result holds if z > 1. So we
assume = < 1 if n = 0. In particular, in the case n = 0 and = < 1, it suffices to
show the statement for IV large enough.

As w is supported in (%, 1) by using the Euler-Maclaurin summation formula

@2,

> w(kz = wlkx
YU X

k=1

1
<

8l

I
‘H\ };"»—\
g
S=
s
&
\
==
z
\\‘
=z
(o5}
=2
=4
8
N2

|

g 8

8-
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where we substituted u = xt defined w(u) := w(“ and used the Leibniz formula,
N\ o° oVt 1
¢ ) o) v 4

(JZ)w(Q (zt)xt (—1)N NN — o)) ()~ N =01

ﬂ w(xt)
otN  xt

= 11>

4

N
= xNZ< ) © (zt)(—1 )NﬁZ(N—4)!(337,‘)7(]\74)71

_ O ()
ouN u
2N (1)

I
=

yielding

: X u
= xN_1[ Py (g) W™ (u) du
We analogously have
i w((kz) " yl)
kx
k=1
_ 5 el b
kx
k=1
=<k<li
2]yl 1
_ [ w((k2) My (GO N w((kx)~"[y|)
B /y\ tx di = N! /L PN( )8tN xt dt

2z

_ / wit;) ar -t (|§|>N (‘]\1[3N /12 Py (“5") %u_2w(u_l)du, (7.9)

2z

where we substituted in the first integral u = (2%t)~!|y| and in the second
integral u = %u

Combining (7.8) and (7.9),
(=Nt U
h(z,y) = —a 1 N? Py (;) w™ (u) du

\E w\»-‘\

N 2 N
BN ARG ul\ 0% o 1
. (|y|> N /1 Pxn ( . auNu w(u™") du.

Denote by Fj(x) the first part and by Fy(z,y) the second part of the latter
equation. The term Fj(x) only vanishes if n = 0, and then we can assume x <1
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and so 2 > 1. Write F(z) = 2V ~'I;(x), then

O™ Fy (x L
5 1775 ) — ZCZ,NxN—f—lxN—(m—Z)—l <<N,m xN—m—Q
X
£=0

Thus replacing N by n + 1, we are done. The second term Fy(x,y) is treated
analogously (for more detail see [HB96] Lemma 5). O

Lemma 7.12. If x < min(1, X), then

/_i h(z,y)dy =1+ On(X2VN"1) + Op ((5>N> .

Before treating Lemma we prove the following lemma.

Lemma 7.13. Let w: R — R be a smooth function supported in (%, 1). Then
forany N >0 andY >0,

y/ooo“’?du—g/jw(u)du:;/Ooow(u)dHoN(Y—N).

Proof. Throughout this proof fix Y > 0. Set for ¢t € R+,

so that
0 if 2V <,
(b(t) = 00 .
Jo w(u)du ifY >t
Moreover v v
1p) —
¢'(t) = —aW <t>
which is supported in % < % < 1 or equivalently Y <t < 2Y. In particular
Y
/
¢U%<—;3

and hence we conclude as the function is supported on Y <t < 2Y,

oM (1) <4, — <L YR (7.10)

t(k+1)

Finally, we apply the Euler-Maclaurin summation formula (7.7) for ¢ — 0 and
b> 2N,

()Y

ot = [ owde— g [T wwan- g

Jj=1

P (t)¢™) (t) dt.

Y
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Finally, as
00 2y ¥
/ o(x) dx :/ w(u) du
0 0 1
1 Y
= / w(u)/ dtdu
3 0
1
= / wlu) du
LU
2
o0
—y / W) g,
0 u
the claim follows by (7.10)). O

Proof. (of Lemma[7.12)) By (7.8),
= w(k T w(t —N
w(kx) :/ w(tz) dt_fol( ) / Py (E) W™ () du,
2

kx 1t N! T
k=1 2z

1 [ wlu
=- / wlu) du+ Oy (zV71).
T Jo u

where we substituted u = tx in the first integral and used that Py <y 1. By
integrating over —X < y < X, the error term is satisfactory. To prove the
lemma,

where we used Lemma forY = % in the penultimate line and [ fooo w(u) du =
1 in the last line. O

Lemma 7.14. Let X > 1. Let n be a positive integer and suppose that x <
min(1, X). Then for any N > 0,

X ISy
/ Y h(z,y)dy <y X" | XaV 4 (z > .
-X
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Proof. As h(zx,

) is an even function the integral vanishes for odd n. The case
n = 0 was treated in Lemma so assume n > 2 to be even. It suffices to
consider the integral

X
/O y"h(z,y) dy.
As in the proof of Lemma
X )
n N~ Wk
/0 / ,; ka: / /

We can ignore the first term of the latter equation, as by it cancels with

79 i .
the integral of the first part of the second term of h(x,y). So it remains to deal
with the integral over [0, X] of

N(Xn+1$N_l).

n=1(_1)n 2 on
’ Q/ P, uly] —u%w(u ) du.
y* ol )y x ) Oum
We want to show for any in (1,2) supported function ), that

bl 2
/ x"_l/ P, (%
0 1

which clearly implies the claim. Equivalently we show

(v) dudy <y X" NV,

/ / Po () w(u) dudy <o X"V,
o J1 €

To establish the latter claim, recall that for Z > 0

/Z Pn(Z)dZ _ Pn+1(Z) PTL+1(O)

_ Puna(2)
n+1 n+1 n+1 °
Thus by a substitution of y = ££
X 2
0 1 z

—x// Py (“)d
n+1/1 Pt ()iu)w()du.

u

Finally integration by parts yields as

nil/lgp”“< x ) 2 g,

u

nil(_l) ((N+1)'|< ) /12PN“( )dN o

dN n
<<N,n,1/1 XTL—NxN—TL-‘rl.

4 P(z) = kPy_1(z),

du

u
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Finally, we prove Proposition We restate it for convenience.

Proposition 7.15. Let f be a smooth, compactly supported function on R. If
x < 1, then for any M > 0,

/_ " f)h(a.y) dy = F0) + Opar(a™).

Proof. Write X = min{1,z2}. If |y| > X > 1, then by Lemma

N-1
x

h(z,y) <n V71 + PR <N x%*l,
Yl

using |y| > 22 and x < 1. As f <y 1, the range |y| > X makes a satisfactory
contribution. For |y| < X, we use a Taylor series

2M+1

) Y (2M+1)
O+ Garo €

Fy)=F0)+yf (0)+...

Y
(2M)!
for &5 v, € [0, X]. We bound the error term

2M+1
Yy +

anr ! ) < X2V

As h(z,y) < x71, the latter error contributes <y 2 X2M+2 <y oM
Finally, we conclude by using Lemma and Lemma O]

7.3 General Analytic Statements

In this subchapter we collect some lemmas concerning general analytic statements
of later use. We first start with two lemmas involving functions of compact
support.

Lemma 7.16. Let B C R™ be a bounded Jordan measurable subset. Then for
any € > 0 there are smooth compactly supported functions wy(x) on R™ so that

w_ < xp < wg
and

vol(B) — £ < /

Proof. By definition, xp is Riemann integrable, hence there is a finite set of
disjoint n-dimensional cuboids C1,...,Cy C B whose edges are parallel to the
coordinate axes with total volume at least vol(B) — §. Hence, it suffices to find
non-negative compactly supported functions w; so that w; < x¢, for which

w_ dzx < vol(B) < /w+ dx < vol(B) +e.

n

vol(C;) — % < [ widx

as setting w_ = Zfil w; then has the property

vol(B) —e < Z <V01 2N> / w_ dx.
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In order to construct such functions w;, we use the function wq given by

= [T el <1,
Wol\x ) =
0 0 |x| > 1.

oo
co = / wo dx.
— 00

Write for suitable A < B and n > 0,

B—n
1 — r—Yy
wa,By(z) =1 100 1/ Wy ( > dy.
A+4n n

B—n _ ) _
/ wo (I y) dy < / wo <x y) dy = nco,
A+n n [eS) n

it follows that 0 < w4 p,, < 1 and as wy is supported in [—1,1], one concludes
that wa, g, is supported in [A, B]. Finally, observe that

e’} B—n r—vy
/ wa,By(T) = n_lcal/ wo () dxdy
— 00 A+n n

B—n
:n_lcal/ ncody =B — A —2n.
Atn

and set

This if C; = []}_,[A;, Bj] the one takes
n
j=1

for a small enough 7 so that w_ satisfies the properties we want. O

Lemma 7.17. Let w : R™ — R be a smooth function of compact support. Then
for any § € (0,1] there is a compactly supported smooth function ws € R™ xR"™ —

R so that
w(z) = (5_”/71}5 (m g y,y> dy.

Moreover supp(ws(*,y)) C [—1,1]™ for all y € R™ and the function
F(z) = w567 (z — y),y)
has supp(F') C supp(w) for all fized y € R™.
Proof. We choose the function
ws(z,y) = ¢ "wi (x)w(dx + ).

Clearly this function is compactly supported. Moreover,

s (552 ) =wt@e” [l (252) dy ="t

The claim on the support of supp(ws(*,y)) follows as wg is supported in [—1, 1].
O
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Let w € CX(R™) and f € C°(supp(w)). Suppose there is a positive real
number A and a set A = {Ag, A3, ...} of positive real numbers such that for all
x € supp(w) we have

V(@) = A

and
10; f(@)] < Apjip A

where j = (j1,...,Jn) €Ny and ||j|1 =41+ ...+ jn > 2.

Lemma 7.18. In the above setting, for any positive integer N > 0,

/'w(x)e(f(;v)) dr < w,N AN,

Proof. We proceed by induction on N. If N =0, then
| [w@era) da] <1

Assume that the statement is proved for N. Choose § = (1 + 2nA4s)~!. By
construction of the function ws,

[o@eanaz =5 [ [u (ﬂ;yy) e((x)) didy.

As wg is a function of compact support, which only depends on w and ¢, it
follows

w(@)e(f(@) dz <aw | ws | —2,y) e(f(z))da
/ Jos (55 2)

for some fixed y = (y1,...,yn) € supp(w). Write for convenience wi(z) =
ws (07 Hx —y),y). As |V f(y)| > A, it follows that without loss of generality,

of(y)
oy

>

S| >

By the assumption of the lemma, it follows that

0 f(x)
< Ax\.
oz3 |~ 2A
Whenever = (x1,y2,...,Yn) with |z; — y1| < J, then by the mean value
theorem,
of(x) _ 0f(y) 0% f (&)
or, Oy +(ri =) oz

for & = (&L, y2,...,yn) With &, € [y1,71]. Hence, by our choice of §,

—5- A A>

>

’af(x) (7.11)

A A
o1 n
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whenever |21 — y1| < ¢ and in particular if

o
wi(x) = ws ((SyJJ) # 0.
We now prove under the assumption (7.11)) on supp(w;) the bound

/w1(m)e(f(x))dx Kawn AN,

which clearly implies the statement of the lemma.
In order to prove this claim, we write the integrand as

(@) ie x
2mif1(x) Oxy (£(=))

where f; = g—mfl. So we can integrate by parts with respect to x1, to achieve

[u@etseyas=- (5 [waretsw)as

for 5 (@)
_ 9 w1 (X
w2t) = G SO an) ()
The claim now follows by the induction hypothesis. O

Recall that G = F(© —1. Define % (@G) to be the class of compactly supported
functions w so that there exists a real number R <g,, 1 with the property that
whenever (xg,y) € supp(w) where y is fixed, the function G(z,y) has exactly
one zero for z € R and on |zg — z| < R,

G (z,y)
ox

Lemma 7.19. Let w € €(G). Then

>>G,w 1.

.1
0o(G,w) = &11_1;% % /|G(v)<s w(v) dv

exists and can be computed as

B _wzny)
0o (G w) = /R'H (02, G) (21, y) “w

where y runs over all vectors of R"~! for which there is at least one x € R with
(x,y) € supp(w) and x1 € R is the unique element so that (x1,y) € supp(w) and
G(z1,y) =0.

If furthermore w € € (G) is real-valued and non-negative everywhere and takes
a strictly positive value for some real solution x of G(x) =0, then 0 (G, w) > 0.
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Proof. Write v € supp(w) as v = (x,y) for x € R and y € R"~!. Let z; be
the unique solution of G(x1,y) = 0 given by the definition of € (G). Then if
|G(v)| < & we will have |G(z,y) — G(z1,y)| < e. By Taylor’s theorem

G(m,y) - G(xlay) = (SL’ - .’El)(aIG)(l'E,y)
for x¢ € [z, 21]. As (0,G)(z,y) >cw 1 on |z — 1] < R, it follows that

|G(£L’,y) — G(xla y)|
(02G) (¢, y)

Thus, again by Taylor’s theorem, w(v) = w(x1,y) + Og . (¢) and in particular,

1 1
— w(v)dv=— / w(z1,y) dv+ Og / 1dv
2e Jia(v)|<e 2e Jia(v)|<e |G(v)|<e

All of these integrals are over supp(w) and as each possible x belongs to an
interval of length <¢ ., € and as w is compactly supported, it follows that the
error term is Og 4 (€). It remains to deal with

|z — 21| = <Lgw €.

1

— w(zy,y) dv.
22 JiGw)|<e

Again by Taylor’s theorem
G(.’E, y) = (il' - xl)(ale)(xlv y) + OG,W(€2)?

as the second partial derivative is Og (1) in the relevant region. In particular,
the condition |G(z, y)| < € defines an interval I, of possible values for « of length

2¢e
(02, G)(21,9)

Thus if y is fixed and v = (z,y) € supp(w) for all z € I, then

+ Og)w(€2>.

1 w(zs,y) ( 2 )

o w(x1,Y dr = . +O wl€

2 J e Y 22 @@y 0o
w(xlvy)

= ——F"— 4+ O¢gw(e),
(02, G)(71,y)
where the integral is over those x for which (z,y) € supp(w).
On the other hand if (z¢,y) ¢ supp(w) for some zy € I, then w(zg,y) =0
and as |1 — 20| g, € it follows that w(z1,y) g w €. Thus

1
P w(z1,y)dr <gw [{z €R 1 |G(z,y)| < e} <gwe
2¢ Ji(a)<e
and ( )
w \r1, Yy
LG E
(02,G)(w1,y) "
so that we still have
1 'U)(l'l,y)

w(zy,y)de = +O0c,u(e).

(02, G)(21,9)

2¢ JiG(v)|<e
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To summarize we have proved that

1 1 w(z1,y)
— w(v)dv = —/ i W+ Ocuw(e),
2e Jia )<« 2e Jig ()| <e (0, G)(21,9)
which implies the main claim.
The positivity property is immediate. O

Corollary 7.20. In the above setting, assume that VG # 0 on supp(w). Then
the limat

1
Ooo(G,w) = lim —/ w(x) dx
=202 Jig(a)|<e
exists.
Proof. This follows by just applying the last lemma locally. O

7.4 Estimating [,(c)
Recall that the function I,(c), depending on w, P, Q and ¢ € Z", was defined in

1)) = [ w(PToh(@ 0. Q P F@)ey(~(e,w)) do.
=" [ w@h(@ . Q P Gla))ey(~ (e, Pa))
where we substituted x by Pz. By this formula, it is suitable to fix from now on
Q = P¥/2. The aim of this subchapter is to give useful estimates of I,(c).

Lemma 7.21. In the above setting, for ¢ >c.. Q, I4(c) =0.

Proof. In Theorem [7.1] we have seen that h(x,y) is zero unless x < max(1,2]y|).
Thus if
Q7'¢>2 sup 2G(x)],

zEsupp(w)

then w(z)h(Q 1q,G(z)) = 0 for all x € R™. O

We introduce some more notation. For v € R™ and r € R, set

1) = [ w@h(r.Gla))en(~(o.2) do

Thus
I,(e) = P"I} (1)
for r = Q 'qand v =Q ! Pec.
Lemma 7.22. Let w € €(G). Then for r <1 and N > 0,
I7(0) = 00c (G, w) + Ogu,n ().
In particular for ¢ < Q,

Iq(o) = P"(000(G,w) + OG,wJV((Q_lq)N)'
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Proof. As w € €(Q),
05, G >c w1

on supp(w). Thus we can substitute y = G(z) for 1 in the integral
10) = [ w@h(r.G) do = [ 10)h(ry) do
n R
where ( )
w(xy, 2
I(y) = ——dz
D= [ Bl

and for fixed y and z we choose 1 to be the unique solution of G(z1,2) = y. As
I has compact support, it follows from Proposition

/I(y)h(r, y)dy = I1(0) + OGN (1Y) = 000 (G w) + O n (r™).

O

In the remainder of this subchapter, we aim at giving upper bounds for I (v)
or I;(c). In order to discern the required properties of the function w, we define
the vector space % consisting of smooth functions f : (0,00) x R — R with
the property that for any positive integer N there are positive real numbers
K07N,K1,N, ... so that

sz (o ()}
< Kon-rt. min{L (é)N} |

In order to bound I(v), we introduce in the dependence on the function
feZFandwe ¥(G),

and for £ > 1,

' f(r,x)
0zt

I(u) = I(r,u) = / w(z)f(r, G(z))e(—(u, ) d,
for r > 0 and u € R”.
Lemma 7.23. Let r < 1. Then
|1 (0)| < rHI(r )
for appropriate functions f € F and w € €(G). Moreover, if v =0,
0,1} (v)| < r2I(r~ ),

for appropriate functions f € F and w € €(QG).
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Proof. For k= 0,1 write

1 OFh(r, )

fk(r, z) = ork
Then by Lemma[7.11] f°, f' € .% and so
E@I< 5| [ @) Glael~(v.a)) do| =160l

We begin to discuss 9, 1* (v). Notice
0.1;(0) = [ w(@)o ((r,Gles(~(v.2))) d
— [ w@@n) Cer(~(0,2) da
+/nw(x)h(r, G)er(~(v,2)) (—WW> da

r

By a slight abuse of notation, we drop the r in the expression f(r,z) for
convenience. Set for k =0, 1,

1™ (u) = / w(@) fH(G(x))e(—(u, ) (~2mi(u,x))* do

so that for either £k =0 or 1,

or*

#ﬁv) <M ),
depending on which of the two terms is larger. Setting either £k = 0 or v = 0,
the claim follows. O

Lemma 7.24. Forr < 1 and any vector u € R™,
[L(r,u)] <go 1

Proof. We calculate using the definition of f € %,
1) < [ @lf.Go)lds
L / |f(r,G(x))] dx
supp(w)

< /Suppw ( i {1’ (|G€x>>}> o

As 0;,G >q 1, it follows that the set S where |G(x)| < r is of measure Og ., (1)
and so the claim follows as on the set S, by definition m > 1, showing,

S 0 ) )

<uw / rdx +/ ldz
supp(w) N

Lgw T+ 15 <gwr
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As a consequence of the previous lemmas, we deduce the next claim.

Lemma 7.25. For j =0,1 and q < Q,
|6(JII‘1(O)| <<G,w an7j7
were we assume 1 < Q~1q in the case j = 1.
Proof. For j = 0 this is Lemma For j =1, recall I,(0) = P"If,, (0) and
so by Lemma [7.23]
|8qu(0)| = P"|aqf<5—1q(0)|

< PMQ ) ?I(0)Q

<aw P'Q4™* <gw P'q Y,
where we used 1 < Q¢ so that in particular Qq < 1. O

Lemma 7.26. There exist weights wi, we € € (G) with supp(ws) C supp(w) so
that if p is the Fourier transform of wy(x)f(x) then

I(r,u) = /_00 p(t) /n wa(z)e(tG(x) — (u, z)) dedt
and

p(t) g g r(rft) ™
for any N > 0.

Proof. Choose 1 <5 K <5 1 so that |G(z)] < K on supp(w). Write
wy(t) = wo((2K)~1t) and as w1 (G(z)) > 1 on supp(w), we set

w(x)

wi(G(x))

wo(x) =
Thus
1) = [ wa(w)ur (G(a) F(G@)el~(w,))da.

Using the Fourier transform, we write

with

so that

I(r,u) = / T / w(@)eltG(w) — (u, ) dad

— 00

Finally, to prove the bound on p(t), as f € & and the support of w; depends
only on GG and f,

. 2
‘ZTVMI(U)JC(U) <n.csr~ Y min {1’ (|Z|) } :
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Thus by partial integration,

1 | gN
Ip(t)] < W . le(v)f(v) dv
1 N 1 T7N+2

<nN,G,f —/ r~ % dv + —/ ——dv
|t|N [v|<r ‘t|N |[v|>r ‘1}|2
r—N+1

<N,G,f W

O]
Lemma 7.27. For any N >0 and r < 1,

I(r,u) <G wnN T7N|u|7N.

Proof. We use Lemma to write

I(r,u) = /00 p(t) /n wa(z)e(tG(x) — (u, x)) dadt.

For |u| >>¢w |t], by Lemma for M > 0,
/ wa(z)e(tG(x) — (u, x)) dz Kgw |u|7M.

If |u| €@, |t|, then we use the trivial estimate <, 1. Using r < 1,

[ (r,u)] <

/ p(t)/ (wsz(z)e(tG(z) — (u, x)) dzdt
lul <G, wlt| n

i \/|U>>G’wtlp(t)/n(ws(x)e(tG(x) — (u,x)) dedt

<Gan Ip(t)] dt + / Ip(t)][ul =M dt
Jul <L, wlt| [ul>N, ¢ wlt|

LG M =M =M gy +/ rlt|~Mdt
[ul <G lt] [ul> N, lt]

Gt MM r/ 4]~ gt
[u>nN,c,wlt]

17M|u‘17M+7,|u|17M 17M|u|17M’

<LGguw,M T <M,Gw T

were we used in the third line the bound from Lemma [Z.26] in the case N = M
for the first integral and in the case N = 0 in the second integral. In the last
line we used r < 1, in which implies the claim by setting N = M — 1. O

Lemma 7.28. When k=2 and ¢ # 0,

11,(c)| <cwn PP g7,
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Proof. As k=2, P = (@ and by Lemmas and
[Ig(e)| = P"[I15-1,(Q " Pe)|
= P 1 (0)
< P"Qq7HI(Q7'q, Qg o)
<guwN P'Qq e[~
<Lgwn PP e V.
O

We next want to give improved estimates of I(r,u). Let R > 1 and u € R”
be fixed for the moment. For an appropriate value of ¢ in the range

ul €ew [t <6 w |ul

we set )
S ={z e supp(w) : [tVG(z) —u| €gw Rlu|z}.

Lemma 7.29. Let R>¢ 1. If u € R™ with |u| > R3, then

1I(r,u)] <cwn RN 47 |ul - vol(S).

Proof. If rlu] > R, then r~N|u|=™™ < R™ and so the claim follows from
Lemma Thus in the following we assume r|u| < R.

We use the functions ws from Lemma for wy as in Lemma [7.26] and
some & = |u|~ 2, whose choice will be explained later. Then

I(r,u) = /OO p(t) /n wa(z)e(tG(x) — (u, x)) dadt

— 00

R
=6" /_Z p(t) /n /n ws (T{y) e(tG(z) — (u, z)) dedydt
= [ [ w0 [ s G etaGo) ~ fua)) deatay

where we substituted x = y 4+ 0z in the last line. In particular,

i< [ ot

The variable y runs over a range <,, 1. We analyze the inner most integral
further, for which we fix for the moment the values y and t. For convenience
write

dtdy.

/ ws (2,y) e(tG(z) — (u, x)) dz
R’n

f(z) =tG(y + 02) + (u,y + 6z).

Notice that .
IVI(0)| = 0[tVG(y) — u| = [u[ "2 tVG(y) — ul.

Moreover, the partial derivatives of order k > 2 are Og x([t|6%). So we choose
R > 1 yielding ¢ is small enough so that for all z € supp(ws(*,y)),

IVf(2)| = [VF(0)] + Oc([tl6?) > [V f(0)].
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We want to apply Lemma In order to do this we distinguish two cases.
First assume that the point (y,t) is good, i.e.

VFO)] = [u]"2[tVG(y) — ul > Rmax{4,1}.
Then [V f(z)| > R and so in by Lemma [7.1§]
/ (e, 9)eltG(@) — (u, ) d= <gx RV,
On the other hand, if (y,t) is bad, i.e.
[tV G(y) — u| < Rlu|> max{{4, 1}

Notice that any relevant y is within & of some point of supp(w). As § = |u|~2 <
R™% it follows for R >¢ 1, that [VG(y)| > 1. As |u| <¢ |t| <¢ |u|, we have
1
[tVG(y) — u| <G Rlu|2

for all bad (y,t). Together with the estimate on the good (y,t),

1) <o BN+ [ [ 1] [ sl ddray
y J —oo z

where (y,t) runs over the bad values and y <¢g. 1. Finally we substitute
x =1y + 0z for y and observe that

tVG(y) — tVG(y) <aw [t0 aw |ul? < w Rlul?.

1
So if y satisfies [tVG(y) — u| < R|u|2 then so does z with a different constant.
Moreover, ws(z) # 0 implies that € supp(w) and z <g, 1. Finally, by
Lemma [7.26] |p(t)| <@, 7. Thus the claim follows. O

We denote the Hessian of G(z) by H(x) so that

82

Hz, . -
(1‘) 83@8%

G(z).

Lemma 7.30. If |det H(x)| >, 1 for all x € supp(w), then

vol(S) <G u| ™2 R™.

Proof. As |u| €g.w |t| €aw |u| the condition in the definition of S, translates

to |[VG(z) — u| < w R|u|~=. As each of the entries of H satisfies <LGw 1, the
Hessian condition implies that none of the columns of H(xz) has too small entries
which implies the claim. [

Combining the last two lemmas, we arrive at the following statement.
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Corollary 7.31. Suppose that n > 3 and that the condition on the Hessian of
Lemma holds. Then for any € € (0, %) we have

|1 (7, )| <LG,w,e (r—l |U|)€T‘u|1_%.

PQle|\® [/ Ple|\'" 2
I,(¢) €Gwe P" (%') (H) .

q q

Hence

Proof. To deduce the second claim from the first, recall for r = Q '¢ and

v = Q' Pc, with Lemma

PQle|\¢ [ Ple|\' "2
|1,(c)| = P™|I7 (v)] < P™|I(r,r~'v)| < P"P" (292“) <q|ll> 7
assuming the first claim. So it remains to show the first claim.
2e
If lu| <G~ then

n

lul 2717 < Ju| ™% g ©

as since n > 3,

n n
0<2 _1-c<
2 £S5

Thus
r < () orfut 2
and so the estimate follows from Lemma [7.24]
2e £ .
If u>rn, weset R= Cg,(r~tu|)s for Cq, a suitably large constant.
The condition |u| > R? is equivalent to |u| 3¢, v~ 7-¢ which is satisfactory as
2e €

= > )
n n—¢

Thus Lemma [7.30] yields
[1(r,u)| <guw,n BTN +rful'”2 R™.

We clearly have R™ < ., (r~!|u|)¢ by our choice of Rand R~ < 4 (r~Yul)r|ul*~2
provided that

%szax{g—l—s,l—s},

which we are allowed to assume. O

7.5 Estimating S,(c)

Throughout this entire subchapter we assume that k& = 2, i.e. that F(©) is
a quadratic form. Recall that F = F©) — m for some integer m. We write
FO)(z) = 2" Mx for M € M,, ,(Z) a symmetric matrix.

By (7.4)), S,(c) is defined in dependence of F, ¢ > 1 and ¢ € Z" as

q

Sg(c) = Z

q
a=1 b=
(a,q)=1beZ™

eq(al(b) + (b, ).
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Lemma 7.32. Let q1 and g3 be coprime positive integers and denote by q; and
qh any integers so that ¢1¢f =1 mod ga and ¢2¢5 =1 mod q1. Then

SlhlIQ (C) = Sth (qéc)SQQ (qllc)'

Proof. By definition,

q192 9142
Sqiga(€) = Z Z Cqran (aF (D) + (b, c)).
(a,q1 fI2) 1 beZ"

The idea of the proof is to write a = q1as + g2a1 for a; varying from 1 to ¢q; with
(a1,q1) = 1 and ay varying from 1 to g2 for (as,q2) =1 and b = q141b2 + g2¢5b;
for b; and by varying analogously. In the calculation below we also use that

qrazF(b2) + qea1 F(b1) = (qraz + q2a1) (F(q2q5b1) + F(q1qib2))  mod qigz
= (q1a2 + q2a1)F(q2q5b1 + q1¢1b2)  mod q1ga,
which quickly follows by our definition of F and as ¢g2¢5 =1 mod ¢; and g1¢; = 1

mod qo.
Thus

q1 q1
S (650)Sa (i) = | D D eq(@F(b) + (b1, g5c))
a1=1 b1=1
(a1,q1)=1by €™

Z Z g (a2 F (b2) + (b2, q10))

azx=1 bg:l
(az,q2)=1b2€Z™

i @1EG1+ by ahe) a2F<b2>+<b2,q’1c>>

= E 627T ( a + a2

a1,b1,az2,b2

i g1a2 F(bg)+agaq F(by)+(gzabb1+a1a]ba.c) )

27\'( 41492
= >

a1,b1,a2,b2

(a1a2+aza1)F(agahbi+aia)ba)+(azahbi+aia)ba,c) )

_ Z eQTri( T

a1,b1,az2,b2
q1q2 q192

= Z Z €qiq: (aF (D) + (b, c)) = Sg4.(c).
(a, q1q2) 1b€Z"

O

Lemma 7.33. Let p be a prime number. Let t > 2 and s = [£]. Then for
ceZ”,

Spe(c) = p* Y Z Z ept (dF(x) + (2, 0)).
r=1,2€Z™
(d,P '):1 p°|F(z)
p°|ldV F(x)+c
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Proof. In the definition for Sy (c), we substitute for a = d 4+ p'~*f. Thus

P p
=p Y ept (AF'(b) + (b, c)),
4=l
(P =1 )

where we used Lemma [Z.2]in the last line.
In the last equation we want to replace b = x + p'~%y, for x € Z" varying

from 1 to p!~% and y € Z™ varying from 1 to p*. In order to proceed with this
calculation further, we claim that

d-Flz+p™*y)=d F(zx)+p"~*-d-{y,VF(z)) mod p".

To see this, we recall that F(z) = F(O(z) —m = 27 Mz —m for M a symmetric
matrix and m an integer which might be zero. As (d,p'~%) = 1, we can drop the
d in the above formula. Then using VF(z) = 2Mz in the third line,
F(x +pt—sy) _ (l‘ —|—pt_sy)TM($ +pt—sy) - m
=a" Mz —m+p"*(y" Mz + 27 My) + p**~5y" My
= F(a) +p'"*(y, VF(@)) +p* "y " My.

As 2(t — s) > t, it follows that mod p’ the last term vanishes and the above
claim follows. Thus as p*|p'~* by our choice of s,

Sple)=p" Y D ep(dF(d)+(bc))
d=1 b=1

(dip'~*)=1 bez"

p°|F(b)
ptfs ptfs ps
=p° D D > ep(dF(@+p Ty + (w4 0y, )
d=1 r=1 =1
(dp'=*)=1 f‘EFZ(";)yGZ”
ptfs pt—s ps
=p° Y Y Y epldF(@) + (x,0)ep (d- (y, VF(2)) + (y, ).
d=1 z=1 y=1
(d,p*~°)=1 z€L" ye7"
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As

> el (y, VE@) +{y0) = [T 3 e (wi (a5 + )

p*" if p?|ldVF(x) + ¢,
0 else,

The claim follows:

ptfs ptfs

Sple)=p" Y Y ep(dF(@) + (w,)ep (d - {y. VF(@) + (y, ).
d=1 r=1,z€R™
(dp'™)=1 p°|F(x)
p°ldV F(z)+c

O

We set throughout the remainder of this subchapter A = 2| det(M)|. Before
proceeding with the next statement, we discuss a general lemma on homogeneous
polynomials.

Lemma 7.34. Let F(O : R" — R be a homogeneous polynomial function of
degree k. Then for all x € R",

(2, VFO (2)) = k- FO (z).

Moreover, if k = 2 and F(0))(z) = 2" Mx for M € M,, ,(R) a symmetric
matriz, then
VFO (z) = 2Mz.

Proof. Let a € R. Then as F( is homogeneous, F(V) (az) = a*F©)(z) for
x € R™. Differentiating the latter equation with respect to «, yields

" Hp(0)
Z 0 —(az)r; = kak=1FO) (1),

By setting o = 1 the first claim follows.

For the second claim denote by (D, F(®))(v) the directional derivative of F(©)
at the point z € R” in the direction of v € T,R™ = R". The second statement
of the lemma is implied by the calculation

(DaF©)(v) = lim = Ofe +tv) - FO()
N -

t—0 t
T _ T
— lim (x 4+ tv)! M(z+tv) — ' Mz
t—0 t
_ twT Mz + 27 Mv) + 20T Mz
50 t

=o' Mz + 27 My
= v Mz + 0" Mz = (v,2Mz).
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Lemma 7.35. For anyq>1 andce Z",

Sy(c) <a ¢t

Proof. We calculate for ¢(q) = [{a : a € {1,...q} and (a,q) = 1}|,

Z Zean b, c))

a=1
(a,q)=1 beZ

2

(a,q) L, UUEZ
Then substitute u = v + w, where w € Z™ varies from 1 to q. We claim that
a(F(u) — F(v)) 4+ (u — v, ¢) = aF O (w) + (w, ¢) + a(v, VF(w)) mod q.
As u—v=w, (a,q) =1 and by Lemma VF(w) = 2Muw, this follows as
F(u) — F(v) = F(v+w) — F(v) = FO (v + w) — FO(v)

= +w) M+ w)— v My

= o Mw + w? Mv + w” Mw

= w' Mw + 20" Mw = FO (w) + (v, VF(w)).

Thus using ¢(q) < ¢

() <q Z Z leg(aF O (w) + (w, ¢))eq(a(v, VF(w)))|
(‘111) 1uv£}ezl"

Z Z (aF O (w) + (w,c))|

a 1 weZ"
o= 4| VF(w)

q
<A qn+1 Z 1 <A q2+n
a=1
(a,9)=1

where we used in the last line the trivial bound on e, and that the number of
solutions ¢|VF(w) is of order O (1). The claim now follows by simply taking
the square root. O

Using Lemma [7.35]
44n

IS, (c)|<<A<<Aq1 A X XA X T
q
1<g<X
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We denote for z € Z™ by M~!(z) the quadratic form whose matrix is M 1.
If p does not divide A, we can think of M~! as defined modulo p. Before
proceeding with the next lemma we recall some results on sums over finite fields.
We denote the Kloosterman sum for a, b, m natural numbers,

p—1
K(a,bip) = eyaz + ba'),
=1

where 2’ is the inverse mod p of z. A well known (c.f. chapter 11 of [IK04])
bound for the Kloosterman sum is

|K (a,b;p)| < 2p*(a,b,p)*.

Nl

(7.12)
The Salié sum is defined as
p—1 .
T(a,b;p) =Y (p) ep(ax + bx'),
r=1
where (%) is the Legendre symbol given by

0 ifz=0,

x
<) =<1 if there exists 1 < y < p such that y2 =2 mod p,

P —1 if there does not exists 1 < y < p such that > =2 mod p.

For the Salie sum we have the stronger bound
|T(a,b;p)| < 2p%. (7.13)

Finally we discuss quadratic Gauss sums (see chapter 3.5 of [IK04]). Assume
that p is an odd prime and let ¢ be an integer coprime to p. Then

where

Lemma 7.36. Let p be a prime number not dividing \. Then
Sple) <a p™F,

except when n is even and p divides both m and M~'(c). More precisely, when
n 1s even,

_ ((—1)% det(M) pt

if p divides ezactly one of m, M~1(c),
Sp(c) = ;

(p—-1) (M) p% if p divides both of m, M~ (c).
If n is odd,
n—1
(”z)dt(M)m) P if p divides M~ (c),

Sp(e) =

n—1 - )
(—1) 2 de;(M)]VI 1(0)) p”;rl if p divides m.
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Proof. As p fA, it follows that p is odd. Moreover, viewing the quadratic form
over F(©) over Z/pZ, we can diagonalize it to arrive at

RTMR = diag(B1, ..., Bn)

for f1,...,Bn € Z/pZ all non-zero and R € GL,,(Z/pZ). Substitute b = Rz and
RTc=d,

p—1 p
Sp(0) =Y ep(aF(b) + (b, c))

= i
p—1 p

= Z ep(a(d" Mb —m) + (b, c))
= e
p—1 p

= Z ep(a(ﬁlx%—l—...—i—ﬁna:i —m)+x1dy + ...+ xpdy)
a=1 zCl)ezzln
m n p

= Z ep(—am) H Z ep(afix® + xd;).
a=1 i=1z=1

Then as p is odd, using the above formulas for quadratic Gauss sums,
P P
Z ep(afix® + xd;) = Z ep(aBi(z + d;(2a83;))? — dZ(4aB;)")
r=1

_ <5> ep(~d2(4aB;) ),

It hence follows that

5(c) = (det )”

a=

1

1 (;) (—am - i d?(4aﬂi)’> .

> B7td; = d"diag(By,. .., B,) " 'd = c"R(R"MR)'R"c=c"M ¢

However

implying u
Sp(c) =1 (det; )) S(—m, —4'M~(c);p),

Where S is the Kloosterman sum for n even and the Salié sum for odd n. Using
in the even case when p does not d1v1de m and M~ (c) and ( in the
odd case, we conclude implies S, (¢) <A p *3* as stated in the lemma.

For the more precise values of S,(c), when n is even, note that S = —1
if p divides exactly one of a and b and K, = p — 1 if p divides both a and b.
Analogous formulas conclude the odd case. O

Before proceeding with the next lemma, we recall that a natural number n is
called square-full if whenever a prime p divides n, then so does p2.
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Lemma 7.37. For any X > 1,

1
E — < X°.
1dix VA

q s square-full

Moreover, the sum
1

q

q square-full

CONveErges.

Proof. We first claim that the number of square-full numbers < V' is <« V. To
see this we observe that each square-full number can be written as n?m?3 for
m,n € N. Moreover, we can assume m to be square-free, yielding a unique such
decomposition. Thus the number of square-full numbers < V' is equal to

> |G)

m=1
m square-free

=1
1 1
<V — < Ve
m=1

mz2

Assuming this, we notice that for any n and € > 0,

1 (n41)e ne
> < XUTEXF <« X5,

xne <q<X(n+1)a \/a
q is_sql_lare full

N

Thus for € > 0 we choose n(e) to be the smallest number so that 1 < n(e)e, then

1 1
. H=S< X %
1<g<X \/a 1<q<Xn(s)s \/a
q is square full q is square full

1 1 1
S D M D D
1<g<X= \/E] Xe<qg<X2e \/a X (n(e)=De<g< X n(e)e \/E]

<n(e)X? <. X3,

implying the first statement.
For the second statement, note that clearly

> 1—H<1+1+1+ ) H<1+ ! )
q square-full p p p p (p ]-)
The latter product converges as

(1 s50)) -5+ )

p
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Lemma 7.38. Let |c| < P. Then for any € > 0 we have

3 1S4(e)] €are X TP
1<q<X

except when n is even and m = M~1(c) = 0, in which case

37180 <a XE

1<q<X

Proof. We write ¢ = q1q2, where ¢; is square-free and ¢, is a square-full with

(¢1,92) = 1. Then by Lemma and

142
S04 (€)] = 1S4, (€50)] - [ S, (1) < @3 2 S (a50)].

As ¢q is square-free, it has a prime factorization ¢; = py ... py for distinct primes
pi. Thus by using Lemma [7.32 once more,

|4, (220)] = [Spy (1) - -+ [ Spy (k)]

for some numbers cy, ..., cg. If p; does divide A, then the trivial bound satisfies
|Sp, ()] <P <a 1.
Thus assume that p does not divide A. First assume that n is odd. Then by
Lemma [7.30]
ntl
[y ()| <o p™F.
It remains to consider even n. If p; does not divide both of m and M ~!(c), then
again by Lemma [7.36
nt1
[1Sp:(ci)] <ap=.
If on the other hand p divides m and M ~!(c), then (p,m, M~1(c)) = p and thus
by Lemma

n+1

nt2 _ 1
1Sp (i)l <ap™® <ap;® (piym, M~ (c))2.

The latter bound holds in any case, which allows us to conclude

n+1

|Sa (G50 <a ay? (qr,m, M~ ()%,

where the final factor can be omitted if n is odd.
If & # 0, it holds

dwk)<dd > 1 gZd% = Ud(k).

u<U dlk  u<U,d|u d|k

Moreover, as |¢| < P, it follows that M ~*(c) is Ops(P?) and hence in particular
d(M~(c)) <. P°. Assume in the following calculation that it does not hold
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that n is even and m = M~1(c) = 0. Then,

PBREACIESY Y 185 (a0)] - 1Se (gic)]

1<q<X 1<@<X  1<q <X
g2 square-full 1 square-free
n ntl

1 - _
<A Z Z s °qq° (QvaM 1(0))

1<g2<X 1< <X
-full T
g2 square q1 square-free

ntl i _
<a XY @ Y (am M ()

1<g2<X 1<q<X
g2 square-full a1 square-free
n41 1 1
<a X7 > Y (@, M)
1<q2<X 1<q<X
g2 square-full a1 square-free
nt1 1 X
2 —1
<Lp X2 E q3 ;d(M (c)
1<ga<X 2

g2 square-full

n+3 _1
L e X2 +epe E gy ?
1<g2<X
g2 square-full

<n AXn;rlJrE]DE7

where we used Lemma [7.37]in the last line. This implies the claim.
Finally, in the case where n is even and m = M ~1(c) = 0, we just use the

weaker estimate |S,, (¢;)| <a p"* to conclude

PBREACIESE Yo 1Su(ae)l - ISk (gie)]

1<2 <X 1<q<X

1<g<X
42 square-full q1 square-free
n+t2
LA X2 E 1 E 1
1<g<X 1<q<X
42 square-full q1 square-free
n+2 X
<A X2 E —
1<p<x P

g2 square-full

> 1 <A X'

ntd
KA X2
q2

1<q2<X
g2 square-full

where we used in the last line that the sum of reciprocals of square-full numbers
converges as was shown in Lemma O
Recall that we defined M,,(q) as the number of solutions to the equation

F°2)=m mod ¢

in [1, ¢]™. Moreover for a prime number p,
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and the singular series is defined as

o(FO m) = H Op-

p prime

Analogously to Lemma the next result holds.

Lemma 7.39. Forn > 3 and any prime number p the limit o, exists and can
be computed as,

op = Zp_"tSpt (0).
t=0

Proof. We use precisely the same calculative methods as in Lemma In
particular, recall that the geometric series implies

1 zq: (aF(b)) 1 if FO =m mod g,
SN (VY
ot q 0 if FO #m mod q.

Thus it follows

q q
1
M (q) = Z *Zeq(aF(b))
b=1 q a=1
bezZ™
a4 q
= Z q Z eg(%F(b))
b= dlg a=1
bezZ™ (a,q)=d
1 a a
- " > es(aF(b))
d‘q a=1 b=
(a,9)=1bez™

I
Q| =
ISH
3
n
1)
~—~
[an)
SN~—

|
3
|
-
~
ISHES
~——
|
3
n
ala
—
(e}
N—

In particular if ¢ = p*, then

k -n a
=X ()50 - s

dlp* =0

By using the bound from Lemma it follows that the sum on the right hand
side of the latter equation converges for n > 3 as k — oo since

k k

k
Zp—nkspk (0) < Zp—ntpt(1+%) _ Zpt(l—%) <1
t=0 t=0 t=0

for n > 3. This implies all the claims. O
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Lemma 7.40. Forn >4 and m # 0 the sum

Zqinsq(o)

CONverges.

Proof. We calculate as in Lemma

Yo SO Y Y (0102) "84 (0)] - |54, (0)]

1<g<X 1<g2<X 1<q:1 <X
- — a2

g2 square-full 1 square-free

1—n 1l=n 1
<A Z Z 4 2q° (ql,m)Q

1<g2<X 1§q1§%

g2 square-full 1 square-free

<am S @t Y g7

1<g2<X < <X
g2 square-full 2

g1 square-free

< 00,

independent of X where we used that (¢1,m) < m and both of the sums

o 00
1-2 1
2
E g2 < E qs
g2=1 g2=1
g2 square-full g2 square-full

and

oo

1—n
E q,? <oo
=1
q1 square-free

converge. m

Thus, the last two lemmas show for n > 4 and m # 0,

‘7<F(0)7m) = H Op = Zq_”Sq(O).

p prime

Lemma 7.41. Forn >4 and m # 0, it holds

> a7"S4(0) = [[op + Onre (X7 75PF).
p

q<X

Proof. In order to prove the claim, we show

5 775,(0) <are XT P
X
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Denote throughout this proof Lx =2, s x Se(0). Then

> a8,(0) =" gLy~ Lg1)

q>X q>X

X"Lx 1+ < ! ! )L

= X-1 — —— | L
Sx\¢" @+
3;"P5+5 qn71
LKMe X 2 + Z q27nLq,
=X
Cae X THEPEL PN gE
=X
<K M,e )(¥+EP8
where we used Lemma [7.38| O

7.6 Proof of the Main Theorem

We combine the previous subchapters to prove the main theorem (Theorem ,
which we restate for convenience.

Theorem 7.42. Let n > 4 and F(©) be a non-singular quadratic form in n
vartables, m be a positive integer and w : R™ — R be a compactly supported
function that satisfies the condition of Lemma . Set F = F© —m. Then as
m — 00,

n—1

N(F,w,m?) = 00(G,w)o (FO,m)m? 1 + Opo) 4. (m™T 9).

The main statement is the next proposition. As before, we set P = Q.

Proposition 7.43. Forn >4, m #0 and any P,

3 S0 SU(OI(0) = Pow(Gyw) [[ 0 + O (P3°F9)

ceZn q=1 P

as P — oo.

Proof. Fix € > 0. For convenience, we use the convention that we will be
concerned with changes of € by multiples of itself. We first consider the case
le| > P¢. Recall that I,(c) = 0 for ¢ >, P. Thus by Lemma and Lemma
for N large enough in dependence of ¢,

> Zq‘"S ) Kewe Y. > a gt PTG

le|>P= g=1 |e|>Pe g P

<<Gw5Pn+1 Z Zq C| N (e)

|e|>P= qK P
<<G,w,e 1.
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In the remainder of the proof assume |c| < P* and we further distinguish the
case ¢ # 0 and ¢ = 0. If ¢ # 0, then by Lemma[7.31] as P = Q,

I4(c) € w,e prpl=igz-lps LGowoe pititegs-1

Thus using Lemma [7.38] for any R,

Z q—nS ( )<<Gw€ Z q—nS ( )P%J’_H—Eq?_l

R<q<2R R<q<2R
Kawe PETE N 72718, (0)
R<q<2R
24+14+e p—2—-1
LGuwe PR > Se0)

R<g<2R
3 34+n

LGwe prtltep—3-1p=5+e
S4+ltepi+

<<G,w,s Pz ‘R> Ea

replacing € by a multiple of itself. Thus, still in the case ¢ # 0,

<P

Zq*”S <3S ¢SO0

R=1 R<q<2R
<P

n 1
<<G,w,€ E P2+1+€R2+€
R=1

n+3
==+
<<G,w,s P 5’

where we used in the last line

<P

Srete= M Rit N Ritp L 4 ) RETT < PR
R=1

Pl-s<RKP Pl-2c g RKP1—= RKLPe

As we only consider ¢ in the range ¢ < P?, it follows

quins )<<GwsPnT+3+E-

c#0 q=1
It remains to treat the case ¢ = 0. Using Lemma and Lemma [7.38] for
¢> QP =P,

> g S(0)I,(0) <gawe PPRT" Y S,(0)

R<q<2R R<q<2R

<G P"RT"R™ TS

<<G7w,5

Hence

S aS(0)1,(0) g P

Pl-s<qgP
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For ¢ < P'~¢ we use Lemma and Lemma

> a"S(0)14(0) = Pross(Giw) Y 4 "S4(0) + Ocw,e(1)
gq<Pl-c q<Pl-¢
3

= P"0(G,w) H 0p + OGawe (P2 7).

p

O
Proof. (of Theorem ) We use the choice P = Q = m2. By Corollary ,
N(F,w,m%) = Ccpm ™} Z Zq_”Sq(c)Iq(c),
ceZ™ q=1

where
em =1+ O0xn(m™N).

By Proposition [7.43]
N(Fa w?m%> = (m_l + ON<m_N)) (m%UOO(Ga ’LU)O'(F(O)7 m) + OF(O),w,s<mn4+3+s>)

n—1

= 050 (G,w)a(FO, m)m2 ™! + Opo) 4 o (m 7 ).

O

Corollary 7.44. Let n >4 and FO be a positive-definite quadratic form in n
variables. Then as m — oo,

{z ez : F(O)(x) =m}| = CF(0>U(F(O),m)m%710F<o),g(mnT_l+E)a

where Cpoy is a constant > 0 only depending on F(©).

Proof. Choose

w(z) = ewo(2G(x)).
The function w(z) has the value w(x) = 1 if and only if G(z) =
Further note that if 2 € Z" satisfies F(*)(z) = m, then F(0)(-Z

N(F(O),w,m%) = Z w <$>
xeZ™ \/’I’TL
FO (z)=m
= Y 1=Hzez": FO2)=m}|.
xeZ™
FO ()=m

FO(z) —1=0.
) = 1. Thus

3l

Note that since F(© is positive definite, it follows that w is compactly
supported. It remains to check the regularity condition of Lemma [7.7] Note
that |G| < 3 on supp(w). Assume for a contradiction that VG(z) = 0 for

2 € supp(w). Then using Lemma |7.34]
0= (z,VFO(2)) = 2FO(2) = 2(G(x) + 1),

a contradiction. Thus setting Cpo) = 0 (G, w) implies the claim by using
Theorem [7.421 O
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7.7 Counting the Number of Solutions in Fixed Congru-
ence Classes

As in the previous chapter, we consider a quadratic form F(©) in n variables and
set F = F(O —m for some m. Fix a positive integer £. We aim at counting
solutions of the form & 4 ¢Z™. More precisely, choose some element & € (Z/¢Z)"
and set
N(w,F,§)=N(w,F,P&= Y wP lz),

TEEHLL”

F(z)=0
where again w : R — R is a compactly supported function that satisfies the
regularlty condition of Lemma [7.7] As before, we always consider the case
P = m2. The principal aim of this subchapter is to prove an analogue of
Theorem

Write £ = Hp p°r. Denote by M,,(p*) the number of solutions of the equation

F(z)=F9)—m=0 mod p*
for x € [1,p**#»]" with the additional condition z = ¢ mod p*». Then we define

as usual .
M,
op = lim m(P”)

k—o0 p(”_l)k

O—(F(O)vmvf) = HUP'
p

and

Theorem 7.45. In the above setting,

1 n n—
— 0o (G, w)o (FO m, ©)mE ™" 4 Opw) e (m T +9).

N(w7 F7 m% ) g) = gn

We apply the same ideas as in the proof of Theorem We first establish
an analogous result to Theorem Therefore we introduce the notation for
cez”,

q ql
Spe(e, &)= > > eqlalF(b)+ (b,c)).

a=1  b=1bez”
(a,9)=1p=¢ mod ¢

Moreover, we define
I, (c) = /n w(P~'z)h(P g, P72F(x))6qg(f(c, x)) dx
= PpP" /n w(z)h(P~1q, F(x))eq(—(Pe, ) dz.

Lemma 7.46. For any m > 1,

(wFpﬁ—CPPQZZqﬁ Sq.e(e; ) g e(c).

ceZn q=1
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Proof. The proof is parallel to Theorem We write with the help of Theo-

rem [7.1]
N(wva P7 g) = Z w(x)éF(w)

re&+HILn

=cpP2Y w(z)eq(aF (x))h(P1q, P72F(x)).
=1
q):

q:l TEEHLL™

Setting first © = £ 4+ £(b + qy) and then z = £ 4 /b, where we sum over the
suitable collection of numbers, we derive

Y w(@)eg(aF (z)h(P'q, PTF(x))

:EEEJrZZ"

Z > w(€+ L+ qy))eq(aF (& + b+ qy)h(Pq, P72 F( + £(b + qy)))

1 yeL™
Z

q at
= Z > w(z+Llay)eg(aF (= + Lqy))h(P~ q, P7*F(z + gy))
b=1 yeZm™ z=1,z€Z"
bEZn =¢ mod £
=b mod ¢q

z
z
q q

f2(y) = w(P~"(z + Lqy))h(P~"q, PT°F (2 + lqy)).

Then by the Poisson summation formula,

yezZ™ cELn cezn

Substituting x = z + {qy and

R0 = [ w(P+ tay)h(P 0 P F e+ ta)e(~e.n)) dy

= (¢0)" / w(PTlo)h(P g, PP F(x)e <—<c, f”q‘gz>> dz

= (q€) "eqe((c, 2)) /n w(P~ x)h(P~ g, P72 F(x))eq(—(c, x)) dx
= (g0) "eqe({c, 2))1ge(c).
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In conclusion,

00 q q¢
Nw,F,P&)=cpP2Y " 3 > eulalF(h) Y fo(y)
qg=1 gq=1 b=1,beZ™ yEeL™
(a,q)=1b=¢ mod £
00 q q¢
—cpP Y Y Y eq(alF(b) D (g0) " eqr((c2) Igu(c).
g=1 q=1 b=1bez™ cEZ™
(a,q)=1b=¢ mod ¢
00 q q¢
=cpP 2 NN Y (g "equ(alF(b) + (¢, 2) Ig(c).
ceZ™ q=1 =1 b=1,beZ™
(a,q)=1b=¢ mod ¢
=cpP 2D > (a) " Squ(e, ) Ig.(c).
ceZ™ g=1

O

We next discuss properties and estimates for I, ¢(c) and Sy ¢(c, §), which are
analogous to the results in chapters [7.4] and As the proofs follow along the
lines of the corresponding results in chapters [7.4] and we omit them here.

Lemma 7.47. The following properties hold for I, ¢(c).

(i) For q >, P,
Iq,g(c) =0.

(i) For c#0 and N >0,

I, 0(c) <w,N P”+1(q€)_1|c\_N.

(iii) For ¢ #0,
I 0(c) <uw,e P1+%+25\c|1—%+€<q£)%—1+25.

(iv) For ¢ < P,
I,6(0) = P" (000 (G, w) + Og N (P~ g)").
Lemma 7.48. Let ¢ = q1q2 and { = {10y so that (qi1l1,q202) = 1. Choose
q1, 5, 0y, Uy so that

qiq; =1 mod gals,
¢2q5 =1 mod qi1,
10y =1 mod gola,
624/2 =1 HlOd Q1€1~

Then for & € (Z/0Z),

Sq,f(c7 5) = Sth,fl (ql2€/207 g)qu,fz (qi /107 6)
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Lemma 7.49. We have the following properties for n > 4 and m # 0.
(1) Sqe(w,€) <npeqts.
(i1) For|c| < P ande >0,

S Sele, ) <are X T PR,
q<X

Proposition 7.50. Forn >4 and m # 0 and any P,

5 Y0 Suec 1) = (7 ) 9Gr0) [T+ OceoP55)

c€Z™ q=1
as P — oo.

Proof. The proof is similar to the one of Proposition As before, we first
consider the case |c| > P°. Recall that I, ,(c) = 0 for ¢ >,, P. Thus by Lemma
(ii) and Lemma (i), for N large enough in dependence of ¢,

> Zqﬁ 0(0) <auwe Y. D (a) g T (q) T P e TNE

e|>Pe q=1 le|> P q<P
LGae PTEY T g o NG
le|>P= qKP
<<G,w,£,s 1.

In the remainder of the proof we restrict to the case ¢ < P¢. We further
distinguish the case ¢ # 0 and ¢ = 0. If ¢ # 0, then by Lemma (iii),

I e(c (c )<<Gw6 P2+1+Eq§_1

Thus using Lemma (ii), for any R,

D (@) Seu(Oge(c) Kauwpe Y, q "Sy(c)PEITEgE

R<q<2R R<q<2R
noq _n_q
LG PFE N 7578, ()
R<q<2R
njdep—n_1]
Lcuw,ee PR Y Sgule)

R<q<2R
3+n
<<G,w7€7€ P%+1+€R7%71R72 +e
<G PEFITEREYE,

Thus, still in the case ¢ # 0,

<P
MERICICED P SRATICLIC
R=1 R<q<2R
<P
<<G w.l.e Z P%+1+ER%+E
R=1

n+3
<<G,w,f,5 P +E~
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As we only consider ¢ in the range ¢ < P?,

o0
— n+3
SN a8 (O 1g(0) K P
c#0 g=1

It remains to treat the case ¢ = 0. Using Lemma [7.47] (iv) and Lemma
(ii) for ¢ > P'~¢,
D (007" 900(0)14,0(0) K@wee PR Y S44(0)
R<q<2R R<q<2R
34+n

<Guwee PPRT"R™Z T6p°
e PRI

Hence

ST @S ge0)4(0) € PE
Pl-s<qkP

For ¢ < P'~¢ we use again Lemma (iv) and the analogue of Lemma

5 @0 5,0040 = () onlGw) ¥ 0750) + Ol

g<PpPi-e q<P1-<

P\" 3-m
- (€> U‘X’(va)l;[Up‘FOG,w,@,E(P&Z+€)~

Proof. (of Theorem [7.45)) By Lemma

N(Fw,m?,€) = cmm ™ Y 3 (a6) " Se(e)Ige(0),

ceZm q=1

where
cm =1+ ON(m_N).
Thus together with Proposition [7.50

n+3

N(F,w,m?) = (m™" + On(m™)) (f_nm%%o(ﬁw)U(F(o),m,é) + Op©) yoe(m* +E))
1
B

n—1

oo (G w)a(F O m, &)m= " + Opo) 4y pe(m 5 T°).

Finally, we can again deduce the following corollary.

Corollary 7.51. Let n > 4 and F©) q positive-definite quadratic form in n

variables. Then as m — oo,

Cro
gn

n—1

o(FO,m, &)m2 " Opw 4 (m T ),

{z e+ @z)" : FO(x)=m}| =

where Cpo) is a constant > 0 only depending on F(©).

Proof. The proof is verbatim the one of Corollary [7.44] O
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7.8 Application to Quaternion Algebras

In this subchapter, we apply the results from previous subchapter to a quaternion
algebra B = B, ;, over Q so that a,b € Q*. We assume without loss of generality
that a,b € Z\{0} so that B, has a Z-structure. Denote as usual by G = B! the
elements of unit norm, by I'y the ¢-congruence subgroup of G(Z) and by I, ,
the corresponding lattice in G(R) x G(Q,).

To link this setting to the one of the last subchapter, we observe that B can
be viewed as A* and the norm Nr defines a quadratic form in four variables over
Z. Moreover, to simplify the notation, we simply denote by Z* the Z points of
B. For h a positive integer, write F(z) = Nr(z) — h? for z € B(R) = R*. Then
for a compactly supported function w : B(R) — R and ¢ € (Z/¢Z)* write

Np(w,€) = N(w, F,h,§) = > w(h™'a).

P S/
F(xz)=0
With this notation, Theorem reads as
1
Ny (w,€) = 7000(Nr,w)a (Nt 1%, ) + O, (7). (7.14)

In this concrete setting, we first want to derive a uniform version of ([7.14)
as we shift w by some element g € G(R) and then apply this result to prove

Corollary For g € G(R), set
wy(z) = w(g™'w)

for « € B(R).

In the following we view G(R) as a subgroup of Oq, , (R), which is possible by
the proof of Proposition[I.18 We moreover denote by ||-|| a norm on G(R) which
is given as ||g|| = max(||g||mat, ||g™"|mat) for || - |[Mmat a fixed sub-multiplicative
matrix norm.

Theorem 7.52. Let w : B(R) — R be a positive smooth compactly supported
function satisfying the regularity condition of Lemma[74, £ a positive integer,
&€ AN/LA and g € G(R). Then for every § >0 and N > 4,

1
Ni(wg,§) = 7000 (Nr, w)o (Nr, h*, )h*
+ O, c (|lgl| VR3O =D8 | g[[pEH40Fe),

Proof. In order to avoid a notational conflict, we denote in this proof by H the
function h from previous chapters. For the proof we introduce the notation,
where we write as before P = h,

I, gu(c) = /R Cwlg™ P H(P g, PR () eqi(~ (e, ) d

s /R w(g™ ) H(h™"q, F(2))eqe(~(he, x)) da.
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By the proof of Proposition we can view G(R) as a subgroup of Ogq, ,(R)
and hence each element of G(R) is considered to be a matrix of determinant +1.
Thus, also using that G(R) preserves F'(x), it follows

(@) = [ @00, F(@)eqs(~{he.ga)) dn = 1, (7).

In particular, by Lemma

Ni(wg,€) = enh™ > Y (q0)*Sq.e(c,)14.0(g"0).

ceZ4 q=1

The remainder of the proof is analogous to the proofs of Theorem and of
Theorem [Z.45]

Fix 0 > 0. First we consider terms with |c| > h%. Then by Lemma (i)
for N > 4,

ZZqﬂ Sq(e;)Igu(g"c) wun B° | D g7 Zq Sq.e(c
cez’ 4=l lel>|h|?
le|>h

By Lemma [7.49] the second sum is finite. The first sum is estimated as

D g™ <™ Yo fel ™Y < lgl VAT (7.15)
|e|>hd le|>h?
where we used that |¢| = [g71gc| < ||g7 || |gc| and hence in particular by our

choice of norm, ||g||~* |c|] < |ge|. Thus

Z Z(qg)_ZLSq,f(cag)Iq,Z(gTC) Lw,t,N Hg||Nh5_(N—4)5.
cezt q=1
\c|>h’5

Next we analyze 0 < |¢| < h%. Then by Lemma (i) and (iii),

Z Zqé Sge(c,€) q€(9 9

0<|c|<h® g=1
<h
oot 3 e (L)
0<|c|<hd q=1
Using Lemma (ii) as in the proof of Proposition [7.43]
<h

Zq 3 q,0 Cg <<Nrf€ h2+5

Moreover

S 1 < lgll - e € Z* : fef < Y] < ||gl|n®.
0<|c|<hd
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In summary,

3 S @) S ) a9 ) Cunee llgllREHTE,

0<|c|<h% g=1

Combining all this, we conclude

Ni(wg, &) = enh™207> " q7*84,0(0,€)I,.4(0)

q=1
— — 3
+ Ou e, N ([glIV B3V =02 4 || |2 40F),

which implies the claim as in the proof of Theorem [7.45 O

Corollary 7.53. For every ¢, there exists a measurable subset Q C G(R) with
finite measure that surjects onto G(R)/Ty so that for all € > 0,

1
7170 (Nt w)o (Nr, K2, £)h? w0 h2Te

HNh(wgaf) -
L2(Q)

If moreover G is anisotropic over Q, or equivalently B is a division algebra over

Q, then

3
w0, h27e.

1
‘ |Nh(wga 5) - EUOO(NL ’UJ)O’(NI‘, h27 g)hZ
L2(Q)

Proof. If B is a division algebra, then I'; is cocompact (cf. [Berl6] chapter 2)
and hence there is a compact fundamental domain @ for G(R)/T;. Thus it
follows directly by Theorem [7.52] by choosing a large N,

Lw,t,Q,e h%JrE.

’ ’Nh(wga f) - K%Joo(er U))O’(NI‘, h27 £)h2
L2(Q)

If G is isotropic over QQ, then as a consequence of Corollary it follows
that G = SLa. We use the standard notation for SLa(R). Recall that a surjective
set @ of finite measure can be chosen to be of the form Q = QuU Q1 U...UQ;
where Qg is compact and

Qi = {katug; : k€ K,t >0 and u € Uy},

where Uj is a compact subset of the unipotent group U and g; is some fixed
element. Thus it suffices to prove the estimate for Q = @Q; for 1 <i < s.
Set
Q<r ={katug; : k€ K,0 <t <In(R) and u € Uy}

and
Q>gr = {katug; : k€ K,t > In(R) and u € Up}.

Note that mg(Q>r) < R™2 and for g € Q<r,

1
Ny (wy, &) — gjaoo(Nr,w)a(Nr, h2, )R = Oy g n.c (RN~ (N=90 | pp3+ad+e)
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Thus it follows for any N large enough,

HNh(wm 0o (Nt w)o (N2, 12, )

L2(Q)
< / Np(wg, &) — O'OO(NI‘ w)o(Nr, h?, €)h? de
Q<r
1
1 2
+ / Ni(wg, &) — -2 0s0(Nr,w)o(Nr, h?, £)h* de
Q>r t

<ma(Q<r)? Owone(RNR=N=D L RR3T4%E) L in(QsR)2 O p.c (B2T)
Lw.l.Q.N.be RN p3—(N—-4)8 +Rh2+46+e 4+ Rlp2te,

We next choose R so that the last two terms are essentially equal, namely
1
R =hi=2° Then

Luwt,Q.Nse h7He

||Nh(wg,§) 1000(Nr w)o (Nr, h?,€)h?
L2(Q)

for N -
Umax{4+3 (3N4)5,4+25}.
To optimize the error term, we choose

N +50
T 12N

ThenasN—>oo,a—>%. O
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A Sobolev Norms on Homogeneous Spaces

A.1 Sobolev Spaces on Lie Groups

We first review some general notions on Lie groups with a generalization of
these notions for homogeneous spaces in mind. Let G be a (real) Lie group of
dimension n with Lie algebra g and unit element e. We fix a Haar measure on
G and denote by L?(G) the space of square-integrable functions.

Definition A.1. Let f: G — R be a function and X € g. If

(Dx f)(g) : f(exp(—tX)g)

e,

exists for all g, then f is called differentiable in the direction of X and Dx f
is called the derivative of f in the direction of X. The function f is called
smooth if for all X1,...,X,, € g the derivative

DX17~~--,Xn,f = DXlDX2 N Dan

exists and is continuous. We denote by C°°(G) the space of smooth functions
on G and by C2°(G) the space of smooth compactly supported functions.

We next discuss Sobolev spaces on Lie groups. Let k¥ € N and fix a basis
X1,...,Xp of g. For a € Njj we write ||a||1 = |aa|+ ...+ |an| and for a function
f: G — R we denote

Daf = DX‘11 “ee Dxanf.

Definition A.2. For any f € C°(G) we define the Sobolev norm as

Sa(f) = llfllneey = Z IDafll72(q)-

llall1<d
The Sobolev space H%(G) is the completion of
{f € C*(G) : Sy(f) exists and is finite}

with respect to the norm || o ||54(g) viewed as a subspace of LQ(G)H Finally, we
define the space H&(G) as the completion of

{f € CX(G) : Si(f) exists and is finite}
with respect to the norm || o ||3a(q) viewed as a subspace of L*(G).

Lemma A.3. The Sobolev spaces HY(G) and HE(G) do not depend on the
choice of basis X1,...,X, of g.

Proof. We refer to chapter 7.1 of [EW]. O

Lemma A.4. For any d € N, the Sobolev spaces HY(G) and HI(G) are Hilbert
spaces.

3See the proof of Lemma for a proof why H%(G) can be viewed as a subspace of L?(G).



A. Sobolev Norms on Homogeneous Spaces 192

Proof. We only show that H%(G) is a Hilbert space as the other case is analogous.
The inner product on H?(G) is given for f,g € H*(G) by

<fvg>Hd(G): Z <Daf7Dag>°

llallr<d

It remains to show that the induced norm is complete, which will follow from an
alternate description of Sobolev spaces. Namely, consider the embedding

L: C®(G) — @ L* (@), fr— (Daf)a

llell1<d

and denote by W the closure of ((C*°(G)). As W is a closed subspace of a
Hilbert space, it is itself a Hilbert space. Since each element of W is determined
by the first coordinate, the map

HUG) — W, [+ (fada
is an isometric isomorphism. This shows that H%(G) is a Hilbert space. O

We want to prove an analogue of the Sobolev embedding theorem for Lie
groups, as a consequence of the Sobolev embedding theorem for open subset.
We first recall the latter theorem.

Theorem A.5. Let U C R™ be an open subset and choose d > 5. Then any
f € HY(U) has a continuous representative. Moreover, any f € C°(U) satisfies

1 lloo << Sa(f)-
Proof. See [EWT17|] Theorem 5.34 on Page 150. O

Corollary A.6. Let d > dimT(G). Then any f € HYG) has a continuous
representative. Moreover, if f € CX(Q), then

[ £1loe < Salf)-

Proof. Let U C g be a neighborhood of {0} on which the exponential map is
a diffeomorphism. As continuity is a local property, it suffices to assume that
f € H*(G) is supported in exp(U). Pulling the function back onto U, we apply
the Sobolov embedding theorem for open subsets of R? to conclude the statement.
The second claim follows by the same argument. O

More generally, one can define analogously for every unitary representation
(m, ) of a Lie group G a Sobolev norm and a Sobolev space. More precisely,
for a vector v € J# and X € g one defines

Dxv=— Texp(tX)V
dt|,—o
and says that v is differentiable in the direction of X if Dxwv is a well-defined
element of 5. Then one defines as before smooth vectors, Sobolev norms and
Sobolev spaces. However, in this general setting, there is no analogue for a
Sobolev embedding theorem.
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A.2 Sobolev Spaces on Arithmetic Homogeneous Spaces

In this chapter we consider the special case of homogeneous spaces on which
we discuss Sobolev norms and Sobolev spaces. As outlined in the last chapter,
for a general unitary representation, there is no hope to prove an analogue of
a Sobolev embedding theorem. Yet this is possible for suitable homogeneous
spaces, with an slightly altered definition of a Sobolev norm. In this subchapter
we discuss content from chapter 5 of [EMVQ9].

Throughout this chapter let G be a linear algebraic group defined over Q.
For simplicity we assume that G C GL,, and denote by G = G(R) its real points
with Lie algebra g. Write

go = 9N gl,(Q).

As G is defined over QQ we have that g is spanned by elements of gg.

Before treating arithmetic subgroups and arithmetic homogeneous spaces,
we discuss matrix norms on G and inner products on g. On G we consider the
matrix norm

l9ll = max {lgis1,1(g7")isl}-

For g,h € G we have the properties

lgll =1lg~"1l,  llghll < llgll - 111l (A1)

where the constant only depends on G or more precisely on n.
On g we fix some positive-definite inner product (-, -) which gives rise to some
Euclidean norm || - ||4 on g. We note that for g € G,

911> < [[Ad(g)llop = e llgvg™llg < llgll*. (A2)
v||g<

Denote by R, : G — G right multiplication by g. We can use the inner product
on g to define a Riemannian metric on G. Namely, we set for u,v € g =T.G

(DeRgu, DeRgv)g = (u,v).
By the chain rule, it follows for g,h € G and u,v € T,;G that
(DgRpu, DgRpv)gn = (u,v)g,

so that the Riemannian metric on G is right-invariant. The length of a smooth
curve v : [0,1] — G is given as

L(y) = / (0] o dt = / SO A D)0 d.

The induced metric on G is

dg(hi, he) = igf L(v),

for hi,he € G, where the infimum is taken over all smooth curves connecting
hi and hg. For a smooth curve v : [0,1] — G and some g € G, we have as a

consequence of (A.2),

L(gyg™") < llgl*L(v)
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and so we have that

dc(ghi, ghe) = dc(ghig™", ghag™") < ||g]|*dc (b1, ha).

For a discrete subgroup I' < G, we define a metric on the homogeneous space
G/T for points x =T'g,,y =T'g, € G/T as

dar(z,y) = inf da(gz71,9y72)-
Y1,72€l
Then it follows by left-invariance and from the above that

dgr(hz, hy) = 71i32fel“ dc(hge71, hgyy2)

nf da(hgeyih™", hgyy2h™")
Y1,72€0

< inf ||h|[Pda (971, 9y 72)
Y1,72€D

1,7

< |[h|Pdgr(z, ).

We are now ready to discuss arithmetic lattices and arithmetic homogeneous
spaces.

Definition A.7. Let G C GL,, be an algebraic group defined over Q and denote
by G the real points of G. A subgroup I' < G is called arithmetic if it is
commensurable to G(Z), i.e. if ' N G(Z) has finite index in both I' and G(Z).
If T' C G is an arithmetic lattice we call G/T" an arithmetic homogeneous
space.

We next discuss some examples.

Example A.8. Consider the diagonal subgroup G C GL,, so that G(R) = R".
Then the arithmetic subgroups I' C R™ are precisely the lattices spanned by
rational vectors.

Example A.9. We now consider G = SLs. Then
2 b
r— {(f“ §d> . a,b,c,d € Z so that ad — bd = 1}

c

is a non-arithmetic subgroup of G(R).

Lemma A.10. Let G C GL,, be a linear algebraic group over Q and I' < G(Q)
be an arithmetic lattice. Then there is a Ad(T")-invariant lattice gz C g that is
contained in gg.

Proof. Choose a rational basis e1,...,e, of gg and set L = Ze; + ...+ Ze,, so
that

G(Z) = {7y € G(Q) : Ad(7)(L) = L}.

As [T : TNG(Z)] has finite index, it follows that the collection of lattices Ad(y)(L)
for v € T is finite. So let gz be the Z-span of

U Ad()(1),

yel’

which defines a lattice in gg which satisfies all our properties. O
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Throughout the rest of this chapter we fix an arithmetic lattice I' < G and
X = G/T. Moreover, we fix a gz C g with the above properties.

Definition A.11. Let x € X. Then we define the height of z as
ht(z) = sup{||Ad(g_1)vH_1 :Tg=zandv e gz\{O}}

By (A.2)), it follows that
ht(gx) < |lgl|*ht(x). (A.3)

We will now use the height to define a Sobolev norm on G/T". As preliminary
remark, note a function f : G/T' — R is called smooth if the lift f:G—=Ris
smooth. From this viewpoint, we can define the derivative of f analogously to
before and so will use the same notation as in Definition [A.1l

Definition A.12. For any f € C°°(X) we define the arithmetic Sobolev
norm as

Sa(f) = 1fllacxy = | D N +ht)4Dafl2 )

llall1<d
Moreover, we define the arithmetic Sobolev space as the closure of
{f € C=(X) : S4(f) exists and is finite}

with respect to the norm || o ||ga(x) inside L?(X). Finally, #§(X) is the closure
of
{f € C°(X) : Saq(f) exists and is finite}

with respect to the norm || o [|3a(x) inside L?(X).

In analogy to Lemma it follows that H4(X) and HE(X) are Hilbert
spaces. We next investigate some properties of Sobolev norms.

Proposition A.13. (Sobolev embedding theorem) Let k > dim(G). Then any
f € H¥(X) has a continuous representative. Moreover, if f € C°(X), then

1 flloo < Sk(f)-

Proof. For a proof we refer to chapter 6 of [EMV09). O

Denote by A : G — U(L?*(X)) the left regular representation, so that
M9)f)(x) = f(g~tx) for f € L*(X) with g € G and x € X.

Proposition A.14. Let k > dim(G). The following properties hold.
(a) Then for all f € C°(X) and ||af|1 < d we have

||(1 + ht)dDaf”oo < Sd-Hf(f)'
(b) For all f € HY(X) and g€ G

Sa(M(9)f) < llgll**Sa(f).-
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(¢c) For all f,g € HI(X) and k > dimT(G) we have
Sa(f - 9) <a Sa+k(f)Sa+n(9)-
(d) For all f € HY(X) and g € G small enough we have

If = Ag) flloo < d(e, 9)Sk11(f)-

Proof. We show (a) by using the last proposition:
||(1 + ht)dDaf||oo < Sk((l + ht)dDaf) < Sd-‘rk(f)'

Clearly, (a) implies (¢). To prove (b) just use (A.3)). Finally, to prove (d) recall
that by equation (6.25) of [EW], we have for v € g and all z € X

flexp(—tv)z) — f(x) = / (Duf)(exp(—sv)z) ds

So by choosing a unit vector v so that exp(—tv) = g for ¢t = d(e, g) we conclude

1 = A9)flloo < sup / (Do f)(exp(—sv)a)]| ds
xe€X JO

< d(e, 9)|| Dy flloo < d(e, g)Sk+1(f)-

A.3 The Relative Trace of Sobolev Norms

In this subchapter we discuss the notion of a relative trace and apply it to the
Sobolev norm defined in the last subchapter. Content from Appendix A of
[BRO2] and chapter 5 of [EMV09] is summarized.

We start with an interlude on the trace of two Hermitian inner products.
First consider a finite dimensional complex vector space V and denote by VT
the Hermitian dual consisting of anti-linear maps f : V' — C. Let (-,-)4 and
(-,-)B be two non-negative Hermitian inner products on V. By a slight abuse of
notation we simply denote by A the inner product (-,-) 4 and we use the same
convention for B.

We denote by A the map

Ay V — VT, v (V,) 4,

where By is analogously defined. If A is positive definite, then A, is an
isomorphism of finite dimensional vector spaces.

Definition A.15. Let V be a complex finite dimensional vector space and
assume that (-,-)4 and (-,-)p are two non-negative Hermitian inner products.
Assume moreover that B is positive-definite. Then we define the relative trace
of A and B as

tr(A, B) = tr(B; ' AL).
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Lemma A.16. In the above setting, let e, ..., e, be an orthogonal basis of V
with respect to (-,-)p. Then we have that

tr(A, B) = zn: M

i=1

Proof. For each i € {1,...,n} there are some A;1, ..., A, so that
BJ:IAJF(BZ') = Z )\ijej.
j=1

We then have that tr(4,B) = Y. | X\i;. Moreover, it follows that Ay (e;) =
> j=1Aij B+ (e;) or equivalently

n

(e v)a =Y Aijlej,v)m
j=1
for all v € V. Plugging in v = e; we conclude that \;; = é;i;g
claim follows. O

and so the

The above treatment of the relative norm in the finite dimensional case allows
a generalization to the infinite dimensional case.

Definition A.17. Let V be a complex topological vector space and let (-, )4
and (-, -) p be two non-negative Hermitian inner products so that (-, -) g is positive
definite. The relative trace of A and B is defined as

tr(A, B) = sup tr(Aw, Bw),
wcv

where the supremum is taken over all finite dimensional subspaces W C V' and
Aw respectively By denotes the restriction of A respectively B onto W.

Proposition A.18. In the above setting assume that V' is separable and consider
W1 C Wy C ... CV an increasing sequence of subspaces so that V is equal to
the closure of ;= Wi. Then,

tr(A, B) = lim tr(Aw, , Bw,).

n—oo

In particular, if (e;)ien is an orthogonal basis of V' with respect to B, then

Proof. The second equality is clearly implied by the first one. To show the first
equality, note that > is obvious. To see < we distinguish the cases where tr(A, B)
is finite or infinite. Assume for now that tr(A, B) is finite. Let £ > 0 and choose
V' C V finite dimensional so that

tr(A, B) —e< tI‘(AV/,BV/) < JCI'(A7 B)
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Write V/ = (vy,...,v,) for an orthonormal basis vy, ..., v, with respect to B.
As by assumption a Hermitian inner product is continuous and | J,-, Wy is dense
in V, we can choose for each v; some w; € UZo:1 Wi so that for all 4,7 we have

[(vi, vj)a — (wi,wj)al <

Slo

and
[(vi,v5) B — (Wi, wi) Bl = 055 — (wi, wy)B| < €.

Set W = (wy,...,wy,). Upon using the Gram-Schmidt algorithm on wy, ..., w,
for the inner product (-,-)p, we can assume without loss of generality that
wy, ..., W, are a B-orthonormal basis of W and satisfy the above inequalities.
This follows as by assumption (w;,w,)p is for ¢ # j close to 0 and (w;, w;)p is
close to 1 and hence the Gram-Schmidt algorithm does not change the vectors
w; by much. Thus it follows for W = (wy,...,w,) that

ltr(Av/, Byr) — tr(Aw, Aw)| < > [(vi,vi)a — (wi, wi) al < e
i=1
Hence it follows that
tr(A, B) — 2e < tr(Aw, Bw) < tr(4, B).

Now choose some large enough W; so that W C W,. Then tr(Aw, Aw) <
tr(Aw,, Aw, ), showing that

tr(A, B) — 2 < tr(Aw,, Bw,) < tr(A, B).

This implies the claim under the assumption that tr(A, B) is finite. If tr(A4, B)
is infinite, the same argument applies to a finite dimensional subset V' C V so
that n < tI‘(AV/, BV/). O

Proposition A.19. In the setting of the last proposition, assume that ||v||a <
c|[v[|g for a constant ¢ > 0. Then there erists an operator Opy g : V — V
uniquely characterized by

<”U, ’LU>A = <OpA,BU7 w>B
for allv,w € V. Moreover, the tr(A, B) is finite if and only if Op 4 p is of trace

class and if so then

tr(A, B) = tr(Opy4 p)-

Proof. Fix some v € V and consider the map w +— (v, w) 4. By Cauchy-Schwarz

1, w)all < llvllallwlla < ¢[v]l|lw]|z

and so by Frechet- Riesz, for each v € V there is some v’ € V so that

(v,w)a = (V' ,w)p.
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Set Op4 pv = v’ and this hence defined a bounded operator V' — V. To prove
the second claim recall that

N
(Opap) = sup Y [(Opa pvs,wi)sl,
(vn),(wn) i=1

where the supremum is taken over all B-orthonormal lists (v,,) and (w,,). So we
conclude by Cauchy-Schwarz

N
tr(Opy ) = sup Z|<OPA,Bvi,wi>B\

(Un ),(wn) i=1
N

= sup Z|<Ui7wi>A|
(”n)»(wn) i=1

= sup Z(vi,vi)A

(vn) i>1
=tr(4, B),
which implies the claim. O

We return to the setting of the last subchapter. As before, consider a linear
algebraic group G C GL,, over Q with real points G = G(R) and a arithmetic
lattice I' < G(Q), so that G/T" is an arithmetic homogeneous space. We use S3
as a shorthand for the inner product defined for f,g € H%(X) as

(f.9) = > ((A1+ht)"Dyf, (1+ht)"Dag)re(x)-
[lerf[1<d

Let k > dim(G). By the Sobolev embedding theorem and by Proposition
we have for all f € HIT#(X) and ||a||; < d that

1(1 +1t)* Do flloc < Sasn(f)- (A4)

We will use (A.4]) to deduce that the relative trace of two Sobolev inner products
82 and S and is finite provided that d and d’ are far enough away.

Proposition A.20. Let d > d' > 0 be integers so that
d—d > dim(G).
Then the relative trace tr(Sy,Sq) on the Hilbert space HE(X) is finite.
Proof. We consider for a fixed z € X and o € N¢ with ||a||; < d' the map
Lo HYX) €, f s (L4 ht(@)(Daf) (@),

where we note that this map is well defined by the Sobolev embedding theorem.
We note that L, is not the zero map as H3(X) contains C.(X) thus we observe
that ker(L,) is a closed proper subspace of HZ(X). Choosing some vector
g € ker(L,)* with L,(g) = 1 we conclude that we have an orthogonal direct
sum

HA(X) = ker(L,) & Cg,
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where each function f € HZ(X) has the decomposition

f=Ff—Lo(f)g+ La(f)g-

Finally we chose an orthonormal basis fi, fa, ... of ker(L,) with respect to 82
so that g, f1, f2,... is an orthogonal basis of Hg(X). Using that L,(f,) =
|L.(fn)]?> =0 for all n > 1, we conclude

(L2, 8%) = (9 9)La A fudr,
tr(|Ly|", S5) (99 sy =5 o Fadng)
<gag>Lz

(9, 9 na(x)

_ 10 M@ Dag)l
d

where in the last inequality we used (A.4]). Integrating now over z, using that
X is a probability space, and summing over all ||a||; < d’ we conclude that the
relative trace tr(Sy, Sq) on the Hilbert space HE(X) is finite. O
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