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Preface

This thesis is concerned with counting curves on surfaces. More precisely, we
are interested in closed geodesics on hyperbolic surfaces. A rigorous definition of
the terms closed geodesic and hyperbolic surface will be given in section 1, yet
let me briefly explain these expressions for the unfamiliar reader.

A geodesic is essentially a straight line on a general surface or manifold.
More formally, a geodesic is a locally length minimizing curve. For example,
picture the two-dimensional torus, which we view as a square in the plane where
the opposite edges are associated. Figure 1 shows three curves on the torus
connecting two points. The left image is not a geodesic, whereas the middle and
the right ones are indeed geodesics.

Figure 1: Curves on the torus

A geodesic is called closed, if it is a loop as in Figure 2.

Figure 2: Closed geodesic on the torus

In order to describe hyperbolic surfaces, we first discuss the two dimensional
hyperbolic disk. A model of the two dimensional hyperbolic disk is given by the
unit disk D = {x+ iy ∈ C : x2 + y2 < 1}. However, we don’t measure distances
in the standard euclidean way. Instead we consider a distance function such that
the following curves in D are geodesics:

(i) Lines through the center of the disk.

(ii) Circle arcs that are orthogonal to the boundary of the disk.

Figure 3 depicts the unit disk together with some geodesics.
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Figure 3: Geodesics on H

In this setting, hyperbolic surfaces are roughly speaking geodesic polygons
in D, where the edges are glued together in a suitable manner. Figure 4 shows
a geodesic octagon in D where the edges are glued together in such a manner
that the polygon forms a surface of genus 2. We also show in Figure 4 a closed
geodesic on the surface. Note further that the hyperbolic surface depicted in
Figure 4 is compact.

Figure 4: A hyperbolic surface with a closed geodesic

Compact hyperbolic surfaces have the interesting property that there are
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only finitely many closed geodesics of length less than a fixed number L. Hence
we can ask how this number behaves as L tends to infinity. The main objective
of this thesis is to show that the number of closed geodesics of length less than
L behaves asymptotically like

eL

L
,

as L tends to infinity. Note that if we replace L by log(n), we get

n

log(n)
.

The reader interested in prime numbers will recognize this growth rate. Namely,
the prime number theorem states that the counting function

π(n) := |{prime numbers less than n}|

also also behaves asymptotically as n
log(n) . This is not just a coincidence. We

can translate the notion of a prime number to the set of closed geodesics on a
hyperbolic surface. This is done as follows.

A closed geodesic is called prime, if it is not the iterate of another closed
geodesic. If we think of prime geodesics as prime numbers, then the set of
closed geodesics corresponds to the set of prime powers in Z. Thus it suffices
to understand the asymptotics of the number of prime geodesics in order to
answer questions concerning the asymptotic behavior of the number of closed
geodesics. In analogy to the prime number theorem, an estimate for the number
of prime geodesics is given by the prime geodesic theorem, which implies the
above mentioned rougher estimate for the number of closed geodesics.

In order to prove the prime geodesic theorem, we will derive the Selberg
trace formula for compact hyperbolic surfaces, which connects eigenvalues of the
Laplace operator to the length of closed geodesics. We will briefly explain how
the trace is to be understood in this context. Recall from linear algebra that
the trace of a symmetric matrix can be expressed as the sum of its eigenvalues.
This notion generalizes to a certain class of linear operators on Hilbert spaces.
It turns out that for self-adjoint operators the trace is again equal to the sum
of its eigenvalues. The Selberg trace formula is derived by relating the trace
of certain operators to expressions of geometric meaning such as the length of
closed geodesics.

As a prerequisite to understand the Selberg trace formula, we need to study
the Laplace operator on hyperbolic surfaces. We will prove that on compact
hyperbolic surfaces there is a countable number of eigenvalues and we discuss
that the sum of the inverse square of these converges.

We will proceed as follows. Section 1 introduces hyperbolic geometry, hyper-
bolic surfaces and geodesics on these spaces. Then we study the Laplace operator
in section 2 and discuss the necessary statements concerning eigenvalues. The
thesis culminates with section 3, where we prove the Selberg trace formula and
the prime geodesic theorem.

This thesis should be readable by anybody acquainted with the curriculum
of the first two years of undergraduate study at ETH, i.e. we assume familiarity
with basic notions from analysis, algebra, topology and measure theory. The
necessary prerequisites concerning topological groups and functional analysis are
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contained in the appendix. We refrain from using the language of Riemannian
geometry, except in a few informal discussions in section 1.

Finally, I would like to express my sincere gratitude to Professor Marc Burger
for many helpful discussions and for providing me with his notes on the Selberg
trace formula. Furthermore, I would like to thank Professor Dietmar Salamon
for helping me find an appropriate topic for my bachelor thesis. Lastly, I thank
my colleagues Nicholas Dykeman, Dominique Heyn and Johannes Ladwig for
proofreading my thesis.

Zurich, 2018
Constantin Kogler
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1 Hyperbolic Space and Geodesics

On the sphere and the torus there are an uncountable number of distinct
closed geodesics. Furthermore, picturing compact surfaces in three dimensional
euclidean space, it seems unexceptional that there are uncountably many closed
geodesics. How is it then sensible to count the number of closed geodesics on
surfaces?

Compact hyperbolic surfaces have the surprising property that every closed
loop is freely homotopic to a unique closed geodesic. Note that this is false
in the case of the sphere and the torus. A further mysterious characteristic of
compact hyperbolic surfaces is that there are only finitely many closed geodesics
with length less than a fixed number. Therefore we can study the asymptotic
behavior of the number of closed geodesics of increasing length.

This section is concerned with describing geodesics on hyperbolic surfaces.
In the first section we discern the geodesics on the upper half plane. In the
subsequent section we descends to hyperbolic surfaces and prove the aforemen-
tioned statements. The main references for this section are [Bea91],[Bro16], and
[EW11].

1.1 Geodesics on the Upper Half Plane

In contrast to the introduction of this thesis we study hyperbolic space now with
another model, namely the upper half plane H = {x+ iy : x, y ∈ R and y > 0}.
We consider H together with the Riemannian metric

1

y2
(dx2 + dy2).

A Riemannian metric defines the length of curves. In this case, for a smooth
curve φ : I → H, with I is some interval, the length of φ is defined as

L(φ) :=

∫
I

||φ′(t)||φ(t) dt :=

∫
I

||φ′(t)||
Im(φ(t))

dt,

where || ◦ || denotes the euclidean norm of φ(t) viewed as an element of R2. This
determines a metric on H via

d(z, w) = inf
φ
L(φ),

with φ varying over all smooth curves from z ∈ H to w ∈ H.
The group

SL2(R) :=

{
g =

(
a b
c d

)
∈ R2×2 : det(g) = ad− bc = 1

}
acts on H via Möbius transformations given for g = ( a bc d ) ∈ SL2(R) by

H→ H, z 7→ g ◦ z = gz =
az + b

cz + d
. (1.1)

We mostly will use the notation gz instead of g ◦ z. This action is well defined
as the following equation shows:

Im(gz) =
Im(z)

|cz + d|2
. (1.2)
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In order to prove (1.2), calculate for z = x+ iy:

Im(gz) = Im

(
az + b

cz + d

)
= Im

(
az + b

cz + d

cz + d

cz + d

)
= Im

(
ac|z|2 + bd+ adz + bcz

c2|z|2 + d2 + 2dcx

)
= Im

(
iy(ad− bc)

c2|z|2 + d2 + 2dcx

)
=

Im(z)

|cz + d|2
.

Furthermore, one also checks that this is indeed a group action, i.e. for all
g1, g2 ∈ SL2(R) and all z ∈ H,

g2(g1z) = (g2g1)z.

Proposition 1.1. The group action of SL2(R) on H defined by equation (1.1)
is isometric and transitive. Furthermore, the stabilizer at i ∈ H is SO2(R).

Proof. To prove the first claim, we need to show that for all z, w ∈ H and all
g ∈ SL2(R) we have

d(gz, gw) = d(z, w).

It suffices to check that g preserves the length of curves. So we need to show
that for any curve φ : [0, 1]→ H and any g ∈ SL2(R),

L(g ◦ φ) = L(φ).

With the help of (1.2), we compute

L(g ◦ φ) =

∫ 1

0

|| ddt (g ◦ φ)(t)||
Im(g ◦ φ(t))

dt

=

∫ 1

0

||g′(φ(t)) · φ′(t)||
Im(g ◦ φ(t))

dt

=

∫ 1

0

||( 1
cφ(t)+d )2 · φ′(t)||

Im(φ(t))
|cφ(t)+d|2

dt

=

∫ 1

0

||φ′(t)||
Im(φ(t))

dt = L(φ).

Next, we show that the action is transitive. It suffices to check that for all
z = x + iy ∈ H there is some element g = ( a bc d ) ∈ SL2(R) such that g ◦ i = z.
The following element of SL2(R) satisfies this:(√

y x√
y

0 1√
y

)
◦ i =

√
yi+ x√

y

0i+ 1√
y

= x+ iy = z.

Denote by g = ( a bc d ) ∈ SL2(R) an element of the stabilizer at i. We hence
have

ai+ b = −c+ di.
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So a = d and b = −c. Thus a2 + c2 = 1 because g = ( a −cc a ) ∈ SL2(R), implying
the existence of a θ ∈ R with

g =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO2(R).

By this, one easily concludes that the stabilizer is SO2(R).

We denote by

PSL2(R) := SL2(R)/{±I2}, PSO2(R) := SO2(R)/{±I2}.

Corollary 1.2. There is an identification

H ∼= PSL2(R)/PSO2(R).

Proof. By Proposition 1.1 we conclude that

H ∼= SL2(R)/SO2(R).

Since I ◦ z = (−I) ◦ z for all z ∈ H, the action of PSL2(R) on H defined by (1.1)
is well defined. As in Proposition 1.1 one shows that this action is isometric and
transitive with the stabilizer at i ∈ H being PSO2(R).

We introduce the notion of an orthogonal circle. The aim of the next few
pages is to show that orthogonal circles are precisely global geodesics on H.
Figure 5 shows some orthogonal circles on H.

Definition 1.3. An orthogonal circle is either a line parallel to the imaginary
axis in H or the part of a circle with center on the real axis which is contained
in H.

For constants C1, C2, C3 ∈ R we fix the notation

P (C1, C2, C3) := {z ∈ H : C1|z|2 + C2(z + z) + C3 = 0}.

Lemma 1.4. A subset O ⊂ H is an orthogonal circle if and only if there exists
constants C1, C2, C3 ∈ R with C2

2 > C1C3 and not both of C1 and C2 being zero
such that

O = P (C1, C2, C3).

Proof. Assume O is a circle of radius r > 0 and center m ∈ R ⊂ C. Then

O = {z ∈ H : |z −m|2 = r2}.

Consequently, if z ∈ O, then

0 = (z −m)(z −m)− r2 = |z|2 −m(z + z) +m2 − r2.

So we set C1 = 1, C2 = −m and C3 = m2 − r2 so indeed C2
2 > C1C3.

Now assume that O is a line parallel to the imaginary axis. Then we can
write

O = {z ∈ H : (z + z) = c} (1.3)
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Figure 5: Orthogonal circles on H

for some constant c ∈ R. Hence C3 = −c and C2 = 1 and C1 = 0. So we also
get C2

2 > C1C3.
Assume conversely that C1 6= 0. Then dividing by C1 yields

P (C1, C2, C3) = {z ∈ H : |z|2 +
C2

C1
(z + z) +

C3

C1
= 0}

and with the notation of the first paragraph we conclude with m = −C2

C1
and

r2 = C3

C1
−m2 that P (C1, C2, C3) is a circle.

It remains to consider the case where C1 = 0 and C2 6= 0. Then P (C1, C2, C3)
is a set of the form 1.3, which is a line parallel to the imaginary axis.

Lemma 1.5. The group SL2(R) is generated by matrices of the form(
1 t
0 1

) (
s 0
0 s−1

) (
0 −1
1 0

)
where t ∈ R and s ∈ R\{0}.

Proof. Each diagonal matrix in SL2(R) is of the form ( s 0
0 s−1 ). For g = ( a bc d ) ∈

SL2(R), observe that not both of a and b can be zero, hence we can assume,
without loss of generality after possibly multiplying, with ( 0 −1

1 0 ) that a is not
zero. By multiplying with ( 1 t

0 1 ), we get(
a b
c d

)(
1 t
0 1

)
=

(
a at+ b
c ct+ d

)
.
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So we can choose t such that a+ bt = 0 and thus need to show that matrices of
the form ( a 0

c d ) can be generated by the above generators. In this case d cannot
be zero. Observe (

a 0
c d

)(
0 −1
1 0

)(
1 t
0 1

)
=

(
0 −a
d td− c

)
Choose t such that td−c = 0 and multiply by ( 0 −1

1 0 ) to get a diagonal matrix.

Proposition 1.6. The action of SL2(R) on H defined by (1.1) maps orthogonal
circles to orthogonal circles. Furthermore, for any two orthogonal circles O1 and
O2 there is an element g ∈ SL2(R) such that g ◦O1 = O2.

Proof. It suffices to check the first statement on the generators of SL2(R). This
is clear for matrices of the form(

1 t
0 1

) (
s 0
0 s−1

)
where t ∈ R and s ∈ R\{0}. We now check the statement for the third type of
generators. Any orthogonal circle O is given by

O = P (C1, C2, C3) := {z ∈ H : C1|z|2 + C2(z + z) + C3 = 0},

with C2
2 > C1C3. If we apply g = ( 0 −1

1 0 ) we get

g ◦O = g ◦ P (C1, C2, C3) =

{
z ∈ H :

C1

|z|2
+
C2

|z|2
(z + z) + C3 = 0

}
=
{
z ∈ H : C1 + C2(z + z) + C3|z|2 = 0

}
= P (C3, C2, C1).

The set P (C3, C2, C1) is indeed an orthogonal circle by Lemma 1.4. So indeed
the action by SL2(R) maps orthogonal circles to orthogonal circles.

Since SL2(R) is a group action, in order to prove the second statement it
suffices to show that for every orthogonal circle O there is a element g ∈ SL2(R)
such that g ◦O is the imaginary axis.

If O is parallel to the imaginary axis, then just use a translation of the form
( 1 t

0 1 ). Now assume that O is a semi-circle with center on the real axis. Denote
by r the left intersection point between the circle that contains O and the real
axis and by p the point of the circle with largest imaginary coordinate. By
action of a translation we can assume that r = 0. In order to map this circle to
the imaginary axis, we want to find an element g = ( a bc d ) ∈ SL2(R) such that
g ◦ r = g ◦ 0 = 0 and g ◦ p = i. If we find such an element then g ◦ O is the
imaginary axis, since this is the only orthogonal circle that goes through 0 and i.

The condition g ◦ 0 = 0 implies b = 0. If we write p = x+ iy the condition
g ◦ p = i implies

ax+ b = −cy and ay = cx+ d.

Thus, since b = 0 we get that ax = −cy and we set d = ay − cx. As g ∈ SL2(R)
we also need ad− bc = 1. With the above fixed variables we get

a2y − acx = 1.
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Plugging in −c = ax
y (note that y is not zero since t ∈ H) we get a2(y + x2

y ) = 1.
Then

a =
1√

y + x2

y

.

So we get a matrix g = ( a bc d ) with a = 1√
y+ x2

y

, b = 0, c = −axy and d =

ay − cx.

Definition 1.7. A geodesic between two points z, w ∈ H is a smooth curve
φ : [0, 1]→ H such that φ(0) = z, φ(1) = w and

L(φ) = d(z, w).

Remark. This definition coincides for H with the Riemannian definition of
geodesics since, for the upper half plane with the hyperbolic Riemannian metric,
the exponential map is a diffeomorphism.

Lemma 1.8. Let z = y0i and w = y1i and 0 < y0 < y1. Then

d(z, w) = log(y1)− log(y0)

and the path

φ : [0, 1]→ H, t 7→ y0

(
y1

y0

)t
i

is the unique geodesic from z0 to z1 with constant speed log(y1)− log(y0).

Proof. We have that

||φ̇(s)||φ(s) =
1

y0(y1

y0
)t
||φ̇(t)|| =

log
(
y1

y0

)
y0(y1

y0
)t
||φ(t)|| = log(y1)− log(y0).

So the curve is of constant speed log(y1) − log(y0). Hence d(z0, z1) ≤ L(φ) =
log(y1) − log(y0). Consider now any other path η : [0, 1] → H joining z and w
and write η(s) = ηx(s) + iηy(s) for ηx(s), ηy(s) ∈ R. Then

L(η) =

∫ 1

0

||η̇(s)||
ηy(s)

ds

≥
∫ 1

0

|η̇y(s)|
ηy(s)

ds

≥
∫ 1

0

η̇y(s)

ηy(s)
ds

=

∫ y1

y0

1

s
ds = log(y1)− log(y0) = L(φ)

So we proved L(φ) = d(z, w). Furthermore we have that L(η) = L(φ) if and
only if η̇x(t) = 0 for all t ∈ [0, 1]. Hence ηx ≡ 0 and thus η̇y(t) ≥ 0 for all
t ∈ [0, 1]. So the above curve is the unique geodesic from z to w with constant
speed log(y1)− log(y0).
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Recall the definition of the hyperbolic cosine

cosh(t) :=
1

2
(et + e−t).

Theorem 1.9. For z, w ∈ H we have

cosh(d(z, w)) = 1 +
|z − w|2

2Im(z)Im(w)
. (1.4)

Proof. Observe that the left hand side is SL2(R)-invariant since the action is
isometric. We will show that the right hand side is also invariant under SL2(R).
Observe for g = ( a bc d ) ∈ SL2(R),

|cz + d| · |cw + d| · |gz − gw| = |cz + d| · |cw + d| ·
∣∣∣∣az + b

cz + d
− aw + b

cw + d

∣∣∣∣
= |(cw + d)(az + b)− (cz + d)(aw + b)|
= |(ad− bc)z − (ad− bc)w|
= |z − w|.

Together with equation (1.2) we get

|gz − gw|2

Im(gz)Im(gw)
=
|gz − gw|2

Im(z)
|cz+d|2

Im(w)
|cw+d|2

=
|cz + d|2 · |cw + d|2 · |gz − gw|2

Im(z)Im(w)

=
|z − w|2

Im(z)Im(w)
.

Hence we conclude that the right hand side of (1.4) is indeed SL2(R) invariant.
Given two points z, w ∈ H, there is a unique orthogonal circle containing z

and w. By Lemma 1.6 we can map this orthogonal circle with some element
g ∈ SL2(R) to the imaginary axis. This implies by g invariance of (1.4) that it
suffices to check the equation for points z = y0i and w = y1i with 0 < y0 < y1.
By Lemma 1.8 we conclude

cosh(d(z, w)) = cosh(log(y1)− log(y2))

=
1

2

(
y1

y2
+
y2

y1

)
= 1 +

(y2 − y1)2

2y1y2
= 1 +

|z − w|2

2Im(z)Im(w)
.

Theorem 1.10. The oriented isometry group of H is

Iso+(H) ∼= PSL2(R).

Proof. The group homomorphism is given by associating to each element of
PSL2(R) the isometry defined by equation (1.1). It is obvious that this group
homomorphism is injective. For surjectivity we refer to [Bea91] chapter 7.4.
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Definition 1.11. A global geodesic is the image of a smooth curve φ : R→ H
with the property that for all t1, t2 ∈ R with t1 < t2,

L(φ|[t1,t2]) = d(φ(t1), φ(t2)).

Theorem 1.12. The global geodesics are precisely the orthogonal circles.

Proof. By Lemma 1.8 it follows that the imaginary axis in H is a global geodesic.
By Lemma 1.1 every orthogonal circle can be written as g◦A for A the imaginary
axis in H. Since the action is isometric, this implies that every orthogonal circle
is a global geodesic. Conversely, we can map every orthogonal circle to the
imaginary axis by an element of SL2(R). So again the action being an isometric
group action implies that every orthogonal circle is a geodesic.

Euclid’s fifth axiom states that for every line ` and every point p outside of `,
there is a unique line passing through p that is parallel to `. More precisely, we
define a line to be parallel to another line ` if the line does not intersect `. For a
long time, many mathematicians tried to derive the fifth axiom from the other
four. However they failed. As Figure 6 shows, the hyperbolic plane, together
with global geodesics as lines, does not satisfy this famous axiom since there are
many parallel lines through a point p outside a given line. Hence the fifth axiom
is independent of the others and there is no proof that deduces the fifth axiom
from the remaining four.

Figure 6: Hyperbolic space does not satisfy Euclid’s fifth axiom
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We next classify the orientation preserving isometries according to the number
and the location of their fixed points. Denote

Ĉ := C ∪ {∞} and R̂ := R ∪ {∞}.

For g = ( a bc d ) ∈ SL2(R) we define

g ◦∞ =
a

c

and furthermore define a
c :=∞ whenever c = 0. With this convention ∞ is a

fixed point for g whenever c = 0. If z ∈ C, then gz = z is equivalent to

cz2 + (d− a)z − b = 0. (1.5)

If c = 0, then the equation has at most one zero in C. For the other case that
c 6= 0, the equation has at least one but no more than two distinct zeros in the
complex numbers. To summarize, any element g ∈ PSL2(R) not equal to the

identity has either one or two fixed points in Ĉ. Additionally, note that if z is a
zero of the above equation, then so is z. This allows the following classification
of elememts of PSL2(R) not equal to the identity.

Definition 1.13. An element g ∈ PSL2(R) is called

(i) parabolic if g has exactly one fixed point in R̂. Hence the fixed point is

contained in R̂.

(ii) hyperbolic if g has two distinct fixed points in R̂.

(iii) elliptic if g has a fixed point z ∈ H and hence z is a second distinct fixed
point.

Proposition 1.14. An element g ∈ PSL2(R) not equal to the identity is

(i) parabolic whenever g is conjugate to ( 1 b
0 1 ) for b 6= 0, and this holds if and

only if |tr(g)| = 2.

(ii) hyperbolic whenever g is conjugate to ( λ 0
0 λ−1 ) with λ > 1, and this holds if

and only if |tr(g)| > 2.

(iii) elliptic whenever g is conjugate to an element of PSO2(R), and this holds
if and only if |tr(g)| < 2.

Proof. We only prove (i) and omit the cases (ii) and (iii) since they follow from
similar arguments. Assume that g ∈ PSL2(R) is a parabolic element with fixed

point p ∈ R̂. Denote by g′ an element of PSL2(R) such that gp =∞. Then the
element

g∗ = g′gg′−1

has ∞ as the only fixed point. We write g∗ = ( a bc d ). By equation (1.5), we
conclude c = 0 and a = d. Thus a = d = 1 and hence g∗ is of the form ( 1 b

0 1 ) for
some b. We have b 6= 0 since g is not the identity and the conjugacy class of the
identity element consists of the identity element itself. Hence g is conjugate to
( 1 b

0 1 ) for some b 6= 0. This condition also implies that the absolute value of the
trace of g is equal to two, since conjugation leaves the trace invariant.
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Assume now for g = ( a bc d ) ∈ PSL2(R) that |tr(g)| = 2. We can assume
a+ d = 2 and that a 6= 0. Furthermore up to a conjugation by a matrix of the
form ( 1 0

x 1 ) we can assume that c = 0. Hence, as g ∈ SL2(R), ad = a(2− a) = 1.
Thus a = 1 and so d = 1. Furthermore, because g is by assumption not the
identity, we conclude that g is conjugate to an element of the form ( 1 b

0 1 ) for
b 6= 0.

1.2 Geodesics on Hyperbolic Surfaces

In this section we study hyperbolic surfaces and geodesics on these spaces. We
first simply consider a discrete subgroup Γ of PSL2(R). We define

S := Γ\H := {Γz : z ∈ H}.

We call a space of the form S = Γ\H a quotient of hyperbolic space. Discrete
subgroups of PSL2(R) are called Fuchsian groups.

The first lemma in this section gives us a natural measure on H. We note
that this measure is the projection of the Haar measure on PSL2(R) via the
projection map PSL2(R)→ H = PSL2(R)/PSO2(R).

Lemma 1.15. The measure

µH(z) :=
1

y2
dxdy,

where z = x+ iy, is a PSL2(R)-invariant measure on H.

Proof. We want to show that for any continuous function f : H → R and any
g ∈ PSL2(R) we have ∫

H
f(gz) dµH(z) =

∫
H
f(z) dµH(z).

The transformation z 7→ gz has derivative 1
(cz+d)2 and hence the Jacobian of the

transformation is 1
|cz+d|4 . Thus, by using the transformation formula,

∫
H
f(gz)

1

y2
dxdy =

∫
H
f(gz)

1
|cz+d|4
y2

|cz+d|4
dxdy

=

∫
H
f(z′)

1

y(z′)2
dx′dy′.

We next discuss an equivalent characterization for Γ being a discrete subgroup
of PSL2(R).

Definition 1.16. Let Γ be a group acting by isometries on H. The action of Γ
is said to be properly discontinuous if for any compact set K ⊂ H, the set

{γ ∈ Γ : γK ∩K 6= ∅}

is finite.
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Proposition 1.17. A subgroup Γ of PSL2(R) is discrete if and only if its action
on H is properly discontinuous.

Proof. If Γ is not discrete, there exists a sequence of elements γn ∈ Γ with γn 6= e
such that γn → e as n→∞. If K is a compact subset of H containing an open
set, it follows that for sufficiently large n the set γnK ∩K is not empty. Hence
the action is not properly discontinuous.

Assume next that Γ is discrete and let K ⊂ H be a compact subset. If we
show that B = {g ∈ SL2(R) : gK ∩K 6= ∅} is compact, then by discreteness of
Γ we conclude that the set {γ ∈ Γ : γK ∩K 6= ∅} is finite.

The set B is closed, hence it suffices to prove that B is a bounded set in
SL2(R), where we view SL2(R) as a subset of R4. By compactness of K, there
are constants R, ε > 0 such that every w ∈ K has |w| ≤ R and Im(w) ≥ ε. It
follows that if g = ( a bc d ) ∈ B, then gz ∈ K for some z ∈ K. Hence |az+bcz+d | ≤ R

and Im(az+bcz+d ) = Im(z)
|cz+d|2 ≥ ε. Thus

|cz + d|2 ≤ 1

ε
Im(z) ≤ R

ε

and

|az + b|2 ≤ R2|cz + d|2 ≤ R3

ε
.

Since z is contained in some compact set of H, this implies that the coefficients
of the matrices in B lie in a bounded subset of R4.

We next introduce the notion of a fundamental domain. For a given quotient
of hyperbolic space S = Γ\H, these are subsets of H that represent S in H.

Definition 1.18. Let Γ be a Fuchsian group. A measurable set F ⊂ H is called
a fundamental domain for Γ if the following two properties hold:

(i) If γ1, γ2 ∈ Γ are not equal, then γ1F ∩ γ2F = ∅.

(ii)
⋃
γ∈Γ γF = H, where F denotes the closure of F .

Lemma 1.19. The measure of any two fundamental domains for Γ is equal.

Proof. Let F1 and F2 be fundamental domains for Γ. Then by invariance of the
measure µH(z),

µH(F1) = µH

F1 ∩
⋃
γ∈Γ

γF2

 = µH

⋃
γ∈Γ

γ−1F1 ∩ F2

 = µH(F2).

A particular nice class of fundamental domains are given by so-called Dirichlet
domains.

Definition 1.20. Let Γ be a discrete subgroup of PSL2(R) and let p ∈ H be a
point not fixed by any element of Γ other than the identity. Then the set

Dp := {z ∈ H : d(z, p) < d(γz, p) for all γ ∈ Γ\{e}}

is called Dirichlet domain.
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We show in the next proposition that Dirichlet domains are indeed funda-
mental domains. As a matter of fact, Dirichlet domains are geodesic polygons,
i.e. a region where the boundary consists of geodesic segments. For a proof of
this fact we refer to Lemma 11.5 of [EW11]. Thus, we can roughly think of a
quotient of hyperbolic space as a geodesic polygon in H.

Proposition 1.21. Any Dirichlet domain for Γ is a fundamental domain.

Proof. A Dirichlet region is open and hence measurable. We check the two
properties. First assume that γ1, γ2 ∈ Γ are not equal. We want to show
γ1Dp ∩ γ2Dp = ∅. Assume that this is not the case. Then there are elements
z1, z2 ∈ Dp such that γ1z1 = γ2z2, or equivalently γ−1

2 γ1z1 = z2. By definition
of Dp, for γ = γ−1

2 γ1,

d(z1, p) < d(γz1, p) = d(z2, p) < d(γ−1z2, p) < d(z1, p),

a contradiction.
For the second condition we want to show that for any z ∈ H, there is some

γ ∈ Γ such that γz ∈ Dp. We assume without loss of generality that z 6∈ Dp.
Since the action is properly discontinuous there are only finitely many γ such
that

d(γz, p) ≤ d(z, p) + 1.

Hence there is a γ such that d(γz, p) ≤ d(γ′z, p) for all γ′ ∈ Γ. Thus γz ∈ Dp.

Definition 1.22. A lattice is a discrete subgroup of PSL2(R) such that the
measure of any fundamental domain for Γ\H is finite. A lattice is called cocompact
if Γ\H is compact, or equivalently that there is a fundamental domain with
compact closure.

Up to now, we only viewed a quotient of hyperbolic space as a topological
space endowed with the quotient topology. A natural question to ask is under
which conditions for Γ, the space Γ\H forms a smooth surface. This question is
partially answered by the following proposition from [Bur16].

Proposition 1.23. Let Γ be a group acting freely and properly discontinuously
on a manifold M by diffeomorphisms. Then there is a unique smooth manifold
structure on Γ\M such that p : M → Γ\M is a smooth covering.

Proof. [Bur16] pages 22 and 23.

In our concrete case we conclude that Γ\H is a smooth surface if Γ does
not contain any elliptic elements, since these are the only ones which have fixed
points in H. This motivates the following definition.

Definition 1.24. Let Γ be a Fuchsian group. Then the quotient of hyperbolic
space S = Γ\H is called a hyperbolic surface if Γ does not contain any elliptic
elements.

Remark. From the viewpoint of Riemannian geometry one defines a hyperbolic
surface as a smooth complete surface of constant curvature −1. Since H is up
to isometry the unique simply connected surface of constant curvature −1, it
follows that every hyperbolic surface is isometric to Γ\H with Γ a Fuchsian
group with no elliptic elements. Hence the above definition covers all hyperbolic
surfaces.
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We can further relate the property of S = Γ\H being compact to the
number and location of the fixed points of the elements of Γ. For this recall the
classification of isometries of H carried out at the end of section 1.1.

Proposition 1.25. If Γ\H is a compact hyperbolic surface, then Γ consists only
of hyperbolic elements and the identity.

Proof. We first claim that if Γ\H is compact, then for all γ ∈ Γ the conjugacy
class

CG(γ) = {gγg−1 : g ∈}

is closed, for G = PSL2(R).
To prove this consider a converging sequence gnγg

−1
n → h for gn, h ∈ G

in CG(γ). We want to show that h ∈ CG(γ). Since Γ\H is compact, there
is a fundamental domain C ⊂ H with compact closure. Write gn = cnγn for
cn ∈ C and γn ∈ Γ. By compactness of c we may assume cn → c ∈ C. Let V
be a compact neighborhood of h such that gnγg

−1
n = cnγnγγ

−1
n c−1

n ∈ V for n
large enough. Hence γnγγ

−1
n ∈ C−1V C ∩ Γ. Note that C−1V C is compact and

thus the set C−1V C ∩ Γ is finite. Consequently, we can assume without loss of
generality that γnγγ

−1
n = γ∗ ∈ Γ for all n. This implies

h = lim
n→∞

cnγ
∗c−1
n = cγ∗c−1 ∈ CG(γ).

So we proved the claim.
Next observe that if γ ∈ Γ\{I2} is parabolic, it is by Proposition 1.14

conjugate to some γb = ( 1 b
0 1 ) for some b 6= 0. Note that for λ 6= 0,(

λ 0
0 λ−1

)(
1 b
0 1

)(
λ−1 0

0 λ

)
=

(
1 λ2b
0 1

)
.

Thus, if we choose λ→ 0, then the above conjugated element converges to the
identity matrix. However, the identity matrix is not contained in the conjugacy
class of any element that is not equal to the identity itself. Hence the conjugacy
class of a parabolic element is not closed and thus by the first claim, Γ does not
contain any parabolic elements. Further, by definition, Γ does not contain any
elliptic elements. Hence Γ consists of hyperbolic elements and the identity.

Thus, we finally arrived at the central object of study in this thesis. Namely,
compact hyperbolic surfaces S = Γ\H. These are by the last proposition simply
described by hyperbolic surfaces S = Γ\H, where Γ only consists of hyperbolic
elements and the identity. We next discuss geodesics and in particular, closed
geodesics on hyperbolic surfaces.

Definition 1.26. Let S = Γ\H be a hyperbolic surface and π : H → S the
projection. A geodesic on S is the image of a global geodesic on H under π.

In order to define the notion of closed geodesics, recall that we call a continuous
curve φ : R→ Γ\H closed if there exists some T ∈ R such that

φ(t) = φ(t+ T )

for all t ∈ R. We call a curve φ : R → Γ\H trivial if for all t ∈ R we have
φ(t) = p for some fixed p ∈ H.
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Definition 1.27. A closed geodesic on a hyperbolic surface Γ\H is a tuple (γ, T )
where γ : R → Γ\H is a continuous smooth curve that is a geodesic on Γ\H
and a non-trivial closed curve. Further, T > 0 is a real number such that
γ(t) = γ(t+ T ) for all t ∈ R.

We define the length of the closed geodesic (γ, T ) as follows. If γ̃ : R→ H is
a geodesic on H such that π(γ̃(t)) = γ(t), then the length of γ is the distance
between γ̃(t) and γ̃(t+ T ).

Remark. Note that the length of a closed geodesic is well defined since any
two lifts of a closed geodesic are the same up to an isometry. Furthermore, it is
important to remark that with this definition we distinguish a closed geodesic
and iterates of the same closed geodesic. Closed geodesics that are not iterates
of another closed geodesic are called prime or primitive.

We say two geodesics (γ, T ) and (γ′, T ′) are equal if there is a reparametriza-
tion r : R → R such that γ(r(t + T )) = γ′(t + T ′) for all t ∈ R. In this sense,
every statement concerning the uniqueness of a certain closed geodesic or re-
garding the number of a certain set of closed geodesics is to be understood up
to reparametrization.

Lemma 1.28. Let g be a hyperbolic element of PSL2(R). Then there exists a
unique global geodesic on H that is preserved by g.

Proof. By Proposition 1.14, g is conjugate to ( λ 0
0 λ−1 ) for some λ > 1. So there

is some g′ such that

g′gg′−1 =

(
λ 0
0 λ−1

)
.

The matrix ( λ 0
0 λ−1 ) fixes the points 0 and ∞ and preserves the unique global

geodesic φ connecting 0 and ∞. We therefore have that the geodesic g′−1φ is
preserved by g. The uniqueness follows from the fact, that a hyperbolic element
preserves two elements of R̂ and that there is a unique geodesic connecting these
two points.

In the setting of the above proof, let z be an element of the unique geodesic
that is preserved by g. Then g′−1z lies on the imaginary axis. Hence

d(z, gz) = d(g′z, g′gz)

= d(g′z, g′−1( λ 0
0 λ−1 )z)

= d(g′z, λ2g′z)

= log
(
λ2
)

= 2 log(λ).

Definition 1.29. For a hyperbolic element g of PSL2(R), the unique global
geodesic on H that is preserved by g is called the axis of g. We denote the axis
of g by ag.

If g is conjugate to ( λ 0
0 λ−1 ) for λ > 0, then we call the real number

`(g) = 2 log(λ)

the displacement length of g.
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Lemma 1.30. Let Γ\H be a compact hyperbolic surface. Then for any element
g ∈ Γ the image of the axis of g under the projection H → Γ\H is a closed
geodesic on Γ\H of length `(g).

Proof. Let g ∈ Γ and let ag be the axis of g. Denote by γ : R→ H a parametriza-
tion of ag such that

d(γ(t+ t0), γ(t0)) = t

for all t0, t ∈ R. Hence
γ(t+ `(g)) = gγ(t)

in H. Denote by π : H→ Γ\H the projection. Consequently, π(γ(t)) : R→ Γ\H
is a parametrization of the geodesic in Γ\H. Thus

π(γ(t+ `(g))) = π(γ(t)),

implying that the geodesic is closed. The length of the closed geodesic is
furthermore equal to `(g) since the axis is the unique global geodesic that is
fixed by g.

We are now ready to prove the central theorems in this section.

Theorem 1.31. Let S = Γ\H be a compact hyperbolic surface. Every loop on
S is freely homotopic to a unique closed geodesic.

Proof. Let φ be a non-trivial closed curve and denote by φ̃ a maximal continuous
curve in H obtained by joining successive lifts of φ. Hence there is some g ∈ Γ
such that g preserves φ̃. By assumption, g is hyperbolic. The axis of g descends
to a closed geodesic γ on Γ\H in the free homotopy class of φ. Since ag is the
unique geodesic fixed by g there is no other geodesic in the free homotopy class
of γ.

Theorem 1.32. Let S = Γ\H be a compact hyperbolic surface. Then the closed
geodesics of S correspond precisely to conjugacy classes of elements of Γ.

Proof. Let (γ, T ) be a closed geodesic and let γ̃ : R→ H be a global geodesic on
H that is a lift of γ. Assume without loss of generality that the parametrization
of γ̃ is of unit speed, meaning that for all t, t0 ∈ R we have d(γ̃(t+ t0), γ̃(t0)) = t.
There is an element g ∈ Γ that preserves γ̃. By Lemma 1.28 γ̃ is equal to the
axis ag of g. Furthermore, from Lemma 1.30 it follows that the length of the
geodesic γ is equal to the displacement length `(g). Thus, from the proof of
Lemma 1.28 is follows that for any g′ ∈ PSL2(R),

ag′gg′−1 = g′−1ag. (1.6)

Since image of g′−1ag under the projection H→ Γ\H is the same as the one of
ag, it follows that the geodesic corresponds to the conjugacy class of g. The
converse correspondence follows analogously from equation (1.6).

Theorem 1.33. Let S = Γ\H be a compact hyperbolic surface. Fix a real
number L > 0. There are at most finitely many closed geodesics on S of length
smaller or equal than L.
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Proof. Let γ be a closed geodesic on Γ\H of length less than L. Let g ∈ Γ be
the unique element that preserves a global geodesic γ̃ on H that lifts γ. By
Lemma 1.30 the length of γ is equal to the displacement length `(g) = d(x, gx)
for all x ∈ γ̃. Fix some x ∈ γ̃.

Let K be the compact closure of a fundamental domain for Γ. Hence there
exists an element g′ ∈ Γ such that y := g′x ∈ K. Denote g∗ := g′gg′−1. Then

d(y, g∗y) = d(g′x, g′gg′−1y) = d(x, gx) = `(g).

Write

d(K, g∗K) := inf
k1,k2∈K

d(k1, g
∗k2) and dK := sup

k1,k2∈K
d(k1, k2).

Hence, if d(K, g∗K) ≤ 2dK + L for some g ∈ Γ, then the geodesic corresponding
to the conjugacy class of g∗ has length less than L. Thus the statement of the
theorem follows if we show that the set

F := {g ∈ Γ : d(K, gK) ≤ L′}

for L′ = dK + L is finite.
We will show that this follows from the assumption that Γ acts properly

discontinuously. Denote by K ′ the compact set defined by

K ′ = {k′ ∈ H : d(k′, k) ≤ L′

2 for some k ∈ K}.

If there is some g ∈ Γ such that K ′ ∩ gK ′ 6= ∅, then there are some k′1, k
′
2 ∈ K ′

such that k′1 = gk′2. By definition, we have k1, k2 ∈ K such that d(k′i, ki) ≤ L′

2
for i = 1, 2. Hence

d(K, gK) ≤ d(k1, gk2)

≤ d(k1, k
′
1) + d(k′1, gk

′
2) + d(gk′2, gk2)

≤ L′.

Thus if K ′ ∩ gK ′ 6= ∅, then g ∈ F . Since the action is properly discontinuous,
we conclude that the set of elements such that K ′ ∩ gK ′ 6= ∅ is finite and hence
the set F is finite.

For a set M , we denote by #M the cardinality of M . So we proved that for
all L > 0, the number

cL(S) := #{closed geodesics on S with length ≤ L}

is finite. It is thus sensible to ask how cL(S) behaves as L tends to infinity. We
will show in Corollary 3.16 that

cS(L) ∼ eL

L

as L tends to infinity, where we write f(L) ∼ g(L) for two real valued functions

f and g whenever f(L)
g(L) → 1 as L tends to infinity. We can already prove that

cS(L)/eL is bounded as the next lemma shows.
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Lemma 1.34. For S a compact hyperbolic surface,

cS(L) = O(eL)

as L→∞.

Proof. Let x ∈ S and denote by w a lift of x in H and by Dw the Dirichlet
fundamental domain for w. If γ is a closed geodesic on S of length less than L,
denote by γ̃ a lift of the geodesic that passes through some point q ∈ Dw. γ̃
is the axis of some element g ∈ Γ. Denote by a the diameter of the Dirichlet
fundamental domain Dw. Then

d(w, gw) ≤ d(w, q) + d(q, gq) + d(gq, gw) ≤ L+ 2a.

Hence for each closed geodesic of length less L there is an element g ∈ Γ that
maps w to a point of distance less than L+ 2a away. Hence cS(L) is bounded
by the number of images of Dw lying within a distance of L+ 3a to the point w,
so we get the bound

cS(L) ≤ µH(B(w,L+ 3a))

µH(Z)
.

Lastly note that

µH(B(w,L+ 3a)) =

∫
B(w,L+3a)

1 dµH(z)

= 2π

∫ L+3a

0

sinh(r) dr

= 2π(cosh(L+ 3a)− 1)

= π(eL+3a + e−(L+3a) − 1)

≤ (2πe3a)eL = O(eL),

where we used geodesic polar coordinate in the second lines (for more details see
appendix A of [Ber11]).

We can further discern the elements of Γ that correspond to primitive closed
geodesics. This will later turn out to be useful since the number of primitive
closed geodesics behaves asymptotically as the number of closed geodesics. We
shall call an element δ ∈ Γ\{I} primitive if it cannot be written as a non-trivial
power of an element in Γ. The corresponding closed geodesic is then a primitive
closed geodesic.

Proposition 1.35. Let Γ be a Fuchsian group consisting of hyperbolic elements.
For all g ∈ Γ\{I}, there is a unique primitive element δ ∈ Γ such that g = δn

for a certain n ≥ 1. Furthermore, the centralizer of g in Γ is

Γg = {δn : n ∈ Z}.

Proof. Let ag be the axis of Γ. We denote by Z the subgroup of Γ which fixes the
axis ag. Then Z acts freely and properly discontinuously on ag. The restriction
Z|ag can therefore be viewed as a discrete subgroup of R by associating to each
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element of Z|ag its displacement length. There is thus δ ∈ Z such that `(δ) > 0
and `(δ) ≤ `(g) for all g ∈ Z\{I}. Hence there is a unique n ∈ Z such that
n`(δ) = `(g) and so γ = δn. By replacing δ with δ−1, we can assume m > 0.
The fact that Z = Γg follows from the proof of Theorem 1.31.
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2 The Spectrum of the Laplacian on Compact
Hyperbolic Surfaces

The aim of this section is to study the Laplace operator on compact hyperbolic
surfaces and to prove that there is a countable number of eigenvalues. There
are several approaches for investigating the Laplace operator. In [Bus92] and
[Ber11] a direct approach based on the construction of heat kernels is performed.
We however choose an method based on representation theory. In the following
paragraphs, we describe the strategy we will use in this section in order to
understand the Laplace operator.

In section 2.1 we consider for a general unimodular topological group G and
Γ a cocompact subgroup, the space L2

µ(Γ\G) together with the representation
given by right multiplication, which is called the regular right representation.
The main result of section 2.1 is a decomposition of the space L2

µ(Γ\G) into
a direct sum of a countable number of irreducible subrepresentations. As a
consequence, for K a compact subgroup of G, we can also decompose the space
L2
µ(Γ\(G/K)).

In the following section, we study so called Gelfand pairs (G,K). We
will see that every Riemannian symmetric pair forms a Gelfand pair. We
prove for Gelfand pairs (G,K) that the irreducible subspaces in the above
mentioned decomposition of L2

µ(Γ\(G/K)) are one-dimensional. Hence, for each
of these subspaces we can choose a generating element. In the case of (G,K) =
(PSL2(R),PSO2(R)) we want to prove that these generators are precisely the
eigenfunctions of the Laplace operator and hence we get a decomposition of
Lµ(Γ\H) into eigenfunctions of the Laplace operator.

In order to carry this out, in section 2.3 we relate the above mentioned
functions that generate irreducible subspaces of L2

µ(Γ\(G/K)) to a special
class of bi-K-invariant functions. More precisely, we are interested in so-called
spherical functions that are closely related to characters the Banach algebra
of bi-K-invariant L1

µ(G)-functions. We can then relate the functions from the
decomposition of L2

µ(Γ\(G/K)) to eigenfunctions of operators related to spherical
functions.

In section 2.4 we finally consider the particular case of our interest, namely
(G,K) = (PSL2(R),PSO2(R)). In this setting we have that bi-K-invariant
functions on G are directly related to functions on H that only depend on the
distance to i ∈ H. We can equivalently study so-called point pair invariant
functions k : H × H → C that only depend on the distance of their input
variables. Since spherical functions are also bi-K-invariant, the point pair
invariant functions also relate to spherical functions. Furthermore, point pair
invariant function have useful properties concerning the Laplace operator. So we
use these properties together with the results from section 2.3 to prove that there
is an orthonormal basis of eigenfunctions of the Laplace operator for compact
hyperbolic surfaces. We conclude this section by stating some properties of the
eigenvalues without proof.

The main reference for this section is [Bur07]. Most of the content of this
section can be found in one of the three books [GGPS69], [Bum98] and [Ber11].
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2.1 Decomposition of L2
µ(Γ\G)

In this section we mostly follow [GGPS69].
Denote by G a unimodular locally compact group with Haar measure µ. We

thus have for all Borel measurable integrable functions f : G→ C and h ∈ G,∫
G

f(g) dµ(g) =

∫
G

f(hg) dµ(g) =

∫
G

f(gh) dµ(g).

Recall that the space L2
µ(G) forms a Hilbert space with inner product defined

for f1, f2 ∈ L2
µ(G) by

〈f1, f2〉 =

∫
G

f1(g)f2(g) dµ(g).

The scalar product induces a norm on L2
µ(G) given by

||f ||2 =
√
〈f, f〉.

We furthermore consider the following unitary representation π : G→ U(L2
µ(G)).

For each g ∈ G the operator π(g) is given by

π(g) : L2
µ(G)→ L2

µ(G), f 7→ π(g)f = f ◦ rg,

where rg is right multiplication by some element g ∈ G. Hence (π(g)f)(x) =
f(xg). We call this representation the regular right representation. The regular
right representation is unitary, as we prove in the appendix (see appendix B for
a definition of unitary representations and Proposition B.25 for a proof of this
statement).

Consider next Γ < G, a discrete subgroup. We call Γ cocompact if Γ\G is
compact. As G is unimodular and Γ is discrete, there is a unique Borel measure
µΓ\G such that for all compactly supported continuous functions f ∈ Cc(G) we
have that ∫

G

f(g) dµ(g) =

∫
Γ\G

∑
γ∈Γ

g(γg) dµΓ\G(G)

A proof of this can be found in [IZ17] in section 1.4. By a slight abuse of notation,
we will drop the subscript Γ\G and will just write µ for this measure on Γ\G.
Note that the space L2

µ(Γ\G) is again a Hilbert space. Furthermore, a function
f : Γ\G → C can be viewed as a Γ-invariant function f : G → C. Thus the
regular right representation descends to a unitary representation on L2

µ(Γ\G).
Recall the following terminology. If (H , π) is a representation, we call a

subspace H ′ ⊂H invariant if

π(g)H ′ ⊂H ′,

for all g ∈ G. Hence π defines a representation on the invariant subspace H ′. We
further call the representation (H , π) irreducible if the only invariant subspaces
of H are the zero space {0} and the space H itself. The central objective of
this section is to prove the following theorem.

Theorem 2.1. Let Γ < G be a cocompact discrete subgroup. Then the Hilbert
space L2

µ(Γ\G) together with the regular right representation splits into a count-
able direct sum of invariant and irreducible subspaces, each of which has finite
multiplicity.
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We will generalize the current setting by just considering a unitary repre-
sentation π of G on a Hilbert space H . For ϕ ∈ L1

µ(G), consider the following
bilinear form:

Bϕ(f1, f2) :=

∫
G

ϕ(g)〈π(g)f1, f2〉 dµ(g)

for f1, f2 ∈H . Note that

|Bϕ(f1, f2)| ≤
∫
G

|ϕ(g)| · |〈π(g)f1, f2〉| dµ(g) ≤ ||ϕ||1 · ||f1||H · ||f2||H

where we used the Cauchy-Schwarz inequality in the second line and the fact
that the action is unitary. By the Lax-Milgram Lemma (Lemma B.18 in the
appendix) we conclude that there exists an operator π(ϕ) : H → H with
||π(ϕ)||op ≤ ||ϕ||1 and 〈π(ϕ)f1, f2〉 = Bϕ(f1, f2). Hence we can write π(ϕ)f1 as

π(ϕ)f1 =

∫
G

ϕ(g)π(g)f1 dµ(g).

We also use the notation

π(ϕ) =

∫
G

ϕ(g)π(g) dµ(g).

For ϕ1, ϕ2 ∈ L1
µ(G), recall that the convolution of ϕ1 and ϕ2 is defined as

(ϕ1 ∗ ϕ2)(x) :=

∫
G

ϕ1(g)ϕ2(g−1x) dµ(g) =

∫
G

ϕ1(xg)ϕ2(g−1) dµ(g).

Note that convolution together with the 1-norm gives L1
µ(G) the structure of a

Banach algebra.

Lemma 2.2. The map

L1
µ(G)→ B(H ), ϕ 7→ π(ϕ)

is a Banach algebra homomorphism.

Proof. We need to check for ϕ1, ϕ2 ∈ L1
µ(G) and λ1, λ2 ∈ C,

π(λ1ϕ1 + λ2ϕ2) = λ1π(ϕ1) + λ2π(ϕ2)

and
π(ϕ1 ∗ ϕ2) = π(ϕ1)π(ϕ2).

The first assertion is clear. We prove the second statement.

π(ϕ1 ∗ ϕ2) =

∫
G

ϕ1 ∗ ϕ2(g)π(g) dµ(g)

=

∫
G

∫
G

ϕ1(h)ϕ2(h−1g) dµ(h)π(g)dµ(g)

=

∫
G

∫
G

ϕ2(h−1g)π(g) dµ(g)ϕ1(h)dµ(h)

=

∫
G

∫
G

ϕ2(g)π(hg) dµ(g)ϕ1(h)dµ(h)

=

∫
G

ϕ1(h)π(h) dµ(h)

∫
G

ϕ2(g)π(g) dµ(g)

= π(ϕ1)π(ϕ2).
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For Γ a discrete subgroup, we can also consider the operator π(ϕ) : L2
µ(Γ\G)→

L2
µ(Γ\G) with the analogous definition

(π(ϕ)f)(x) =

∫
G

ϕ(g)π(g)f(x) dµ(g) =

∫
G

ϕ(g)f(xg) dµ(g).

If Γ is cocompact, then these operators have the following interesting property.

Lemma 2.3. Let Γ be a cocompact discrete subgroup. Then for a function
ϕ ∈ Cc(G) of compact support the operator

π(ϕ) : L2
µ(Γ\G)→ L2

µ(Γ\G), π(ϕ) =

∫
G

ϕ(g)π(g) dµ(g)

is compact.

Proof. Let f ∈H , which we view as a Γ-invariant function on G. Then

(π(ϕ)f)(x) =

∫
G

ϕ(g)f(xg) dµ(g)

=

∫
G

ϕ(x−1g)f(g) dµ(g)

=

∫
Γ\G

∑
γ∈Γ

ϕ(x−1γg)f(γg) dµ(g)

=

∫
Γ\G

K(x, g)f(g) dµ(g),

where
K(x, g) :=

∑
γ∈Γ

ϕ(x−1γg).

The function K(x, g) is called the Selberg kernel and will turn out to be of central
importance in the derivation of the Selberg trace formula.

Since ϕ is of compact support, ϕ(x−1γg) can only be nonzero if x−1γg ∈
supp(ϕ) or equivalently γ ∈ x · supp(ϕ) · g−1. Since Γ\G is compact, we can
assume that x and g vary over a compact fundamental domain. Hence there
are only finitely many γ ∈ Γ for which ϕ(x−1γg) is not zero, independent of x
and g. Thus k(x, g) is a finite sum of continuous functions and so continuous.
Thus π(ϕ) is a continuous integral operator and this implies that it is a compact
operator.

The theorem we want to prove (Theorem 2.1) hence follows from the following
more general theorem, for H = L2

µ(Γ\G) and π the regular right representation
of G.

Theorem 2.4. Let (H , π) be a unitary representation of a locally compact group
G on a separable Hilbert space H such that the operators π(ϕ) are compact for
all ϕ ∈ Cc(G) of compact support. Then H splits into a countable direct sum of
subspaces that are invariant and irreducible, each of which has finite multiplicity.

Proof. We first consider functions of compact support ϕ ∈ Cc(G) such that

ϕ(g) = ϕ(g−1).
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Then π(ϕ) is self-adjoint since

π(ϕ)∗ =

∫
G

ϕ(g)π(g)∗ dµ(g)

=

∫
G

ϕ(g−1)π(g) dµ(g)

=

∫
G

ϕ(g)π(g) dµ(g) = π(ϕ).

So π(ϕ) is self-adjoint. By the Spectral Theorem for compact self-adjoint
operators we decompose

H = H0 ⊕
∞⊕
k=1

Hϕ,k

where H0 denotes the space of functions f ∈H of eigenvalue 0, i.e. π(ϕ)f = 0
and Hϕ,k is the space of eigenfunction of eigenvalue λk.

Denote by H∗ the minimal subspace containing all the spaces Hϕ,k for all
self-adjoint ϕ and k > 0. We claim that H∗ = H .

In oder to prove the claim, assume that H∗ ( H and choose f orthogonal
to H∗ and not zero. Hence, by the decomposition, π(ϕ)f = 0. By continuity of
the unitary representation we can choose for some ε > 0 an open neighborhood
U of the identity such that

||π(g)f − f || < ε||f ||

for all g ∈ U . We assume in addition that ϕ is supported in U , only has
nonnegative values and has total mass 1. Thus

||π(ϕ)f − f || ≤
∫
U

ϕ(g)||π(g)f − f || dg ≤ ε||f ||
∫
ϕ(g) dµ(g) = ε||f ||.

By assumption π(ϕ)f = 0 and thus the right hand side equals ||f ||, implying
the relation ||f || < ε||f || for all ε > 0. This is a contradiction. So we proved
H∗ = H .

Consider now H ′ ⊂H a non-trivial invariant subspace. Hence we can also
decompose

H ′ = H ′
0 ⊕

∞⊕
k=1

H ′
ϕ,k,

with H ′
0 ⊂H0 and H ′

ϕ,k ⊂Hϕ,k. Assume that H ′ has a zero intersection with

all of the Hϕ,k, then we have H ′ ⊂H ⊥
∗ . Thus H ′ is trivial. This implies that

H ′ has a nonzero intersection with some Hϕ,k.
Fix for the moment Hϕ,k and consider the set

{H ′ ∩Hϕ,k : H ′ is an invariant subspace}.

In this set, choose some H ′
ϕ,k nonzero of minimal dimension. Thus the set

{H ′ ⊂H is invariant : H ′ ∩Hϕ,k = H ′
ϕ,k}

is nonempty. We denote by H1 the minimal of these invariant subspaces. More
precisely, H1 is the intersection of all elements in this set.
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We claim that H1 is irreducible. To prove this, assume that H1 can be
decomposed into a direct sum of invariant subspaces

H1 = H11 ⊕H12.

It follows that H ′
ϕ,k is contained entirely in one of the subspaces H11 or H12. But

this contradicts the fact that H1 is the minimal invariant subspace containing
H ′
ϕ,k. So we proved the claim.
We thus can decompose

H = H1 ⊕H ′
1 ,

where H ′
1 is the orthogonal complement to H1. It follows that H ′

1 is invariant
and has a nonzero intersection with some space Hϕ,k′ . Repeating the above
argument, we find in H ′

1 an invariant irreducible subspace H2. Since H is
separable, we obtain a decomposition

H =
⊕
k≥1

Hk.

It remains to check that the multiplicity of each invariant subspace Hk is
finite. Let π(ϕ) be a self-adjoint operator that has in Hk a nonzero eigenvalue λ.
Then in every space Hl in which an equivalent representation acts also contains
an eigenvector of π(ϕ) with the same eigenvalue λ. Since there are only finitely
many linearly independent eigenvectors of π(ϕ) with eigenvalue λ, the number
of spaces Hl equivalent to Hk is finite. Thus we can find a decomposition of H
into a direct sum of a countable number of finite dimensional irreducible unitary
representations.

2.2 Gelfand Pairs

The main reference for this section is [Far83].
Let G be a locally compact group and let K be a compact subgroup. It will

turn out that for any Gelfand pair (G,K) the group G is unimodular and so the
statements from the last section apply. In order to prove unimodularity we for
the moment assume that µ is a left-invariant Haar measure on G, thus for any
measurable function f : G→ C and h ∈ G we have∫

G

f(hg) dµ(g) =

∫
G

f(g) dµ(g).

Definition 2.5. The pair (G,K) is called a Gelfand pair if the set

Cc(G)\ := {f ∈ Cc(G) : f(kgk′) = f(g) for all k, k′ ∈ K, g ∈ G}

of bi-K-invariant continuous functions of compact support is a commutative
Banach algebra with respect to convolution.

We will see in the following that every Riemannian symmetric pair is a
Gelfand pair. To prove this, recall that if (G,K) is a Riemannian symmetric
pair, then there exists an involutive automorphism σ : G → G, which is the
identity on K. Denote

fσ(g) := f(σ(g)) and f∨(g) := f(g−1)
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and observe for h ∈ G,∫
G

fσ(hg) dµ(g) =

∫
G

f(σ(h)σ(g)) dµ(g) =

∫
G

fσ(g) dµ(g).

Thus, since the Haar measure is unique up to scaling, there is a constant c > 0
such that ∫

G

fσ(g) dµ(g) = c

∫
G

f(g) dµ(g).

Furthermore we have σ2 = 1 and hence we conclude that c2 = 1. Thus c = 1
since c is positive. So we proved∫

G

fσ(g) dµ(g) =

∫
G

f(g) dµ(g).

Proposition 2.6. Any Riemannian symmetric pair is a Gelfand pair. Further-
more, if (G,K) is a Gelfand pair, then G is unimodular.

Proof. Let (G,K) be a Riemmanian symmetric pair and σ be the involutive
automorphism, which is the identity on K. By the Cartan decomposition, every
element x ∈ G can be written as x = kp with k ∈ K and p ∈ G such that
σ(k) = k and σ(p) = p−1. Hence for f ∈ Cc(G)\,

f(σ(x)) = f(σ(kp)) = f(kσ(p)) = f(σ(p)) = f(p−1) = f(p−1k−1) = f(x−1).

Thus fσ = f∨. Furthermore for f1, f2 ∈ Cc(G)\, we have

(f∨1 ∗ f∨2 )(x) =

∫
G

f∨1 (g)f∨2 (g−1x) dµ(g)

=

∫
G

f1(g−1)f2(x−1g) dµ(g)

=

∫
G

f2(g′)f1(g′−1x−1) dµ(g′)

= (f2 ∗ f1)(x−1)

= (f2 ∗ f1)∨(x),

where in the third line we used the substitution g′ = x−1g. So we proved for
f1, f2 ∈ Cc(G)\ that f∨1 ∗ f∨2 = (f2 ∗ f1)∨. In addition we derive by σ-invariance
of the Haar measure,

(fσ1 ∗ fσ2 )(x) =

∫
G

f1(σ(g))f2(σ(g−1x)) dµ(g)

=

∫
G

f1(g)f2(g−1σ(x)) dµ(g)

= (f1 ∗ f2)σ(x).

Combining all this for f1, f2 ∈ Cc(G)\,

(f1 ∗ f2)σ = fσ1 ∗ fσ2 = f∨1 ∗ f∨2 = (f2 ∗ f1)∨ = (f2 ∗ f1)σ,

implying f1 ∗ f2 = f2 ∗ f1. Hence (G,K) is a Gelfand pair.
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Assume now that (G,K) is a Gelfand pair. Let f1 ∈ Cc(G)\. We claim∫
G
f(g−1) dµ(g) =

∫
G
f(g) dµ(g). To prove the claim consider a function f2 ∈

Cc(G)\ that is equal to 1 on the compact set supp(f1)∪supp(f1)−1. Since (G,K)
is a Gelfand pair, we have∫

G

f1(g) dµ(g) =

∫
supp(f1)

f(g) dµ(g)

=

∫
supp(f1)

f(g)f2(g−1) dµ(g)

= (f1 ∗ f2)(e)

= (f2 ∗ f1)(e)

=

∫
supp(f1)−1

f2(g)f1(g−1) dµ(g)

=

∫
f1(g−1) dµ(g).

By assumption µ is left invariant. We want to show that µ is also right invariant.
By the above,∫

G

f(gh) dµ(g) =

∫
G

f(h−1g−1) dµ(g) =

∫
G

f(g−1) dµ(g) =

∫
G

f(g) dµ(g),

for all f ∈ Cc(G) and h ∈ G. Hence G is unimodular.

We next want to decompose the space L2
µ(Γ\(G/K)) together with the regular

right representation into one-dimensional invariant and irreducible subspaces
with the help of the decomposition from Theorem 2.1. The main ingredient is
the following theorem.

Theorem 2.7. Let (G,K) be a Gelfand pair and let (H , π) be an irreducible
unitary representation of G. Then

dim H K ≤ 1.

In order to prove the theorem, consider the convolution algebra L1
µ(G)\

of bi-K-invariant integrable functions, where we call a function ϕ ∈ L1
µ(G)

bi-K-invariant, if for all k, k′ ∈ K and x ∈ G we have

ϕ(kxk′) = ϕ(x).

Let π : G → U(H ) be a unitary representation. For ϕ ∈ L1
µ(G)\ we note

that the operator π(ϕ) leaves the closed subspace of K-invariant elements H K

invariant. More precisely, if f ∈ H K := {f ∈ H : π(k)f = f for all k ∈ K},
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then

π(k)π(ϕ)f = π(k)

∫
G

ϕ(g)π(g) dµ(g)

=

∫
G

ϕ(g)π(kg) dµ(g)

=

∫
G

ϕ(k−1g)π(g) dµ(g)

=

∫
G

ϕ(g)π(g) dµ(g)

= π(ϕ)f.

Hence π(ϕ)f ∈H K and thus, we get by restriction to H K a Banach algebra
homomorphism

πK : L1
µ(G)\ → B(H K)

as in Lemma 2.2. The main step toward the proof of Theorem 2.7 is the following
proposition.

Proposition 2.8. If (H , π) is an irreducible representation of G, then so is
the representation (H K , πK) of L1

µ(G)\.

Proof. Let Y ⊂H K be a non-trivial πK-invariant subspace and let Y ⊥ be its
orthogonal complement in H K . Let f1 be a nonzero vector of Y and denote

H1 = {π(ϕ)f1 |ϕ ∈ L1
µ(G)\}.

We have that H1 is a πK and π-invariant subspace of H and hence the closure
of H1 is equal to H . We claim that Y ⊥ is orthogonal to H1.

Let u2 ∈ Y ⊥ and denote by

ϕ\(x) =

∫
K

∫
K

ϕ(kxk′) dµK(k)dµK(k′),

where µK is the normalized Haar measure on K. Hence for ϕ ∈ L1
µ(G)\,

〈π(ϕ)u1, u2〉 =

∫
G

ϕ(g)〈π(g)u1, u2〉 dµ(g)

=

∫
G

ϕ(kgk′)〈π(g)u1, u2〉 dµ(g)

=

∫
G

∫
K

∫
K

ϕ(kgk′)〈π(g)u1, u2〉 dµK(k)dµK(k′)dµ(g)

= 〈π(ϕ\)u1, u2〉 = 0

Thus Y ⊥ is orthogonal to H1. Since H1 is non-trivial and π-invariant, we have
that Y ⊥ = 0. We we proved that the representation (H K , πK) of L1

µ(G)\ is
irreducible.

With the help of this proposition the theorem is a straightforward conse-
quence.
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Proof. (of Theorem 2.7) By Proposition 2.8 we have that (H K , πK , L1
µ(G)\)

is irreducible. The statement now follows from the following general assertion.
Let (H , π) be a unitary, irreducible representation of a commutative Banach
algebra, in our case L1

µ(G)\. Then, if H 6= {0}, then dim H = 1. For a proof
of this fact we refer to appendix A of [Far83].

Corollary 2.9. Let (G,K) be a Gelfand pair and Γ a cocompact subgroup of G.
Then the space L2

µ(Γ\(G/K)) decomposes into a countable direct sum

L2
µ(Γ\(G/K)) =

⊕
n≥1

H K

of invariant irreducible subspaces H K of dimension at most one, each of which
has finite multiplicity.

Proof. By Theorem 2.1 we have a decomposition

L2
µ(Γ\G) =

⊕
n≥1

Hn

where each Hn is an irreduicible, invariant and finite-dimensional subspace of
L2
µ(Γ\G). Thus the corollary follows from the fact that

L2
µ(Γ\(G/K)) = L2

µ(G)K

together with Theorem 2.7.

2.3 Functions of Positive Type and Spherical Functions

We follow in this section mostly [Far83].
The main objective of this section is to show that we can decompose the space

L2
µ(Γ\(G/K)), for (G,K) a Gelfand pair and Γ a cocompact discrete subgroup

of G, into ⊕
n≥1

(fn),

where each of the fn generates an irreducible subspace in L2
µ(Γ\G). This is

carried out by showing that fn generates an irreducible subspace in L2
µ(Γ\G)

if and only if the function ψ(g) = 〈f, π(g)f〉 is a so-called spherical function.
Spherical functions are a special class of so called functions of positive type,
which we need to study first in order to prove the desired statement. Therefore,
we will more generally consider a locally compact group G.

Definition 2.10. A function ψ : G → C is called of positive type if for all
g1, . . . , gn ∈ G and c1, . . . , cn ∈ C,

N∑
i,j=1

cicjψ(x−1
j xi) ≥ 0.

We further denote by P(G)\ the set of continuous bi-K-invariant functions of
positive type.
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Example 2.11. If (H , π) is a unitary representation of G, then for any element
u ∈ H consider the function ψ : G→ C defined by

ψ(g) = 〈u, π(g)u〉.

These functions are of positive type since for all g1, . . . , gn ∈ G and c1, . . . , cn ∈ C,
we have

N∑
i,j=1

cicjψ(x−1
j xi) =

∣∣∣∣∣∣∣∣ n∑
i=1

ciπ(gi)u

∣∣∣∣∣∣∣∣2 ≥ 0.

An important property of functions of positive type and in particular one that
we will need later is that we can associate to each such function an essentially
unique unitary representation of G with a cyclic vector. This is done via the
Gelfand–Naimark–Segal construction or short GNS-construction as in the next
theorem.

Theorem 2.12. (GNS-Construction) For any bi-K-invariant function ψ : G→
C of positive type there exists a unitary representation (Hψ, πψ) of G and a
cyclic vector u ∈H K

ψ such that

ψ(x) = 〈u, πψ(x)u〉.

Furthermore the unitary representation (Hψ, πψ) is unique up to isometry.

Proof. Let ψ ∈P(G)\ and denote by M0(G) the set of measures µ of the form

µ =

n∑
i=1

aiδgi

with n ∈ N, ai ∈ C and gi ∈ G for all 1 ≤ i ≤ n. Additionally, we define

µ ∗ ψ(x) :=

n∑
i=1

aiψ(g−1
i x).

Consider the set
Vψ := {f = µ ∗ ψ : µ ∈M0(G)}.

We give Vψ the structure of a pre-Hilbert space: For µ =
∑N
i=1 aiδgi and

ν =
∑M
j=1 bjδhj we denote f = µ ∗ ψ and g = ν ∗ ψ and define

〈f, g〉 :=

N∑
i=1

M∑
j=1

biajψ(g−1
i hj).

This forms an inner product, since ψ is of positive type.
We consider on Vψ the following unitary representation defined for g ∈ G by

(π(g)f)(x) = f(g−1x).

Observe that we can write ψ as ψ = δei ∗ ψ and π(g)ψ = δg ∗ ψ. Hence

〈ψ, π(g)ψ〉 = 〈δei ∗ ψ, δg ∗ ψ〉 = ψ(g).



2. The Spectrum of the Laplacian on Compact Hyperbolic Surfaces 36

Denote by Hψ the completion of Vψ, by πψ the extension of π onto Hψ and
by u the image of ψ in the extension. So for all x ∈ G,

〈u, πψ(x)u〉 = ψ(x).

It remains to check that u is K-invariant and cyclic. To see that u is K-invariant,
note that

π(k)ψ(x) = δk ∗ ψ = ψ(k−1x) = ψ(x),

since ψ is bi-K-invariant. We prove now that u is cyclic. Since π(g)ψ = δg ∗ ψ,
we conclude

Vψ = 〈π(g)ψ : g ∈ G〉,
implying that u is cyclic.

Let (H ′, π′, u′) be another such triple. Then for µ =
∑N
i=1 aiδgi , we define

the linear map

A : Vψ →H ′, f = µ ∗ ψ 7→
N∑
i=1

aiπ
′(gi)u

′.

Thus Aψ = u′ and

||Af ||2H ′ = 〈Af,Af〉H ′

=

〈
N∑
i=1

aiπ
′(xi)u

′,

N∑
j=1

ajπ
′(xj)u

′

〉
H ′

=

n∑
i,j=1

aiaj〈u′, π′(x−1
i xj)u

′〉H ′

=

n∑
i,j=1

aiajψ(x−1
i xj)

= 〈µ ∗ ψ, µ ∗ ψ〉Vψ = ||f ||2Vψ .

Hence A is an isometry on Vψ and so uniquely extends to an isometry from Hψ

to H ′.

We next want to characterize the functions ψ for which (Hψ, πψ) is an
irreducible representation. This will later be important since we are interested in
functions f ∈ L2

µ(Γ\(G/K)) that generate irreducible subspaces in L2
µ(Γ\G). To

derive a suitable condition, note that P(G)\ is a convex cone. Further, we call
an element ψ ∈P(G)\ extremal if, whenever ψ = ψ1 +ψ2 with ψ1, ψ2 ∈P(G)\,
it follows that ψ1 and ψ2 are proportional.

Proposition 2.13. Let ψ : C → C be a nonzero and bi-K-invariant function
of positive type. Then ψ is extremal if and only if (Hψ, πψ) is irreducible.

To prove the above proposition, we will need the following version of Schur’s
Lemma.

Lemma 2.14. (Schur) Let H be a complex Hilbert space and π be a unitary,
irreducible representation. Further, consider a bounded operator ψ : H →H .
Then ψ commutes with π, i.e. ψ ◦ π(g) = π(g) ◦ ψ for all g ∈ G if and only if ψ
is of the form ψ = λ · idH for some λ ∈ C.
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Proof. To prove this theorem one uses the Spectral Theorem for self-adjoint
operators. For more details see section 12 of [EW17].

Proof. (of Proposition 2.13) Assume that ψ is extremal and that

Hψ = H1 ⊕H2

is a decomposition into closed irreducible subspaces and denote by Pi = Hψ →
Hi the orthogonal projection for i = 1, 2. Let u be such that ψ(x) = 〈u, πψ(x)u〉
and write u = u1 + u2 with ui = Piu for i = 1, 2 and ψi(x) = 〈ui, πψ(x)ui〉 for
i = 1, 2. Then

ψ(x) = 〈u, πψ(x)u〉 = 〈u1, πψ(x)u1〉+ 〈u2, πψ(x)u2〉 = ψ1(x) + ψ2(x).

Hence, since ψ is extremal, ψ1 = λψ. Next for u = u1 + u2 as above,

〈u1 − λu, π(x)u〉 = 〈u1, π(x)u〉 − λ〈u, π(x)u〉 = ψ1(u)− λψ(u) = 0.

Since u is cyclic, we conclude u1 = λu. Hence, if λ = 0 we have H1 = {0} and if
λ 6= 0, we conclude H1 = H . Thus Hψ is irreducible.

Conversely assume (Hψ, πψ) is irreducible and that ψ = ψ1 + ψ2 with

ψ1, ψ2 ∈ P(G)\. For µ =
∑N
i=1 aiδgi and ν =

∑M
j=1 bjδhj we denote f = µ ∗ ψ

and g = ν ∗ ψ. We then define

B1(f, g) =

N∑
i=1

M∑
j=1

aibjψ1(h−1
j gi).

This is a Hermitian form with

|B1(f, g)| ≤ ||f ||ψ · ||g||ψ.

Hence the Hermitian form extends to one on Hψ. By the Frechet-Riesz Repre-
sentation Theorem, there exists a bounded operator A on Hψ such that

B1(f, g) = 〈Af, g〉.

In addition, it holds for all x ∈ G,

B1(πψ(x)f, πψ(x)g) = B(f, g)

and so for all x ∈ X
πψ(x) ◦A = A ◦ πψ(x).

Then the Lemma of Schur implies that A = λidH and hence B(f, g) = λ〈f, g〉.
Thus ψ1 = λψ.

Assume from now on that (G,K) is a Gelfand pair.

Definition 2.15. A spherical function is a bi-K-invariant continuous function
ψ : G→ C such that

f 7→ χ(f) =

∫
G

f(g)ψ(g−1) dµ(g)

is a nonzero continuous character of Cc(G)\, i.e. for all f1, f2 ∈ Cc(G)\ we have

χ(f1 ∗ f2) = χ(f1)χ(f2).
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The next two statements characterize spherical functions.

Proposition 2.16. Let ψ : G→ C be a bi-K-invariant continuous function of
compact support. Then the following are equivalent:

(i) ψ is spherical.

(ii) For all x, y ∈ G ∫
K

ψ(xky) dµK(k) = ψ(x)ψ(y),

where µK is the normalized Haar measure on K.

(iii) ψ(e) = 1 and
ψ ∗ f = χ(f)ψ

for all f ∈ Cc(G)\, with χ(f) =
∫
G
f(g)ψ(g−1) dµ(g).

Proof. We first show that (i) and (ii) are equivalent. The function ψ is spherical
if and only if for all f1, f2 ∈ Cc(G)\,

χ(f1 ∗ f2) = χ(f1)χ(f2) =

∫
G

∫
G

f1(g)f2(h)ψ(g−1)ψ(h−1) dµ(g)dµ(h).

The left hand side is

χ(f1 ∗ f2) =

∫
G

(f1 ∗ f2)(x)ψ(x−1) dµ(x)

=

∫
G

∫
G

f1(g)f2(g−1x)ψ(x−1) dµ(g)dµ(x)

=

∫
G

∫
G

f1(g)f2(h)ψ(g−1h−1) dµ(g)dµ(h)

=

∫
G

∫
G

f1(k−1g)f2(h)ψ(g−1kh−1) dµ(g)dµ(h)

=

∫
G

∫
G

f1(g)f2(h)ψ(g−1kh−1) dµ(g)dµ(h),

where we used in the third line the substitution h = g−1x, in the following line
we replaced g by k−1g in the next line and bi-K-invariance of f1 in the fifth line.
Hence χ(f1 ∗ f2)− χ(f1)χ(f2) = 0 if and only if∫
G

∫
G

f1(g)f2(h)

(∫
K

ψ(g−1kh−1) dµK(k)− ψ(g−1)ψ(h−1)

)
dµ(g)dµ(h) = 0,

which is equivalent to (ii).
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We now prove that (ii) implies (iii). For f ∈ Cc(G)\,

χ(f)ψ(x) =

∫
G

f(g)ψ(g−1)ψ(x) dµ(g)

=

∫
G

f(g)

∫
K

ψ(g−1kx) dµK(k)dµ(g)

=

∫
G

f(k−1g)

∫
K

ψ(g−1x) dµK(k)dµ(g)

=

∫
G

f(g)

∫
K

ψ(g−1x) dµK(k)dµ(g)

=

∫
G

f(g)ψ(g−1x) dµ(g)

= (f ∗ ψ)(x) = (ψ ∗ f)(x),

where we used (ii) in the third line, then we replaced g by k−1g and and used
bi-K-invariance in the fifth line and the assumption that (G,K) is a Gelfand pair
in the last line. Further, for some y ∈ G such that ψ(y) 6= 0 by bi-K-invariance,

ψ(e)ψ(y) =

∫
K

ψ(eky) dµK(k) =

∫
K

ψ(ky) dµK(k) =

∫
K

ψ(y) dµK(k) = ψ(y).

Thus ψ(e) = 1. (iii) implies (ii) follows analogously.

Theorem 2.17. The space of bounded spherical function corresponds precisely
to the space of nonzero continuous characters χ : L1

µ(G)\ → C.

Proof. If ψ is a spherical function, then the density of Cc(G)\ in L1
µ(G)\ gives rise

to a character of L1(G)\. For the converse let χ be a nonzero continuous character
of L1

µ(G)\ and hence also of Cc(G)\. By the Frechet-Riesz Representation

Theorem there is a function ψ ∈ Cc(G)\ with

χ(f) =

∫
G

f(g)ψ(g−1) dµ(g).

Since χ is a character, χ(f1 ∗ f2) = χ(f1)χ(f2). Thus,

χ(f1)

∫
ψ(g−1)f2(g) dµ(g) = χ(f1)χ(f2)

= χ(f1 ∗ f2)

= χ(f2 ∗ f1)

=

∫
G

(f2 ∗ f1)(h)ψ(h−1) dµ(h)

=

∫
G

∫
G

f2(g)f1(g−1h)ψ(h−1) dµ(g)dµ(h)

=

∫
G

∫
G

f1(h)ψ(h−1g−1)f2(g) dµ(h)dµ(g)

=

∫
G

(ψ ∗ f1)(g−1)f2(g) dµ(g)

=

∫
G

(f1 ∗ ψ)(g−1)f2(g) dµ(g).
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So we proved
(f1 ∗ ψ)(x) = χ(f1)ψ(x).

Furthermore

χ(f)ψ(e) = (f ∗ ψ)(e) =

∫
f(g)ψ(g−1) dµ(g).

So ψ(e) = 1. Thus ψ is spherical.

The next theorem gives a condition for when functions of positive type are
spherical.

Theorem 2.18. Let ψ : G → C be a continuous bi-K-invariant function of
compact support and positive type. Then ψ is spherical if and only if the unitary
representation (Hψ, πψ) constructed in Theorem 2.12 is irreducible and ψ(e) = 1.

Lemma 2.19. Let (H , π) be a unitary representation of G that possesses a
cyclic and K-invariant vector u ∈H K . If dim H K = 1, then the representation
is irreducible.

Proof. Let Y ⊂H be an invariant and closed subspace of H and let P : H → Y
be the projection. Observe that for all k ∈ K, u ∈H and v ∈ Y ,

〈π(k)Pu, v〉 = 〈Pu, π(k−1)v〉 = 〈u, π(k−1)v〉 = 〈π(k)u, v〉 = 〈Pπ(k)u, v〉.

Thus the vector v = Pu is K-invariant, since

π(k)v = π(k)Pu = Pπ(k)u = Pu = v,

where the second equals sign follows from the fact that both elements are in Y
and u is cyclic. Hence v = λu for λ a complex number. If λ = 0, then v = 0
and u is orthogonal to Y . Thus π(x)u is orthogonal. As u is cyclic we conclude
Y = {0}. If λ 6= 0 we again conclude since u is cyclic that Y = H .

Proof. (of Theorem 2.18) For convenience we will drop the index of (Hψ, πψ), so
we denote by (H , π) the unitary representation associated to ψ. By construction
there is a K-invariant vector u ∈H K such that

ψ(x) = 〈u, π(x)u〉.

Assume first that ψ is spherical. In Proposition 2.16 we proved that
ψ(e) = 1. We claim that for all ϕ ∈ L1

µ(G)\, π(ϕ)u = χ(ϕ)u where χ(ϕ) =∫
G
ϕ(g)ψ(g−1) dµ(g).
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To prove this claim, note that for x ∈ G we have

〈π(ϕ)u, π(x)u〉 =

∫
G

ϕ(g)〈π(g)u, π(x)u〉 dµ(g)

=

∫
G

ϕ(g)ψ(g−1x) dµ(g)

=

∫
G

ϕ(g)ψ(g−1kx) dµ(g)

=

∫
G

ϕ(g)

∫
K

ψ(g−1kx) dµK(x)dµ(g)

=

∫
G

ϕ(g)ψ(g−1)ψ(x) dµ(g)

= χ(ϕ)ψ(x) = χ(ϕ)(u, π(x)u).

Hence π(ϕ)u = χ(ϕ)u, since u is cyclic.
Next, consider the linear map

P : H −→H K , v 7−→ Pv :=

∫
K

π(k)v dµK(k).

This is the orthogonal projection since for all v ∈H and vK ∈H K

〈Pv, vK〉 =

〈∫
K

π(k)v dµK(k), vK

〉
=

∫
K

〈π(k)v, vK〉 dµK(k)

=

∫
K

〈v, π(k−1)vK〉 dµK(k)

=

∫
K

〈v, vK〉 dµK(k)

= 〈v, vK〉.

For v = π(ϕ)u with ϕ ∈ L1
µ(G)\,

Pv = P 2v = P (Pπ(ϕ)u) = P

(∫
G

∫
K

π(k)ϕ(g)π(g)u dµ(g)

)
= P

(∫
G

∫
K

ϕ(g)π(kg)u dµK(k)dµ(g)

)
=

∫
G

∫
K

∫
K

ϕ(kgk′)π(g)u dµK(k)dµK(k′)dµ(g)

=

∫
G

ϕ\(g)π(g)u dµ(g)

= π(ϕ\)u = χ(ϕ\)u,

where ϕ\(g) :=
∫
K

∫
K
ϕ(kgk′) dµK(k)dµK(k′). Since u is cyclic, this shows that

the dimension of H K is equal to one and thus the representation (H , π) is
irreducible by Lemma 2.19.
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Next, assume that (H , π) is irreducible. By Theorem 2.7, we have dim H K =
1. Thus for ϕ ∈ L1

µ(G)\, we conclude

π(ϕ)u = χ(ϕ)u

for some scalar χ(ϕ) ∈ C. Thus for all ϕ1, ϕ2 ∈ L1
µ(G)\,

χ(ϕ1 ∗ ϕ2)u = π(ϕ1 ∗ ϕ2)u = π(ϕ1)π(ϕ2)u = χ(ϕ1)χ(ϕ2)u.

So χ is a character. Since ψ(e) = 1,

χ(ϕ) = χ(ϕ)ψ(e)

= 〈π(ϕ)u, π(e)u〉

=

∫
G

ϕ(g)〈π(g)u, π(e)u〉 dµ(g)

=

∫
G

ϕ(g)ψ(g−1) dµ(g).

Hence χ(ϕ) =
∫
G
ϕ(g)ψ(g−1) dµ(g) is a character and thus ψ is spherical.

Combining all this we can finally prove the following two corollaries, fulfilling
the aim stated in the beginning of this section.

Corollary 2.20. Let Γ\G be compact and f ∈ L2
µ(Γ\(G/K)). Then the follow-

ing properties are equivalent.

(i) f generates an irreducible subspace in L2
µ(Γ\G), i.e. 〈π(g)f : g ∈ G〉 ⊂

L2
µ(Γ\G) is irreducible.

(ii) For all ϕ ∈ L1
µ(G)\ we have

π(ϕ)f = χ(ϕ)f,

where χ(ϕ) =
∫
G
ϕ(g)ψ(g−1) dµ(g) and ψ = 〈f, π(g)f〉.

(iii) The function
ψ(g) = 〈f, π(g)f〉

for g ∈ G is spherical.

Proof. Note that in (i) we view f as a function from Γ\G→ C. Furthermore the
subspace H := 〈π(g)f : g ∈ G〉 is invariant under π. Hence we can view (H , π)
as the, up to isometry, unique unitary representation associated to ψ by the GNS-
construction in Theorem 2.12 with cyclic vector f such that ψ(g) = 〈f, π(g)f〉.
Thus (i) and (iii) are equivalent by Theorem 2.18.

The statements (i) implies (ii) and (ii) implies (iii) are proved as in Theo-
rem 2.18.

Corollary 2.21. Let (G,K) be a Gelfand pair and Γ a cocompact discrete
subgroup G. Then

L2
µ(Γ\(G/K)) =

⊕
n≥1

(fn)

where each fn generates an irreducible subspace of L2
µ(Γ\G).
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Proof. Denote H := L2
µ(Γ\G), hence H K = L2

µ(Γ\(G/K)). By Theorem 2.1
we get a decomposition

H =
⊕
n≥1

Hn

with Hn finite dimensional irreducible subspaces of finite multiplicity. Then we
have as in Corollary 2.9

H K =
⊕
n≥1

H K
n

where for each n we have dim H K
n ≤ 1. Thus we can omit those n for which

H K
n = {0} and hence can choose for every n a function fn ∈ H K

n such that
(fn) := C · fn = H K

n . So

H K =
⊕
n≥1

(fn),

where each fn appears only finitely often. Furthermore the subspace

〈π(g)fn : g ∈ G〉 ⊂Hn

is non-trivial and invariant under π. Thus, since Hn is irreducible, we conclude

〈π(g)fn : g ∈ G〉 = Hn.

This implies that this space is irreducible since Hn is irreducible. Hence fn
generates an irreducible subspace.

2.4 The Laplace Operator and Point Pair Invariant Func-
tions

For the rest of this thesis we reduce to the case G = PSL2(R) and K = PSO2(R),
hence G/K = H. This is a Riemannian symmetric pair and thus the theory
developed in the preceding sections applies. More precisely, we proved for the
compact hyperbolic surface S := Γ\H,

L2
µ(S) =

⊕
n≥1

(fn) (2.1)

where each fn generates an irreducible subspace in L2
µ(Γ\G). We will show in

this section that these functions are precisely eigenfunctions for the Laplace
operator.

We use the following terminology. For H a Hilbert space, we call any linear
map defined on a dense subset of H an operator. The space where the operator
is defined is called the domain. Further, one calls an operator T : H → H
symmetric if

〈Tf, g〉 = 〈f, Tg〉.

The Laplace operator on H is given by

4 = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.
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This operators acts on C∞(H). We want to see that the Laplace operator is
symmetric on the space of smooth functions with compact support. In order to
prove this, we use the following notations. First denote by

4e =
∂

∂x2
+

∂

∂y2

the usual euclidean Laplacian and further by

∇f :=

(
∂f
∂x
∂f
∂y

)

the gradient.

Proposition 2.22. The Laplace operator is a symmetric operator on L2
µ(H)

with domain C∞c (H).

Proof. Let f, g ∈ C∞c (H) be two smooth functions of compact support. Then
we have

d

(
g

(
∂f

∂x
dy − ∂f

∂y
dx

))
= (g4ef +∇f · ∇g) dx ∧ dy (2.2)

and hence

d

(
g

(
∂f

∂x
dy − ∂f

∂y
dx

)
− f

(
∂g

∂x
dy − ∂g

∂y
dx

))
= (g4ef − f4eg) dx ∧ dy.

Hence, by Stokes’ theorem∫
D

(g4ef − f4eg) dx ∧ dy =

∫
∂D

(
g

(
∂f

∂x
dy − ∂f

∂y
dx

)
− f

(
∂g

∂x
dy − ∂g

∂y
dx

))
where we consider a region D that contains the support of both f and g. Hence
the integral on the right hand side is zero and so we conclude∫

H
(g4ef − f4eg) dx ∧ dy = 0

or equivalently, ∫
H
g(4ef) dx ∧ dy =

∫
H
f(4eg) dx ∧ dy. (2.3)

The fact that the operator is symmetric now follows from (2.3) since

〈4f, g〉 =

∫
H

(4f)g
dx ∧ dy
y2

= −
∫
H
g(4ef) dx ∧ dy.

In order to see that the Laplace operator defines an operator on C∞(S), we
show that the Laplace operator is invariant by the action of PSL2(R) on C∞(H).
This is proved in the next proposition.
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Proposition 2.23. Consider the action of PSL2(R) on C∞(H) given, for γ ∈
PSL2(R), by

γ : C∞(H)→ C∞(H), f 7→ f ◦ γ.

Then the Laplace operator on H is invariant under this action.

Proof. It suffices to check the statement for the generators of PSL2(R) which
are by Lemma 1.5 (

1 t
0 1

) (
s 0
0 s−1

) (
0 −1
1 0

)
with t ∈ R and s ∈ R\{0}. For γ ∈ PSL2(R) of the first type, we observe for
f ∈ C∞(H)

4(f(γz)) = 4(f(z + t)) = (4f)(z + t).

Next, let γ = ( s 0
0 s−1 ) for s ∈ R\{0}, then

4(f(γz)) = 4(f(s2z))

= −(s2y)2

(
∂2

∂(sx)2
+

∂2

∂(sy)2

)
f(s2z)

= (4f)(s2z).

We leave it as an exercise to check invariance for the matrix ( 0 −1
1 0 ).

So if f ∈ C∞(S), we can view the function f as a Γ-invariant element of
C∞(H). If we then apply the Laplace operator to f , we get a function on C∞(H)
which is again Γ-invariant. Thus the Laplace operator is well defined on S.
Denote further by

D(S) = {f ∈ C∞(S) : f bounded and 4f bounded}.

Proposition 2.24. The Laplacian is a symmetric positive operator on L2
µ(S)

with domain D(S)

Proof. We follow [Ber11] section 3.6. Let f, g be two functions contained in

D(S). We consider the differential form ω = g
(
∂f
∂xdy −

∂f
∂y dx

)
. Further consider

the 2-form

df ∧
(
∂f

∂x
dy − ∂f

∂y
dx

)
= |y∇f |2 dx ∧ dy

y2
,

which is Γ invariant (See Lemma 3.15 of [Ber11]). Thus with Stokes’ theorem,
since a compact hyperbolic surface has no boundary and with (2.2), we derive

〈4f, g〉 = −
∫
D

g4ef dx ∧ dy =

∫
D

(∇g)(∇f) dx ∧ dy,

where D is a fundamental domain for Γ. Thus the operator is symmetric and it
is positive since

〈4f, f〉 =

∫
D

|∇f |2 dx ∧ dy ≥ 0. (2.4)
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Corollary 2.25. The eigenvalues of the Laplace operator on a compact hyperbolic
surface are positive real numbers.

Proof. Since the operator is symmetric, we conclude from 4f = λf for a nonzero
function f , that

λ〈f, f〉 = 〈λf, f〉 = 〈4f, f〉 = 〈f,4f〉 = 〈f, λf〉 = λ〈f, f〉

and so λ is a real number. To see that the eigenvalues are positive, we use
equation (2.4) to see λ〈f, f〉 = 〈4f, f〉 =

∫
D
|∇f |2 dx ∧ dy ≥ 0 and hence

λ ≥ 0.

Via the decomposition (2.1) and Corollary 2.20 we are interested in functions
f ∈ L2

µ(S) such that π(ϕ)fn = χ(ϕ)fn for all ϕ ∈ L1
µ(G)\. A class of functions

that is closely related to functions in L1
µ(G)\ are so-called point pair invariant

functions. We next define them and then explain how they relate the functions
in L1

µ(G)\.

Definition 2.26. A smooth function k : H×H→ R is called point pair invariant
if k(z, w) depends only on the distance between z and w. Hence there exits an
even function kR : R→ R such that

kR(d(z, w)) := k(z, w).

We call the point pair invariant function k of compact support if kR is of compact
support.

Let ϕ ∈ L1
µ(G)\. Since H = G/K, there is a function ϕH ∈ L1

µ(H) such that

ϕH(z) = ϕ(z),

where we view z as an element of H on the left-hand side and z as an element of
G on the right hand side. Furthermore ϕH is right-K-invariant and thus ϕH(z)
only depends on the distance of z to i ∈ H. If ϕH is additionally smooth, there
consequently exists a unique point pair invariant function k : H×H→ R such
that

k(z, i) = ϕH(z).

The uniqueness of such a point pair invariant function k follows since the action
of G on H is transitive. In this setting note further for f ∈ L2

µ(H) = L2
µ(G/K)

and µ the Haar measure of G,

(π(ϕ)f)(x) =

∫
G

ϕ(g)f(xg) dµ(g)

=

∫
G

ϕ(x−1g)f(g) dµ(g)

=

∫
K

∫
H
ϕ(x−1zk)f(zk) dµH(z)dµ(k)

=

∫
H
ϕ(x−1z)f(z) dµH(z)

=

∫
H
k(i, x−1z)f(z) dµH(z)

=

∫
H
k(x, z)f(z) dµH(z).
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So if we define an operator π(k) as

π(k)f =

∫
H
k(x, z)f(z) dµH(z)

we hence have
π(ϕ)f = π(k)f.

In analogy to L1
µ(G)\, we consider the commutative Banach algebra

B :=

{
point pair invariant k : H×H→ C with

∫
H
|k(z, i)| dµH(z) <∞

}
.

Thus the characters χ : L1
µ(G)→ C correspond precisely to characters χ : B → C.

Using the decomposition (2.1) we arrive at the following corollary.

Corollary 2.27. For χ : B → C a nontrivial continuous character, denote by

Eχ := {f ∈ L2
µ(S), π(k)f = χ(k)f for all k ∈ B}.

Then we have a decomposition

L2
µ(S) =

⊕
χ

Eχ,

where the direct sum is taken over all non-trivial continuous characters χ and
for all χ, dimEχ <∞.

Proof. This is precisely the decomposition (2.1) together with Corollary 2.20,
where we group the functions together according to the character χ such that
π(k)f = χ(k)f for all k ∈ B. It remains to argue that each of the spaces Eχ
are finite dimensional. If two functions f1 and f2 in (2.1) are eigenspaces of the
same character χ then by Corollary 2.20 the associated spherical functions are
also the same. Thus the irreducible subspaces H1 and H2 generated by f1 and
f2 are isometric. In Corollary 2.9 we have seen that each of these spaces occur
only with finite multiplicity and hence Eχ is finite dimensional.

Point pair invariant functions have useful properties with respect to the
Laplace operator as the next two statements show.

Lemma 2.28. Let k(z, w) be a point pair invariant function. Then

4zk(z, w) = 4wk(z, w).

Furthermore, both of the functions 4zk(z, w) and 4wk(z, w) are point pair
invariant.

Proof. In polar coordinates about the point w, we derive by point pair invariance

4zk(z, w) = −k′′(r)− coth(r)k′(r).

One obtains the same formula if one considers k(z, w) in polar coordinates about
the point z.

Proposition 2.29. The operators π(k) commute with the action of the Laplacian.
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Proof. Since the Laplace operator is symmetric, we obtain∫
H
k(z, w)(4wf(w)) dµH(w) =

∫
H

(4wk(z, w))f(w) dµH(w).

Then by the last lemma the integral on the right is equal to∫
H

(4zk(z, w))f(w) dµH(w).

We are now ready to prove the main theorem of this section.

Theorem 2.30. A function f ∈ L2
µ(Γ\H) generates an irreducible subspace in

L2
µ(Γ\G) if and only if f is an eigenfunction of the Laplace operator. Furthermore,

the eigenspaces of the Laplace operator are finite dimensional.

Proof. Assume that f generates an irreducible subspace in L2
µ(Γ\G), then by

Corollary 2.20 we have that f is contained in Eχ for some non-trivial continuous
character χ. Hence

χ(k)f(x) = (π(k)f)(x) =

∫
H
k(x, y)f(y) dµH(y)

for all point pair invariant k ∈ B and so f is smooth. By Lemma 2.28 we further
conclude for all k ∈ B,

χ(k)4xf(x) = 4x(π(k)f)(x)

= 4x
∫
H
k(x, y)f(y) dµH(y)

=

∫
H

(4xk(x, y))f(y) dµH(y) = (π(4xk)f)(x) = χ(4xk)f(x).

So if we choose a function k ∈ B such that χ(k) 6= 0, we have just proved that

f is an eigenfunction of the Laplacian with eigenvalue χ(4xk)
χ(k) . Hence Eχ ⊂ Eλ,

where Eλ denotes the eigenspace of the Laplace operator with eigenvalue λ. If
λ1 6= λ2, then the eigenspaces Eλ1

and Eλ2
are orthogonal to each other, since

for f ∈ Eλ1
and g ∈ Eλ2

, we have

λ1〈f, g〉 = 〈λ1f, g〉 = 〈4f, g〉 = 〈f,4g〉 = 〈f, λ2g〉 = λ2〈f, g〉,

where we used that the eigenvalues are real numbers. So we conclude 〈f, g〉 = 0.
By Corollary 2.27 we see that the spaces Eχ are orthogonal for distinct

characters. Thus Eχ = Eλ.

Corollary 2.31. For any compact hyperbolic surface S = Γ\H there exists a
complete orthonormal system of eigenfunctions of the Laplace operator. Further-
more each eigenvalue occurs with finite multiplicity.

Proof. This is (2.1) together with Theorem 2.30.

The next two statements, which we won’t prove, state some more properties
of the eigenvalues of the Laplace operator. For a proof of these two statements in
a closely related setting we refer to [Bum98] pages 176 to 185. One can also find
a proof of these statements in chapter 3 of [Ber11] or in chapter 7 of [Bus92].
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Proposition 2.32. The eigenspace of the eigenvalue 0 for a compact hyperbolic
surface is one dimensional.

Theorem 2.33. Let Let (λi)
∞
i=1 be the eigenvalues of the Laplace operator on a

compact hyperbolic surface. Then

∞∑
i=0

λ−2
i <∞.

From this theorem we derive that the sequence of eigenvalues converges to
infinity and hence we can order them increasingly. Throughout the rest of this
thesis we count the eigenvalues (λi)

∞
i=0 with multiplicity and assume that they

are ordered as follows
0 = λ0 < λ1 ≤ λ2 ≤ . . . .
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3 The Selberg Trace Formula and Counting of
Closed Geodesics

In this section we intend to prove the Selberg trace formula and the prime
geodesic theorem. In order to accomplish this, we will investigate the so-called
invariant integral operators π(k) from section 2.4 more closely. However, to avoid
any convergence issues, we will assume that the point-pair invariant function k
is of compact support. It turns out, as we will prove in section 3.1, that these
operators have the same eigenfunctions as the Laplacian and the eigenvalues are
also in a direct relation with the eigenvalues of the Laplacian.

In section 3.2 we proceed by considering the invariant integral operators
π(k) on a compact hyperbolic surface S. In this case, using the convergence
properties of the eigenvalues of the Laplacian from the end of the last section, we
can show that the operators π(k) are of trace class, i.e the sum of its eigenvalues
converges. Furthermore, the operators π(k) are also integral. This is particularly
interesting as the trace of integral operators can be expressed in a useful way.
Namely, the trace of π(k) is equal to∫

k(x, x) dµ(x).

The Selberg trace formula will be derived from this expression of the trace of
π(k) by using intricate transformations. We then prove the Selberg trace formula
for a wider class of functions than just the ones of compact support.

In section 3.3 we prove the Weyl law, a description of the asymptotic behavior
of the number of eigenvalues less than a constant. The Selberg trace formula is
used to prove the Weyl law.

Finally, in section 3.4 we prove the prime geodesic theorem, a precise estimate
of the number for prime geodesics. We prove the prime geodesic theorem by
a intricate use of the Selberg trace formula. The prime geodesic theorem then
implies the goal of this thesis, namely to show that the number of closed geodesics
with length less than any fixed number L behaves asymptotically as

eL

L

as L tends to infinity.
The main references for this section are [Ber11] and [Bus92].

3.1 Eigenvalues of Invariant Integral Operators

This section closely follows [Ber11] sections 3.3 and 3.4.
We want to study the eigenvalues of the invariant integral operators π(k)

which we already considered in section 2.4. However, we restrict to the case
where k is of compact support. We first give a more precise definition of the
invariant integral operators.

Definition 3.1. Let k : H×H→ R be a point pair invariant function of compact
support. We define the invariant integral operator associated to k as

π(k) : L2
µ(H)→ L2

µ(H), f 7→
∫
H
k(·, w)f(w) dµH(w).
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The main and only theorem of this section shows that every eigenfunction
of the Laplacian is also an eigenfunction of the invariant integral operator and
the eigenvalues are also closely related. This is an important step towards the
Selberg trace formula.

Theorem 3.2. Let k : H × H → R be a compactly supported smooth point
pair invariant function. Then there exists a function h : C → C such that if
f ∈ C∞(H) is an eigenfunction of the Laplacian with eigenvalue λ, then

(π(k)f)(z) =

∫
H
k(z, w)f(w) dµH(w) = h(λ)f(z). (3.1)

More concretely, h is given, for r a positive or positive imaginary solution of
r2 + 1

4 = λ, by

h(r) =

∫ ∞
0

∫ ∞
−∞

U

(
1 + x2 + y2

2y

)
y

1
2 +ir dxdy

y2
(3.2)

=
√

2

∫ ∞
−∞

eiru
∫ ∞
|u|

kR(ρ) sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu (3.3)

where U(cosh d) = kR(d).

To prove the theorem we will construct a radial function with useful properties,
where we note that we call a function ϕ : H → C radial about z ∈ H if ϕ(x)
depends only on the distance between x and z. We furthermore remark that
for any λ ∈ C and z ∈ H there exists a unique eigenfunction of the Laplacian
ϕλ(z, w) with eigenvalue λ which is radial about z and satisfies ϕλ(z, z) = 1.
For more details we refer to [Ber11] Lemma 3.6.

Proof. Let f ∈ C∞(H) be an eigenfunction of the Laplacian with eigenvalue λ.
Denote further by

f rad
z (w) :=

∫
Stab(z)

f(Tw) dT

for dT the normalized Haar measure on Stab(z). We remark that Stab(z) is
conjugated to SO2(R) and hence can be identified with SO2(R). Hence dT can
be viewed as the Lebesgue measure. Furthermore note that f rad

z (w) is radial
around z and satisfies f rad

z (z) = f(z). Hence f rad
z (w) = ϕλ(z, w)f(z) for ϕλ(z, w)

the unique normalized radial function about z that is an eigenfunction of the
Laplacian with eigenvalue λ. Observe∫

H
f rad
z (w)k(z, w) dµH(w) =

∫
H
k(z, w)

∫
Stab(z)

f(Tw) dTdµH(k)

=

∫
Stab(z)

∫
H
k(z, w)f(Tw) dµH(w)dT

=

∫
Stab(z)

∫
H
k(z, T−1w)f(w) dµH(w)dT

=

∫
Stab(z)

∫
H
k(z, w)f(w) dµH(w)dT

=

∫
H
k(z, w)f(w) dµH(w).
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Hence ∫
H
k(z, w)f(w) dµH(w) =

∫
H
k(z, w)f rad

z (w) dµH(w)

= f(z)

∫
H
k(z, w)ϕλ(z, w) dµH(w).

This term
∫
H k(z, w)ϕλ(z, w) dµH(w) does not depend on z, as the following

calculation shows together with the transitivity of the group action∫
H
k(gz, w)ϕλ(gz, w) dµH(w) =

∫
H
k(z, g−1w)ϕλ(z, g−1w) dµH(w)

=

∫
H
k(z, w)ϕλ(z, w) dµH(w).

We thus define

h(λ) =

∫
H
k(z, w)ϕλ(z, w) dµH(w)

for any z ∈ H. This shows (3.1).

For the explicit calculation of h, note that y
1
2 +ir for r ∈ C for y = Im z is

an eigenfunction of the Laplacian on H with eigenvalue r2 + 1
4 and furthermore

f(i) = 1. Hence by (3.1)

h

(
r2 +

1

4

)
=

∫
H
k(i, z)y

1
2 +ir dµH(z).

For U(cosh d) = kR(d) together with (1.4) note that

k(z, i) = U(cosh(d(i, z))) = U

(
1 +
|z − i|2

2y

)
= U

(
1 + x2 + y2

2y

)
for z = x+ iy. So equation (3.2) follows. To deduce equation (3.3) one carries

out three substitutions: t = 1+x2+y2

2y , y = eu and t = cosh(ρ).

Abbreviate

g(u) :=
√

2

∫ +∞

|u|

kR(ρ) sinh(ρ)√
cosh(ρ)− cosh(u)

dρ

and note that h is equal to the Fourier transform
∫∞
∞ eirug(u) du of g. If we

next use the two substitutions x = cosh(u) and t = cosh(ρ), we arrive at the
expression

g(arcch(x)) =
√

2

∫ ∞
x

kR(arcch(t))√
t− x

dt.

Hence g(arcch(x)) is almost the Abel transform of the function k(arcch(t)) as
the next definition shows.

Definition 3.3. Let f : [1,∞)→ C be a compactly supported smooth function.
Then the Abel transform of f defined for x ≥ 1 is given by

A[f ](x) =

∫ ∞
x

f(t)√
t− x

dx.

The next proposition states some properties of the Abel transform.
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Proposition 3.4. Let f : [1,∞)→ C be a compactly supported smooth function.
Then the Abel transform g = A[f ] is also compactly supported and smooth.
Furthermore, the Abel transform is invertible with inverse given for y ≥ 1 by

A−1[g](y) = − 1

π

∫ ∞
x

dg(t)√
t− x

.

Proof. Observe by substituting t = t′2 + x,

g(x) =

∫ ∞
x

f(t)√
t− x

dt = 2

∫ ∞
0

f(x+ t′2) dt′

and hence the Abel transform is compactly supported and smooth with derivative

g′(x) = 2

∫ ∞
0

f ′(x+ t′2) dt′.

Thus we conclude

f(y) = −
∫ ∞

0

2f ′(y + r2)r dr

= − 4

π

∫ π
2

0

∫ ∞
0

f ′(x+ r2)r drdθ

= − 4

π

∫ ∞
0

∫ ∞
0

f ′(x+ η2 + ξ2) dηdξ

= − 2

π

∫ ∞
0

g′(x+ η2) dη

= − 1

π

∫ ∞
0

d[g(x+ η2)]

η

= − 1

π

∫ ∞
x

dg(t)√
t− x

.

3.2 The Selberg Trace Formula

Consider a compact hyperbolic surface S = Γ\H. A function f : S → C can
also be viewed as a Γ-invariant function on H. So we can consider the invariant
integral operators for S defined for a compactly supported smooth function
k : H×H→ C by

πS(k) : L2
µ(S)→ L2

µ(S), f 7→
∫
H
k(·, w)f(w) dµH(w).

One straightforwardly checks that πS(k)f is indeed contained in L2
µ(S). The

invariant integral operators for S have interesting properties that will allow us
to relate the eigenvalues of the Laplacian to the length of closed geodesics. First
observe, as in the proof of Lemma 2.3, that∫

H
k(z, w)f(w) dµH(w) =

∑
γ∈Γ

∫
D

k(z, γw)f(w) dµH(w)

=

∫
D

∑
γ∈Γ

k(z, γw)f(w) dµH(w),



3. The Selberg Trace Formula and Counting of Closed Geodesics 54

where D is a fundamental domain for S. As in Lemma 2.3, note that the Selberg
kernel

K(z, w) :=
∑
γ∈Γ

k(z, γw)

is a smooth function since the function k is smooth and we only sum over a
finite number of elements γ ∈ Γ as k has compact support. Hence the operator
πS(k) is compact by Theorem B.28 in the appendix.

Consider next the ordered eigenvalues of the Laplace operator 0 = λ0 < λ1 ≤
λ2 ≤ . . . where we count the eigenvalues with multiplicity. Write f0, f1, f2, . . .
for a complete orthonormal system of real eigenfunctions where fi has eigenvalue
λi. Since we can view fi as an eigenfunction of the Laplacian on H, Theorem
3.2 implies that

(πS(k)fi)(z) = h(ri)fi(z) (3.4)

for all i ≥ 0 and for h and ri as in Theorem 3.2. Hence the functions f0, f1, f2, . . .
are a complete orthonormal system of eigenfunctions of the operator πS(k) with
eigenvalues h(ri).

The next lemma shows that the operator πS(k) is trace-class. For a definition
and important properties of trace-class operators we refer to the appendix.

Lemma 3.5. The operator πS(k) : L2
µ(S)→ L2

µ(S) is a trace-class operator.

Proof. Since the functions f0, f1, f2, . . . are a complete orthonormal system of
eigenfunctions of the operator πS(k) with eigenvalues h(ri) as in the preceding
paragraph, we conclude that the following convergence holds in L2

µ:

K(z, w)
L2
µ

=

∞∑
i=0

h(ri)fi(z)fi(w).

Applying the Laplacian to z 7→ K(z, w) yields

4zK(z, w)
L2
µ

=

∞∑
i=0

h(λj)rifi(z)fi(w).

As the function 4zK is continuous, the associated invariant integral operator is
a Hilbert-Schmidt operator (see Proposition B.29) and hence

∞∑
i=0

|h(ri)λi|2 <∞. (3.5)

Since
∑∞
i=0 λ

−2
i <∞ we have with the Cauchy-Schwarz inequality( ∞∑

i=0

|h(ri)|

)2

=

( ∞∑
i=0

|h(ri)λiλ
−1
i |

)2

≤
∞∑
i=0

|h(ri)λi|2
∞∑
i=0

λ−2
i <∞.

So
∞∑
i=0

h(ri)

is absolutely convergent. Thus by Proposition B.38 the operator πS(k) is indeed
a trace-class operator.
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Using Proposition B.39 we hence derive the central relation

∞∑
i=0

h(ri) = tr(πS(k)) =

∫
D

K(z, z) dµH(z) =

∫
D

∑
γ∈Γ

k(z, γz) dµH(z).

As before, we will for convenience write U(cosh(ρ)) = kR(ρ). So we can write

∞∑
i=0

h(ri) =
∑
γ∈Γ

∫
D

k(z, γz) dµH(z)

=
∑
γ∈Γ

∫
D

U(cosh(d(z, γz)) dµH(z)

= area(S)U(1) +
∑
γ 6=id

∫
D

U(cosh(d(z, γz))) dµH(z), (3.6)

where in the third line we separated the identity element from the sum taken
over all elements of Γ. The Selberg trace formula is nothing more than a further
transformation of equation (3.6).

Lemma 3.6. In the above setting we have

U(1) =
1

4π

∫ ∞
−∞

rh(r) tanh(πr) dr.

Proof. By properties of the Abel transform we derive that

U(1 + 2u) = − 1

π

∫ ∞
u

dq(v)√
v − u

with q(v) = 1
2g(2 log

(√
v + 1 +

√
v
)
). Hence

U(1) = − 1

π

∫ ∞
0

q′(v)√
v
dv

= − 1

π

∫ ∞
0

g′(2 log
(√
v + 1 +

√
v
)
)

√
v

d

dv
(2 log

(√
v + 1 +

√
v
)
) dv

= − 1

2π

∫ ∞
0

g′(u)

sinh(u/2)
du

where we used the substitution u = 2 log
(√
v + 1 +

√
v
)

in the last line. Since g
and h are even, we get for almost all u ∈ R

g(u) =
1

2π

∫ ∞
−∞

e−iruh(r) dr =
1

π

∫ ∞
0

h(r) cos(ru) dr.

As h lies in the Schwartz space,

g′(u) = − 1

π

∫ ∞
0

rh(r) sin(ru) dr.

So we conclude

U(1) =
1

2π2

∫ ∞
0

∫ ∞
0

rh(r)
sin(ru)

sinh(u/2)
dudr.
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Observe by the geometric series

1

sinh(u/2)
=

2

eu/2 − e−u/2
= 2e−u/2

∑
n≥0

e−nu

and so by two fold partial integration∫ ∞
0

sin(ru)

sinh(u/2)
du = 2

∑
n≥0

∫ ∞
0

e−(2n+1)u/2 sin(ru) du

= 2
∑
n≥0

4r

4r2 + (2n+ 1)2

=
∑
n∈Z

r

r2 + (n+ 1/2)2
.

Consider next the function f(x) = e−2πr|x|. As we calculate in Example B.41,

the Fourier transform of f is f̂(x) = 1
2π

2r
r2+x2 . We hence have

r

r2 + (n+ 1/2)2
= πf̂(n+ 1/2).

Denote by F (x) := f̂(x+ 1/2). Then, properties of the Fourier transform yield

F̂ (x) =

∫ ∞
−∞

f̂(t+ 1/2)e2πitx dt

=

∫ ∞
−∞

f̂(t)e2πi(t−1/2)x dt

= eπixf∧∧(x) = eπixf(−x)

So we derive, with the Poisson summation formula in the third line,∫ ∞
0

sin(ru)

sinh(u/2)
du =

∑
n∈Z

r

r2 + (n+ 1/2)2

=
∑
n∈Z

πf̂(n+ 1/2)

=
∑
n∈Z

πeπine−2πi|n|

= π
1− e−2πr

1 + e−2πr
= π tanh(πr).

Thus

U(1) =
1

2π

∫ ∞
0

rh(r) tanh(πr) dt =
1

4π

∫ ∞
−∞

rh(r) tanh(πr) dr.

Lemma 3.7. In the above setting,∑
γ 6=id

∫
D

U(cosh(d(z, γz))) dµH(z) =
∑

γ∈G(S)

`(δ)

e`(γ)/2 − e−`(γ)/2
g(`(γ)),
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where G(S) is the set of closed geodesics on S, `(γ) is the displacement length
of γ and δ is the corresponding prime element of γ such that γ = δn for n ≥ 1
with displacement length `(δ). Furthermore, g is as before the Abel transform of
k(arcch(t)) multiplied by

√
2

g(u) =
√

2

∫ ∞
x

kR(arcch(t))√
t− x

dt.

Proof. Since conjugacy classes of elements of Γ correspond precisely to the set
of closed geodesics, it suffices to consider the sum over some conjugacy class
CΓ(γ∗) for γ∗ ∈ Γ not the identity. Hence the claim is implied by∑

γ∈CΓ(γ∗)

∫
D

U(cosh(d(z, γz))) dµH(z) =
`(δ)

e
`(γ)

2 − e−
`(γ)

2

g(`(γ)).

Note that a term in the last sum looks like∫
D

U(cosh
(
d(z, γ−1

1 γ∗γ1z)
)
) dµH(z) =

∫
D

U(cosh(d(γ1z, γ
∗γ1z))) dµH(z)

=

∫
γ1D

U(cosh(d(z, γ∗z))) dµH(z).

Write
Dγ∗ =

⋃
γ∈CΓ(γ∗)

γD,

and so∑
γ∈CΓ(γ∗)

∫
D

U(cosh(d(z, γz))) dµH(z) =

∫
Dγ∗

U(cosh(d(z, γ∗z))) dµH(z).

Observe that Dγ∗ is a fundamental domain for the centralizer Γγ∗ . By Proposi-
tion 1.35 we get that Γγ∗ = {δn : n ∈ Z} for some δ ∈ Γ such that γ∗ = δm for
some integer m > 0. Up to conjugation, we can assume that δ corresponds to
an isometry given by z 7→ e`(δ)z for `(δ) the displacement length of δ. Note that
the displacement length `(γ) of γ is always given by m`(δ). Assume furthermore,
after possibly replacing δ by its inverse, that e`(δ) > 1. Thus a fundamental
domain for Γγ is given by the horizontal strip 1 < y < e`(δ). If we abbreviate
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2c := |e
m`(δ)

2 − e−
m`(δ)

2 |, we conclude∫
Dγ∗

U(cosh(d(z, γ∗z))) dµH(z) =

∫ e`(δ)

1

∫ ∞
−∞

U(cosh
(
d(z, em`(δ)z)

) dxdy
y2

=

∫ e`(δ)

1

∫ ∞
−∞

U(1 + 2( c|z|y )2)
dxdy

y2

=

(∫ e`(δ)

1

dy

y

)∫ ∞
−∞

U(1 + 2c2(x2 + 1)) dx

=
`(δ)

c

∫ ∞
c2

U(1 + 2u)√
u− c

du

=
`(δ)

2c
g(m`(δ))

=
`(δ)

e
`(γ)

2 − e−
`(γ)

2

g(`(γ)).

So Lemmas 3.6 and 3.7 plugged into equation (3.6) yield the Selberg trace
formula

∞∑
i=0

h(ri) =
Area(S)

4π

∫ ∞
−∞

rh(r) tanh(πr) dr +
∑

γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

g(`(γ)).

Up to now, the functions h and g are given by a point pair invariant smooth
function k of compact support. Since k is of compact support, so is g. In this
formulation of the Selberg trace formula, note that the function k does not
appear. Furthermore, the function g is a scalar multiple of the Abel transform of
kR. Since the Abel transform is invertible, we can change the view point slightly
by assuming the function g with compact support is given. Then we reconstruct
the function k by the inverse of the Abel transform and h is simply given as the
Fourier transform

∫∞
−∞ eirug(u) du of g.

The assumption that g is of compact support is quite strong. The next aim
is to extend the Selberg trace formula to a wider class of functions than those of
compact support. We call the functions we want to consider to be of rapid decay.

Definition 3.8. Let ε > 0 and consider

Bε := {z ∈ C : |Im(z)| < 1
2 + ε}

and assume that h : Bε → C is an even holomorphic function such that

h(r) = O(eδ|Re(r)|2) (3.7)

uniformly as |r| → ∞ for some δ > 0. Let g be the Fourier transform
1

2π

∫∞
−∞ eiruh(u) du of h. Then the pair (h, g) is called of rapid decay.

Note that if g is of compact support, then the pair (h, g) is of rapid decay.
Furthermore we note that for h a function satisfying the decay condition (3.7),
the Abel transform is still invertible with the same inversion formula, which
we leave as an exercise to check. We are now ready to state and prove a more
general version of the Selberg trace formula.
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Theorem 3.9. (Selberg trace formula for functions of rapid decay) Let S = Γ\H
be a compact hyperbolic surface and denote by G(S) the set of closed geodesics.
Let (h, g) be a pair of rapid decay. Then

∞∑
i=0

h(ri) =
Area(S)

4π

∫ ∞
−∞

rh(r) tanh(πr) dr +
∑

γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

g(`(γ)),

where the series on both sides are absolutely convergent.

To prove the theorem we first need a statement about sequences that behave
like the sequence of the ordered length of closed geodesics.

Lemma 3.10. Let 0 < a0 ≤ a1 ≤ a2 ≤ . . . be a sequence that converges to
infinity such that

NL(a) := #{n : 0 ≤ an ≤ L} = O(eL).

Then the sum
∞∑
n=0

an
e(1+ε)an − eεan

converges for all ε > 0.

Proof. First note that for large enough an, say an > L1, we have e(1+ε)an − eε ≥
e(1+ε/2)an and further for ε > 0 the function an

e(1+ε/2)an
is decreasing, for L > L2

large enough. Since an converges to infinity, there are only finitely many an
such that an ≤ L1 and an ≤ L2. Denote by L′ = max{L1, L2}. It thus suffices
to show that ∑

an≤L′

an
e(1+ε/2)an

converges. By assumption NL(a) ≤ ceL for some c > 0 and all L > 0. Since
an

e(1+ε/2)an
is decreasing for L > L′, we conclude

∑
an≤L′

an
e(1+ε/2)an

=

∞∑
L=L′

∑
L≤an≤L+1

an
e(1+ε/2)an

≤
∞∑

L=L′

∑
L≤an≤L+1

L

e(1+ε/2)L

=

∞∑
L=L′

L

e(1+ε/2)L
(NL+1(a)−NL(a))

≤
∞∑

L=L′

L

e(1+ε/2)L
NL+1(a)

≤
∞∑

L=L′

L

e(1+ε/2)L
ceL+1

= ce

∞∑
L=L′

L

eεL/2
<∞.
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We are now ready to prove the Selberg trace formula for functions of rapid
decay.

Proof. (of the Selberg trace formula for functions of rapid decay) We fist show
that both sides of the series are absolutely convergent. By assumption,

|h(r)| ≤ ce−δ|Re(r)|2

for some constant c > 0. Since
∑∞
i=0 λ

−2
i <∞ we conclude

∞∑
i=0

|h(ri)| <
∞∑
i=0

ce−δ|Re(ri)|2 <∞

and hence the left-hand side is absolutely convergent.
Let h be defined on Bε for ε > 0. By assumption g is given by the Fourier

transform g(u) = 1
2π

∫∞
−∞ e−iruh(r) dr. Let ε′ ∈ (0, ε) and assume without loss of

generality u < 0. Then the Cauchy integral theorem yields for E′ = R+ i( 1
2 + ε′)

that

g(u) =
1

2π

∫
E′
e−iruh(r) dr

and hence

|g(u)| ≤ ce−(1/2+ε′)|u|

2π

∫ ∞
−∞

e−δ|Re(r)|2 dr

≤ ce−(1/2+ε′)|u|

2π
.

Hence for the absolute values of the series on the right-hand side we have∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

|g(`(γ))| ≤ c

2π

∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

e−(1/2+ε′)`(γ)

=
c

2π

∑
γ∈G(S)

`(δ)

e(1+ε′)`(γ) − eε′`(γ)
.

In Lemma 1.34 we proved cL(S) = O(eL). Hence we can apply Lemma 3.10 to
conclude that the last sum is finite. So the sum on the right-hand side is also
absolutely convergent.

It remains to prove that the left-hand and right-hand side are equal. To
simplify the notation we abbreviate:

L (h) := −Area(S)

4π

∫ ∞
−∞

rh(r) tanh(πr) dr +

∞∑
i=0

h(ri) (3.8)

R(h) :=
∑

γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

g(`(γ)) (3.9)

The aim is to prove L (h) = R(g). We already proved this in the case where g
is of compact support. We proceed by approximating g by functions of compact
support.
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For this let ϕ : [0,∞)→ R be a smooth function such that

ϕ(x) =


1 for x ∈ [0, 1],

monotonly decreasing for x ∈ [1, 2],

0 for x ∈ [2,∞).

For m ∈ N we define

ϕm(u) :=

{
1 for |u| ≤ m,
ϕ(|u| −m) for |u| ≥ m.

We further denote for u ∈ R and r ∈ C,

gm(u) = g(u)ϕm(u), hm(r) =

∫ ∞
−∞

eirugm(u) du.

It follows that gm is an even function satisfying gm = g on [0,m]. We hence
have that

|R(g)−R(gm)| ≤
∑

m≤`(γ)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

|g(`(γ))|

+
∑

m≤`(γ)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

|gm(`(γ))|

Since |gm| ≤ |g| and R(g) converges absolutely, we conclude R(gm)→ R(g) as
g →∞.

Now we prove L (hm) → L (h) as m → ∞. For the first part of L this
follows from dominated convergence since |hm| ≤ |h| for all m. Hence it suffices
to show that

∞∑
i=0

hm(rn)→
∞∑
i=0

h(ri) as m→∞. (3.10)

To see this, note that for the fourth derivative we also have

g(4)
m (u) = O(e−(1/2+ε)|u|),

uniformly in m and r. Thus, by integrating by parts four times we get

hm(r) = O((1 + |r|)−4)

uniformly in m and r. We further have

∞∑
i=1

1

(1 + |r|)4
≤
∞∑
i=1

1

(|r|)4
<∞,

because
∑∞
i=1 λ

−2 < ∞. By pointwise convergence hm(r) → h(r) for m → ∞
for all r, we conclude by dominated convergence L (hm)→ L (h). By the case
of compact support we conclude L (h) = R(g).
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Remark. One can even prove the Selberg trace formula for pairs (h, g) where
h satisfies the decay property

h(r) = O(1 + |r|2)−1−ε.

Assuming the result of the next section, we can prove the Selberg trace formula
for such pairs (h, g) in a very similar way to the proof given above for functions
of rapid decay. More precisely, one can approximate such functions (g, h) with
functions of rapid decay. We refrain from making this more explicit, since for
our purposes the case of rapid decay is sufficient. To see a complete proof we
refer to [Bus92].

3.3 The Weyl Law

As a first application of the Selberg trace formula we prove the Weyl law.

Theorem 3.11. (The Weyl law) Let S = Γ\H be a compact hyperbolic surface
with eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ . . ., then

#{n : 0 ≤ λn ≤ T} ∼
area(S)

4π
T.

We first prove a lemma concerning sequences with some special properties.

Lemma 3.12. Let (an)∞n=0 be a sequence of positive numbers that converges to
infinity such that

∞∑
n=0

e−ran ∼ c

r

as r → 0. Then
#{n : 0 ≤ an ≤ T} ∼ c · T,

as T →∞.

Proof. For r > 0 consider the measure

µr :=

∞∑
n=0

rδran .

Note that this is a positive Radon measure on [0,∞) since an converges to
infinity. Denote

D := sup
0<r≤1

r

∞∑
n=0

e−ran .

We claim that for all T > 1 and all r > 0, we have µr([0, T ]) ≤ e ·D · T . To
prove the claim, observe that if an ≤ 1

r then equivalently −1 ≤ −ran and thus
e−1 ≤ e−ran . Hence for r ∈ (0, 1]

r ·#{n : an ≤ 1
r} · e

−1 ≤ r
∞∑
n=0

e−ran ≤ D.
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So we conclude

µr([0, T ]) = r ·#{n : an ≤ T
r } ≤ e ·D · T.

Hence {µr : 0 < r ≤ 1} is compact in the weak∗-topology. Thus we can choose
suitable rn → 0 such that the measures µrn converge in the weak∗-topology to a
measure µ as n→∞. Moreover, for all x > 0 we have∫ ∞

0

e−tx dµrn(t) = rn

∞∑
n=0

e−xrnan .

So, if rn → 0, we have

rn

∞∑
n=0

e−xrnan ∼ rn ·
c

xrn
=
c

x
.

Since the right hand side does not depend on rn, we conclude that the right
hand side converges to the left hand side as rn → 0. Thus, if rn → 0,∫ ∞

0

e−tx dµ(t) =
c

x
.

Denote next by

µ̂(s) :=

∫ ∞
0

e−st dµ(t)

the Fourier transform of the measure µ. This is a holomorphic function in
Re(s) > 0 and as shown above µ̂(s) = c

s on (0,∞). Thus µ̂(s) = c
s for all

Re(s) > 0. Therefore µ = c · dt, where dt is the Lebesgue measure. Hence

lim
n→∞

µrn = c · dt

in the weak∗-topology.

Proof. (of Theorem 3.11) We consider the admissible pair h(r) = e−δr
2

and

g(x) = (4πδ)−1/2e−
x2

4δ , where δ is a positive parameter. Then by the Selberg
trace formula,

∞∑
i=0

e−δr
2
i =

Area(S)

4π

∫ ∞
−∞

re−δr
2

tanh(πr) dr

+
1√
4πδ

∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

e−
`(γ)2

4δ . (3.11)

We will first estimate the second term on the right-hand side of (3.11) in order
to show that it goes to zero as δ → 0. Denote by `0 the length of the shortest
closed geodesic on S. First note that if δ < `0

8 , then

`(γ)2

4δ
≥ `(γ)2

8δ
+ `(γ) ≥ `0

8δ
+ `(γ).

Hence

1√
4πδ

∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

e−
`(γ)2

4δ ≤ 1√
4πδ

e−
`0
4δ

∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

e−`(γ).

(3.12)
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We show that the sum ∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

e−`(γ) (3.13)

is finite. Observe∑
γ∈G(S)

`(δ)

e
`(γ)

2 − e−
`(γ)

2

e−`(γ) ≤
∑

γ∈G(S)

`(γ)

e
`(γ)

2 − e−
`(γ)

2

e−`(γ).

By Lemma 1.34 we have cS(L) = O(eL). Hence by Lemma 3.10 for ε = 1
2 we

conclude that the sum (3.13) is finite. As δ → 0 the second term of the right
hand side of (3.11) converges to zero by (3.12).

Integrating by parts gives∫ ∞
−∞

re−δr
2

tanh(πr) dr =
1

δ

∫ ∞
−∞

e−δr
2 π

2 cosh(πr)
2 .

By considering the Taylor expansion of the exponential function, we get∫ ∞
−∞

∞∑
n=0

(−δr2)n

n!

π

2 cosh(πr)
2 =

∞∑
n=0

∫ ∞
−∞

(−δr2)n

n!

π

2 cosh(πr)
2

=

∫ ∞
−∞

π

2 cosh(πr)
2 dr

+

∞∑
i=1

∫ ∞
−∞

(−δr2)n

n!

π

2 cosh(πr)
2 dr

= 1− δ
∫ ∞
−∞

∞∑
i=1

(−δ)n−1

n!
r2n π

2 cosh(πr)
2 dr.

We take a closer look at the second term in the last line. We have

0 ≤
∫ ∞
−∞

∞∑
i=1

(−δ)n−1

n!
r2n π

2 cosh(πr)
2 dt

≤
∫ ∞
−∞

r2
∞∑
i=1

(−δ)n−1

(n− 1)!
r2(n−1) π

2 cosh(πr)
2 dr

=

∫ ∞
−∞

r2e−δr
2 π

2 cosh(πr)
2 dr

≤ 1

Hence ∫ ∞
−∞

e−δr
2 π

2 cosh(πr)
2 dr = 1 +O(δ)

Thus one obtains ∫ ∞
−∞

re−δr
2

tanh(πr) dr =
1

δ
(1 +O(1))
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So we proved
∞∑
j=0

e−δr
2
i =

area(S)

4πδ
+

area(S)

4π
O(1)

as δ → 0 and hence
∞∑
j=0

e−δr
2
i ∼ area(S)

4πδ

as δ → 0. Thus the Weyl law follows from Lemma 3.10.

3.4 The Prime Geodesic Theorem

We follow mostly [Ber11]. As in the previous sections, let S = Γ\H a compact
hyperbolic surface. Denote further by 0 = λ0 < λ1 ≤ λ2 ≤ . . . the eigenvalues of
the Laplacian. For λj ≤ 1

4 we write

sj :=
1

2
+

√
1

4
− λj .

As in section 1.2 write cS(L) for the number of closed geodesics of length less
that L. In analogy to the prime number counting function, we will also be
interested in the function

πS(L) := #{prime geodesics on S with length less than log(L)}.

We also use li for the logarithmic integral

li(L) =

∫ L

2

dt

log(t)
.

We are now finally able to state and prove the prime geodesic theorem.

Theorem 3.13. (Prime geodesic theorem) As L tends to infinity,

πS(L) = li(L) +
∑

3/4<sj<1

li(Lsj ) +O

(
L3/4

log(L)

)
.

To prove the prime geodesic theorem, we consider the following function

H(T ) :=
∑

`(γ)≤T

`(δ)

e`(γ)/2 − e`(γ)/2
2 cosh

(
1

2
`(γ)

)
=

∑
`(γ)≤T

`(δ)(1 + e−`(γ))(1− e−`(γ))−1

where we again denote by δ the unique primitive closed geodesic associated to γ.
Further, denote

ET (α) :=
eTα

α
.

We first study the asymptotic behavior of H(T ) with the help of the Selberg
trace formula and then prove the prime geodesic theorem.
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Lemma 3.14. As T tends to infinity,

H(T ) = ET (1) +
∑

3/4<sj<1

ET (sj) +O(e3T/4).

Proof. Denote by χ[−T,T ] the characteristic function of [−T, T ] in R and by

gT (x) = 2 cosh(x/2)χ[−T,T ](x).

Furthermore denote by ϕ an even nonnegative smooth function with support
contained in [−1, 1] and such that

∫∞
−∞ ϕ(x) = 1. Given a real number ε > 0,

write

ϕε(x) :=
ϕ(x/ε)

ε
.

Hence ϕε is supported in [−ε, ε] and has total mass 1. Finally define

gεT = (gT ∗ ϕε)(x) = 2

∫ ∞
−∞

cosh((x− y)/2)χ[−T,T ](x− y)ϕε(y) dy.

For any ε, T > 0 the function gεT is smooth and has compact support. We denote
by hεT the Fourier transform of gεT .

In this part of the thesis we use the convention that f̂(r) =
∫∞
−∞ e−irxf(x) dx

and we have f̂1 ∗ f2 = f̂1f̂2 and 2πf∧∧ = f if f is even. Observe, for S(w) :=
2w−1 sinh(Tw) with the convention S(0) = 2T ,

ĝT (r) = 2

∫ T

−T
e−irx cosh(x/2) dx

=

∫ T

−T
e(1/2−ir)x + e−(1/2+ir)xdx

= S(1/2 + ir) + S(1/2− ir).

Thus
hεT = (S(1/2 + ir) + S(1/2− ir))ϕ̂ε(r).

We next define the function Hε as follows:

Hε(T ) :=
∑

γ∈G(S)

`(δ)

e`(γ)/2 − e`(γ)/2
gεT (`(γ)).

Note that since the support of ϕε is contained in [−ε, ε] we only need to take
the sum over all the geodesics with length `(γ) ≤ T + ε. Thus

Hε(T ) :=
∑

`(γ)≤T+ε

`(δ)

e`(γ)/2 − e`(γ)/2
gεT (`(γ)). (3.14)

The Selberg trace formula implies

Hε(T ) =

∞∑
i=0

hεT (ri)−
area(S)

4π

∫ ∞
−∞

rhεT (r) tanh(πr) dr

=
∑
λi<

1
4

hεT (ri) +
∑
λi≥ 1

4

hεT (ri)−
area(S)

4π

∫ ∞
−∞

rhεT (r) tanh(πr) dr.
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For the first part of this sum, note that the values rj are purely imaginary since

r2
i + 1/4 = λi. So if λi <

1
4 , we have ri = i

√
1
4 − λi and hence fo sj = 1

2 − iri
we have si ∈ ( 1

2 , 1]. Furthermore, observe by inserting the Taylor expansion of
ex that ϕ̂ε(x) = ϕ̂(εx) = 1 +O(εx) as ε→ 0. Hence for λi <

1
4

hεT (ri) = (S(si + 2iri) + S(si))ϕ̂ε(ri)

= (S(si − 2
√

1
4 − λi) + S(si))(1 +O(εri))

= ET (si) +O(εesjT ).

It will later turn out to be useful to only consider the terms 3/4 < sj < 1. We
conclude that∑

λi<
1
4

hεT (ri) = ET (1) +
∑

3/4<sj<1

(ET (sj) +O(εesjT )).

We next write∑
λi≥1/4

hεT (ri)−
area(S)

4π

∫ ∞
−∞

rhεT (r) tanh(πr) dr =

∫ ∞
0

hεT (r)dm(r)

for the measure dm(r) =
∑
ri>0 δri −

area(S)
2π r tanh(πr)dr, where δri is the Dirac-

measure at ri. Since ϕ̂(ρ) = O((1 + |ρ|−2)) and |ĝT (r)| = O((1 + r)−1eT/2) we
conclude

|hεT (r)| ≤ ceT/2(1 + r)−1(1 + εr)−2

for c > 0 a constant. Thus∣∣∣∣ ∫ ∞
0

hεT (t) dm(r)

∣∣∣∣ ≤ c · eT/2 ∫ ∞
0

(1 + r)−1(1 + εr)−2 |dm(r)|.

To bound this last integral, we split up
∫∞

0
=
∫ 1/ε

0
+
∫∞

1/ε
and integrate by parts.

By the Weyl law µ(r) = O(r2), hence the integral is bounded by O(ε−1eT/2).
Note that since

gεT−ε(x) ≤ 2 cosh(x/2)χ[−T,T ] ≤ gεT+ε(x) (3.15)

for all x > 0, we have

Hε(T − ε) ≤ H(T ) ≤ Hε(T + ε) (3.16)

for all T and ε > 0.
We consider now the particular case ε = e−T/4. Then

Hε(T ) = ET (1) +
∑

3/4<sj<1

ET (sj) +O(e3T/4). (3.17)

Furthermore for a fixed α ∈ (3/4, 1] we have

ET±ε(α) = α−1e(T±ε)α = α−1eTα(1 +O(ε)) = ET (α) +O(e3T/4).

By combining (3.16) and (3.17) we derive our claim

H(T ) = ET (1) +
∑

3/4<sj<1

ET (sj) +O(e3T/4).



3. The Selberg Trace Formula and Counting of Closed Geodesics 68

In addition, we will need the following statement concerning sequences.

Lemma 3.15. Let 0 < a0 ≤ a1 ≤ a2 ≤ . . . be a sequence that converges to
infinity. Then

lim
n→∞

∑n
i=0 aie

−ai∑n
i=0 ai

= 0.

Proof. We first claim that

lim
n→∞

∑n
i=0 a

−1
i∑n

i=0 ai
= 0.

To prove the claim let ε > 0. Then choose n0 ≥ 1 such that 1
n0
≤ ε. Hence

lim
n→∞

∑n
i=0 a

−1
i∑n

i=0 ai
= lim
n→∞

∑
an≤n0

a−1
i∑n

i=0 ai
+

∑
an≥n0

a−1
i∑n

i=0 ai

≤ lim
n→∞

∑
an≤n0

a−1
i∑n

i=0 ai
+

∑
an≥n0

ε∑n
i=0 ai

≤ ε

since an →∞. The statement follows since for an large enough, we have that
a2
n ≤ ean .

Combining all this we can prove the prime geodesic theorem.

Proof. (of Theorem 3.13) Observe that

H(T ) =
∑

`(γ)≤T

`(δ)(1 + e−`(γ))(1 + e−`(γ))

=
∑

`(γ)≤T

`(δ)(1 + 2e−`(γ) + e−2`(γ))

=
∑

`(γ)≤T

`(δ) +O

 ∑
`(γ)≤T

`(δ)e−`(γ)

 .

Next, consider the function

ψ(T ) :=
∑

`(γ)≤T

`(δ).

By Lemma 3.14 there is no upper bound on `(δ) since otherwise the growth
rate would be polynomial. So we can view `(δ) as a sequence tending to infinity.
Thus by Lemma 3.15 we have that

H(T ) = ψ(T ) + o(ψ(T )).

Hence H(T ) and ψ(T ) have the same asymptotic expansion and so we deduce

ψ(T ) = ET (1) +
∑

3/4<sj<1

ET (sj) +O(e3T/4).
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We next investigate the function

θ(T ) =
∑

`(γ)≤T
γ prime

`(γ).

Denote by `0 the length of the shortest closed geodesic on S. As soon as k > T/`0,
we have

ψ(T ) = θ(T ) + θ(T/2) + . . .+ θ(T/k).

If we denote by
m(T ) = int (T/`0) ,

the integer part of T
`0

, we can also write

ψ(T ) = θ(T ) +

m(T )∑
m=2

θ (T/m)

and so we can bound

ψ(T ) ≤ θ(T ) +m(T )θ (T/2) .

Note further

m(T )θ(T/2) ≤ t

`0
ψ(T/2) = O(teT/2).

Thus we derive that

θ(T ) = ET (1) +
∑

3/4<sj<1

ET (sj) +O(e3T/4).

Since πS(L) =
∫ log(L)

δ
T−1 dθ(T ) if δ < `0, we conclude

πS(L) = li(L) +
∑

3/4<sj<1

li(Lsj ) +O

(
L3/4

log(L)

)
.

Corollary 3.16. For the number of closed geodesics of length less than L,

cS(L) ∼ eL

L

as L tends to infinity.

Proof. We show the equivalent statement

cS(log(L)) ∼ L

log(L)
,

as L tends to infinity. As before, for k > T/`0 where `0 is the length of the
shortest closed geodesic on S, we have

cS(log(L)) = πS(L) + πS(L/2) + . . .+ πS(L/k)

and hence cS(log(L)) and πS(L) have the same asymptotic expansion. The
statement now follows since

li(L) ∼ L

log(L)
,

as L→∞.
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A Topological Groups

A.1 Topological Groups, Haar Measures and Discrete Sub-
groups

Definition A.1. A group G endowed with a topology is called a topological
group if the product map G×G→ G is continuous with respect to the product
topology and the inverse map G→ G is continuous too.

Definition A.2. Let G be a topological group and let X be a topological space.
A continuous group action of G on X is a continuous map

· : G×X → X, (g, x) 7→ g ◦ x

with g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X and e ◦ x = x for all x ∈ X,
where e ∈ G is the identity element.

Definition A.3. Let G be a topological group. A left Haar measure is a Borel
measure µG that assigns a finite number to every compact set and a number
bigger than zero to every open set and that satisfies for every measurable function
f : G→ C and g ∈ G,∫

G

f(gx) dµG(x) =

∫
G

f(x) dµG(x).

We call a Borel measure µ a right Haar measure if it satisfies the first two
properties of a left Haar measure, but satisfies for every measurable function
f : G→ C and g ∈ G,∫

G

f(xg) dµG(x) =

∫
G

f(x) dµG(x).

Definition A.4. We call a topological group G unimodular if every left Haar
measure is also a right Haar measure.

Theorem A.5. (See [IZ17] for a discussion or Chapter 10 of [EW17]) On every
locally compact Hausdorff group, there exists a left (or right) Haar measure which
is unique up to scalar multiples.

Definition A.6. A topological group G is called discrete if the topology on G
is the discrete topology, i.e. every set is open and closed.

Definition A.7. A subgroup H of a topolocial group G is called discrete if the
induced topology on H is the discrete topology.

Lemma A.8. A subgroup Γ of a locally compact topological group G is discrete
if and only if there does not exist a sequence of elements γn ∈ Γ with γn 6= e
such that γn → e as n→∞.

Proof. Assume that Γ is a discrete subgroup. Then, if such a sequence converges
to e, for all n large enough γn = e, contradicting the assumption. Contrarily
assume that Γ is not discrete. Then such a sequence exists.
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A.2 Lie Groups and Riemannian Symmetric Pairs

Definition A.9. A topological group G with the structure of a smooth manifold
such that multiplication G×G→ G and inversion G→ G are smooth is called
a Lie group.

Definition A.10. Let G be a Lie group with identity e ∈ G. The tangent space
at the identity

g := TeG

is called the Lie algebra of G.

Definition A.11. Let G be a Lie group with Lie algebra g. Denote by int(g) :
G→ G, x 7→ gxg−1 and note that int(g) is a smooth automorphism. The map

Ad : G→ GL(g)

given by
Ad(g) := Deint(g) : g→ g,

where De denotes the derivative at e, is called the adjoint representation.

Proposition A.12. The adjoint representation is analytic.

Proof. See [Hel01] page 127.

Definition A.13. Let G be a connected Lie group and let K ≤ G be a closed
subgroup of G. Then (G,K) is called a Riemannian symmetric pair if

(i) AdG(K) ≤ GL(g) is compact, and

(ii) there exists an involution σ : G → G with (Gσ)◦ ⊂ K ⊂ Gσ, where an
involution satisfies σ2 = id and we denote by

Gσ := {g ∈ G : mσ(g) = g}

and by (Gσ)◦ the connected component of Gσ at the identity.

Example A.14. Let G = SL2(R) and K = SO2(R) and σ : G→ G, g 7→ (g−1)T .
We then have

Gσ = {g ∈ SL2(R) : gT g = Id} = SO2(R) = K.

Since K is compact and the adjoint representation is analytic and hence con-
tinuous, we conclude that AdG(K) ≤ GL(g) is compact. Hence (G,K) is a
Riemannian symmetric pair.
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B Functional Analysis

Everything in this appendix can be found either in the book on Functional
Analysis by Einsiedler and Ward [EW17] or in the one of Zimmer [Zim90]. We
refrain from giving proofs, except in a few selected cases.

B.1 Banach Spaces

Definition B.1. A normed vector space (V, || · ||) is a Banach space if V is
complete with respect to the norm || · ||.

Definition B.2. A Banach space (V, || · ||) is called separable if there is a
countable dense subset.

Theorem B.3. (Stone-Weierstrass, Theorem 2.40 of [EW17], ) Let X be a
compact metric space and A ⊂ C(X) a linear subspace of the space of continuous
functions from X to C. Suppose further that

(i) A is a subalgebra i.e. closed under multiplication.

(ii) A contains the constant functions.

(iii) A separates point, i.e. for x, y ∈ X, there is some f ∈ A such that
f(x) 6= f(y).

(iv) f ∈ A implies f ∈ A .

Then A is dense in C(X).

Proposition B.4. (Proposition 2.51 of [EW17]) Let X be a locally compact
σ-compact metric space equipped with a locally finite measure µ on the Borel
σ-algebra. Then for any 1 ≤ p <∞, Cc(C) is dense in Lpµ(X).

Definition B.5. Let L : V1 → V2 be a linear map also called a linear operator
between two normed vector spaces (V1, || · ||V1) and (V2, || · ||V2). We define the
operator norm of L to be

||L||op = supv∈V1,||v||V1
≤1||Lv||V2 .

We denote by B(V1, V2) the space of linear operators with bounded operator
norm. We also write B(V1) for the space B(V1, V1).

Lemma B.6. (Lemma 2.52 of [EW17]) A linear map between two normed
vector spaces is continuous if and only if the operator norm is finite.

Lemma B.7. For V1 and V2 Banach spaces, the space B(V1, V2) together with
the operator norm forms a Banach space.

Definition B.8. Let A be a Banach space and assume that there is a multipli-
cation A ×A → A , (x, y) 7→ xy such that for all x, y ∈ A ,

||xy|| ≤ ||x|| ||y||.

Then A is called a Banach algebra. A Banach algebra A is called commutative
if xy = yx for all x, y ∈ A .
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B.2 Hilbert Spaces

Definition B.9. A pre-Hilbert space is a vector space V over R (or C) with an
inner product 〈·, ·〉 : V × V → R (or C) such that

(i) 〈v, v〉 > 0 for all v ∈ V \{0}.

(ii) 〈v, w〉 = 〈v, w〉 for all v, w ∈ V .

(iii) The map g 7→ πgv is continuous for any fixed v ∈ V .

Proposition B.10. (Cauchy-Schwarz, Proposition 3.2 of [EW17]) Let (V, 〈·, ·〉)
be a pre-Hilbert space. Then we have the Cauchy-Schwarz inequality,

|〈v, w〉| ≤ ||v|| ||w||.

Definition B.11. A Hilbert space is a pre-Hilbert space (V, 〈·, ·〉) such that the
induced norm

||v||H =
√
〈v, v〉

is complete.

Definition B.12. Let H be a Hilbert space and A ⊂H be any subset. Then
the orthogonal complement of A is defined to be

A⊥ = {h ∈H | 〈h, a〉 = 0 for all a ∈ A}.

Proposition B.13. (Corollary 3.17 of [EW17]) Let H be a Hilbert space and
let Y ⊂H be a closed subspace. Then Y ⊥ is a closed subspace with

H = Y ⊕ Y ⊥.

Proposition B.14. (Corollary 3.18 of [EW17]) For a closed subspace Y of a
Hilbert space H , the orthogonal projection onto Y , defined by

PY H −→ Y, h 7−→ y,

where y is the unique element of Y such that h− y ∈ Y ⊥, is a bounded linear
operator with ||PY || ≤ 1 satisfying and characterized by 〈h, y〉 = 〈PY h, y〉 for all
h ∈H and y ∈ Y .

Definition B.15. We denote V ∗ = B(V,R) or if V is a real vector space and
V ∗ = B(V,C) is V is a complex vector space. We call V ∗ the dual space of V .
Note that V ∗ forms a Banach space equipped with the operator norm.

Theorem B.16. (Fréchet-Riesz representation, Corollary 3.19 of [EW17])
For a Hilbert space H the map sending h ∈ H to φ(h) ∈ H ∗ defined by
φ(h)(x) = 〈x, h〉 is a linear (respectively semi-linear in the complex case) iso-
metric isomorphism between H and its dual H ∗

Definition B.17. Let H1 and H2 be Hilbert spaces and let B : H1 →H2 be
a bounded operator. Then by the Fréchet-Riesz representation Theorem there
exists a unique bounded operator B∗ : H2 →H1 such that

〈Av1, v2〉H1 = 〈v1, Av2〉H2

called the adjoint of B with ||B∗||op = ||B||op.
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Lemma B.18. (Lax-Milgram Lemma, Exercise 3.21 of [EW17]) Let H be a
Hilbert space and let B : H ×H → R (or C) is bilinear (or sesquilinear in the
complex case) such that for all x, y ∈H ,

|B(x, y)| ≤M · ||x|| · ||y||

for M > 0. Then there exists a unique linear operator T : H →H with

B(x, y) = 〈Tx, y〉

for which ||T ||op ≤M .

Proof. Fix x ∈ H , then B(x, ·) : H → R (or C) is a linear (or sesquilinear)
form. Hence by the Fréchet-Riesz representation theorem there is a unique
x∗ ∈H such that

B(x, y) = 〈x∗, y〉.

So denote by T : H → H the map that sends x to x∗. Note that this is not
the trivial operator and hence ||T ||op > 0. This map is a linear operator and we
have by assumption

||T ||2op = supx∈H ,||x||≤1〈Tx, Tx〉
= supx∈H ,||x||≤1B(Tx, x)

≤ supx∈H ,||x||≤1M · ||Tx|| · ||x||
≤ ||T ||op · supx∈H ,||x||≤1M · ||x||
≤ ||T ||op ·M.

Hence ||T ||op ≤M .

Definition B.19. A finite or countable list (vn) in a Hilbert space is called

orthonormal if 〈xm, xn〉 = δmn =

{
1 if m = n,

0 if m 6= n.

Definition B.20. Let Hn be a finite or countable list of Hilbert spaces. Then
we define the direct Hilber space sum as⊕

n

Hn := {(vn) : vn ∈Hn and
∑
n

||vn||2 <∞}.

This space forms a Hilbert space together with the inner product defined by

〈(vn), (wn)〉⊕ =
∑
n

〈vn, wn〉Hn
.

Definition B.21. Let H be a Hilbert space. Then the closed linear hull of an
orthonormal list (xn) is given by

〈{xn}〉 :=

{∑
n

anxn : the sum converges in H

}

:=

{∑
n

anxn :
∑
n

|an|2 <∞

}
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Definition B.22. A list of orthonormal vectors in a Hilbert space is said to be
complete or to be an orthonormal basis if its closed linear hull is H .

Definition B.23. An operator between Hilbert spaces U : H1 →H2 is called
unitary if

〈Uv1, Uv2〉H2
= 〈v1, v2〉H2

for all v1, v2 ∈H .

Definition B.24. A unitary representation of a topological group on a Hilbert
space H is a map π : G→ B(H ) written as π(g) such that

(i) π(e) is the identity operator.

(ii) π(g1)π(g2) = π(g1) ◦ π(g2) = π(g1g2) for all g1, g2 ∈ G.

(iii) π(g) : H →H is a unitary operator.

(iv) g 7→ πgv is continuous for all v ∈H .

Consider now a unimodular locally compact metric group G with Haar
measure µ. The regular right representation is defined on L2

µ(G) for g ∈ G,

(π(g)f)(x) = f(xg).

Proposition B.25. The regular right representation is a unitary representation.

Proof. Property (i) is clear. For (ii) consider g1, g2 ∈ G, then

(π(g1)π(g2)f)(x) = (π(g1)f)(xg2) = f(xg1g2) = (π(g1g2)f)(x).

To see (iii) let g ∈ G and f1, f2 ∈ L2
µ(G),

〈π(g)f1, π(g)f2〉 =

∫
G

f1(xg)f2(xg) dµ(x)

=

∫
G

f1(x)f2(x) dµ(x) = 〈f1, f2〉,

where we used right invariance of the Haar measure for the second equal sign.
Lastly, to see (iv) it suffices to consider functions of compact support, since

they form a dense subset in L2
µ(G) by Proposition B.4. So let f ∈ Cc(G). Then

f is uniformly continuous. Hence there is some δ > 0 such that

d(g, e) < δ ⇒ |f(xg)− f(x)| < ε√
µ(supp(f))

.

Thus

||π(g)f − f ||22 =

∫
G

|f(xg)− f(x)|2 dµ(g)

≤
∫
K

ε2

µ(K)
dµ(g) = ε2.

Hence if g → 0, then π(g)f → 0. Since we consider a group action, this implies
continuity.
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B.3 Compact, Self-Adjoint and Hilbert-Schmidt Opera-
tors

Definition B.26. For B1 and B2 are Banach spaces, we call a bounded linear
operator T : B1 → B2 compact if

T (UB1
1 ) ⊂ B2

is compact in B2, where UB1
1 denotes the unit ball in B1.

Definition B.27. For H be a Hilbert space with orthonormal basis e0, e1, e2, . . ..
An operator T ∈ B(H ) is called Hilbert-Schmidt if∑

i,j

|〈Tej , ei〉|2 <∞

Theorem B.28. (Theorem 3.1.5 of [Zim90]) Let X be a compact metric space
with a finite measure µ. If K ∈ C(X ×X), then the integral operator

(TKf)(x) =

∫
X

K(x, y)f(y) dµ(y)

defines a compact operator TK : L2(X)→ L2(X).

Theorem B.29. (Proposition 3.1.12 of [Zim90]) Let (X,µ) be a measure space
and K ∈ L2

µ(X ×X), then the integral operator

(TKf)(x) =

∫
X

K(x, y)f(y) dµ(y)

defines a Hilbert-Schmidt operator TK : L2(X)→ L2(X).

Definition B.30. A bounded operator B : H →H on a Hilbert space H is
called self-adjoint if B∗ = B.

Theorem B.31. (Spectral Theorem for compact self-adjoint operators, Theorem
6.27 of [Zim90]) Let H be a separable and infinite-dimensional Hilbert space
and let B be a compact, self-adjoint and bounded operator. Then there is an
orthonormal basis (vn) consisting of eigenvectors for B with real eigenvalues
λn. Furthermore for each eigenvalue λn 6= 0, the eigenspace of λn is finite
dimensional and we have

H =
⊕
n

Eλn ,

there the direct sum is taken over all eigenvalues.

Definition B.32. Let (X,B, µ) be a measure space, H = L2
µ(X) and let

g : X → C be a measurable function. Denote by Mg the multiplication operator
given by

Mg : H →H , f 7→ gf.

Theorem B.33. (Spectral Theorem for self-adjoint operators, Theorem 12.55
of [EW17]) Let H be a separable complex Hilbert space and T ∈ B(H ) a
continuous self-adjoint operator. There there exists a finite measure space (X,µ),
a unitary isomorphism

φ : H → L2
µ(X)
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and a bounded measurable function g : X → R such that

Mg ◦ φ = φ ◦ T,

where Mg is the multiplication operator given by Mg : L2
µ(X)→ L2

µ(X), f 7→ gf .

B.4 Trace Class Operators

Definition B.34. Let H be a Hilbert space. A linear operator A : H →H
is called trace-class if its trace-class norm

||A||tc = sup
(vn),(wn)

N∑
n=1

|〈Avn, wn〉|

is finite, where the supremum is taken over all integers N ≥ 0 and over any two
finite lists of orthonormal vectors (v1, . . . , vN ) and (w1, . . . , wM ) of the same
length N .

We denote by TC(H ) the space of trace-class operators. Note that every
trace class operator is a bounded operator and hence TC(H ) ⊂ B(H ).

Theorem B.35. (Theorem 6.39 of [EW17]) Let H be a separable complex
Hilbert space. Then there exists a linear functional tr : TC(H ) → C with the
following properties:

1. (i) |tr(A)| ≤ ||A||tc,

2. (ii) tr(A) = tr(U−1AU), and

3. (iii) tr(AB) = tr(BA)

for all A ∈ TC(H ), B ∈ B(H ) and unitary U ∈ B(H ). Moreover,

1. (iv) tr(A) =
∑∞
n=1〈Avn, vn〉

for any A ∈ TC(H ) and orthonormal basis (vn) of H .

Proposition B.36. (Proposition 6.42 of [EW17]) Every trace-class operator
on a complex Hilbert space H is compact.

Proposition B.37. (Proposition 6.44 of [EW17]) Let H be a complex Hilbert
space and A a bounded operator on H . If A is self-adjoint and positive and (vn)
is an orthonormal basis of H , then ||A||tc =

∑∞
n=1〈Avn, vn〉.

Theorem B.38. (Corollary 6.46 of [EW17]) Let H be a separable complex
Hilbert space. A self-adjoint bounded operator A on H is trace-class if and only
if it is compact and its eigenvalues λn satisfy

∞∑
n=1

|λn| = ||A||tc <∞.

If A is indeed trace-class, then

tr(A) =

∞∑
n=1

λn

and the sum converges absolutely.
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Proposition B.39. (Proposition 6.48 of [EW17]) Let X be a compact metric
space, let µ be a finite measure on X and let k ∈ C(X × X) be a continuous
kernel with the property that the associated Hilbert Schmidt operator K defined
by

K(f)(x) =

∫
X

k(x, y)f(y) dµ(y)

is trace-class. Then

tr(K) =

∫
K

k(x, x) dµ(x).

B.5 Fourier Transform and Schwartz Space

Definition B.40. Let f : R→ C be a function. We define the Fourier transform
as

f̂(t) =

∫ ∞
−∞

f(x)e2πixt dx

and the inverse of the Fourier transform as

f̌(t) =

∫ ∞
−∞

f(x)e−2πixt dx.

Example B.41. Consider f(x) = e−2πr|x| for r ≥ 0 a positive parameter. Then

f̂(x) =

∫ ∞
−∞

f(t)e2πitx dt

=

∫ ∞
0

e2πt(ix−r)dt+

∫ ∞
−∞

e2πt(ix+r) dt

=
1

2π

[
1

ix− r
et(2πix−r)

]∞
0

+
1

2π

[
1

ix+ r
et(2πix+r)

]0

−∞

=
1

2π

(
1

ix+ r
− 1

ix− r

)
=

1

2π

r

x2 + r2
.

Proposition B.42. (Proposition 9.34 of [EW17]) The Fourier transform maps
L1(R) into C0(R).

Theorem B.43. (Theorem 9.36 of [EW17]) If f ∈ L1(R) has f̂ ∈ L1(R), then
f agrees almost everywhere with the continuous function (f)∧∨ ∈ Cc(R).

Corollary B.44. If f, f̂ ∈ L1(R) then f∧∧(x) = f(−x) almost everywhere.

Proof. We have almost everywhere

f∧∧(x) =

∫ ∞
−∞

f̂(t)e2πitx dt =

∫ ∞
−∞

f̂(t)e2πitx dt = f∧∨(−x) = f(−x).
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Theorem B.45. If f ∈ L1(R) ∩L2(R), then f̂ lies in L2(R) with ||f̂ ||2 = ||f ||2
and the map f 7→ f̂ extends continuously to a unitary operator on L2(R).

Definition B.46. The Schwartz Space on R is defined by

S (R) := {f : R→ C | f is smooth and ||xα∂βf ||∞ <∞ for all α, β ∈ N0}.

Theorem B.47. The Fourier transform maps S (R) to itself, is a continuous
operator and has the Fourier back transform as inverse.

Theorem B.48. (Poisson summation formula) For f ∈ S (R) we have∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).
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