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Expander Graphs

G = (V ,E ) finite graph.
G is k-regular, i.e. for all v ∈ V ,

deg(v) = |{w ∈ V : w ∼ v}| = k .

For f ∈ L2(V ), define

4f (v) =
1

k

∑
w∼v

f (v)− f (w).

4 self-adjoint and has eigenvalues

λ1 = 0 ≤ λ2 ≤ . . . ≤ λn ≤ 2.

Definition

G is ε-expander for ε > 0 if

λ2(G ) ≥ ε.
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Expander Graphs

λ2(Cn) ≈ 4π2

n2
λ2(Kn) ≈ 1 λ2(G ) =

2

3
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Expander Graphs

λ2(G ) > 0 if and only if G connected.

Cheeger constant:

h(G ) = min
A⊂V

0<|A|≤ |V |
2

|E (A,Ac)|
|A|

.

Cheeger-Buser Inequality:

λ2(G )

2k
≤ h(G ) ≤

√
2λ2(G )

k
.
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Expander Graphs

If G is a ε-expander, then:

diam(G ) ≤ Cε log |G |.

||µ(i)v0 − 1
|V | ||2 ≤ 2(1− ε)i .
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Expander Graphs

Definition

A sequence of k-regular graphs Gn is an ε-expander family if for
all n,

λ2(Gn) ≥ ε.

Notice Gn has k|Gn|/2 many edges.
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Expander Graphs

Definition (Cayley Graph)

Let G be a finite group and S ⊂ G\{e} symmetric. Then the
Cayley graph Cay(G , S) has vertex set G and

E = {{g , gs} : g ∈ G , s ∈ S}.

G = Z/nZ,S = {±1}. |G | = n,S = G\{e}
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Margulis Expander Construction, 1973

Let S ⊂ SL3(Z) be a finite symmetric generating set. Then

Cay(SL3(Z/nZ), πn(S))

for n ≥ 1 is an expander family.

Here

πn : SL3(Z)→ SL3(Z/nZ), g 7→ (g mod n).

The proof uses that SL3(Z) has property (T).
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Expander Graphs
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Expander Graphs

Denote Γn = {g ∈ SL2(Z) : g = Id2 mod n}. Consider
Xn = H/Γn.

Selberg’s Theorem: λ2(Xp) ≥ 3/16.

Theorem

Let S ⊂ SL2(Z) be a finite symmetric generating set. Then

Cay(SL2(Fp), πp(S))

as p ranges among the primes is an expander family.
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Expander Graphs

We can bound

λ2(G ) ≤ 1− 2
√
k − 1

k
+ o|G |(1).

Definition

A graph G is called Ramanujan if

λ2(G ) ≥ 1− 2
√
k − 1

k
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Expander Graphs

Theorem

For any γ > 0,

P

[
λ2(G ) ≥

(
1− 2

√
k − 1

k
− γ
)]
→ 1.

Theorem (Lubotzky-Phillips-Sarnak, Margulis, 1988)

For any prime p, a family of p-regular Ramanujan graphs exist.
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Expander Graphs

We return to SLn(Z). Lubotzky-Problem:

S =

{(
1 ±3
0 1

)
,

(
1 0
±3 1

)}

Theorem (Strong Approximation)

Assume g , h ∈ SL2(Z) generate a free group and denote
S = {g , h, g−1, h−1}. Then πp(S) generates SL2(Fp) for almost
all primes p.

Do we have expansion?
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Expander Graphs

Theorem (Bourgain-Gamburd, 2008)

Assume g , h ∈ SL2(Z) generate a free group and denote
S = {g , h, g−1, h−1}. Then Cay(SL2(Fp), πp(S)) as p ranges over
the primes is an expander family.

Corollary (Bourgain-Gamburd, 2008)

Let S ⊂ SL2(Z) be a finite symmetric subset. Then exactly one of
the following holds:

1 πp(S) does not generate SL2(Fp) for large enough primes p.

2 For primes p, Cay(SL2(Fp), πp(S)) is an expander family.
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Expander Graphs

Sum-Product Theorem (Erdös-Szemeredi 1983)

There is C , ε > 0 such that for any finite A ⊂ R,

max(|A + A|, |A · A|) ≥ C |A|1+ε.

Theorem (Bourgain-Katz-Tao, 2003)

For every ε > 0 there is C (ε), δ(ε) > 0 such that for any A ⊂ Fp,

max(|A + A|, |A · A|) ≥ C |A|1+ε,

provided that |A| ≤ p1−δ.
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Expander Graphs

Expansion for SL2(Fp) relies on:

Product Theorem (Helfgott, 2005)

∃ε > 0 such that for any A ⊂ G = SL2(Fp) one of the following
holds:

(i) (Expansion) |AAA| ≥ |A|1+ε.
(ii) (Close to G ) |A| ≥ |G |1−O(ε).

(iii) (Trapping) A ⊂ H for H ≤ G .

Bourgain-Gamburd furthermore use:

(Gowers Quasirandomness) A unitary representation of
SL2(Fp) has dimension ≥ p−1

2 .

Non-commutative Balog-Szemeredi-Gowers Lemma: If A · A
has a lot of collisions, then there is a close subset A′ ⊂ A such
that |A′ · A′| ≤ O(|A|).
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Expander Graphs

The results of Bourgain-Gamburd had a lot of impact:

1 Generalization to SLn(Fp) and further finite simple groups of
Lie type.

2 There is ε > 0 such that the collection of all non-abelian finite
simple groups is an expander family (of constant degree).

3 Prime counting

4 Effective equidistribution on compact Lie groups.
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Thank you!
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