The Dimension of Fractal Measures Results and Open Problems

Constantin Kogler

25th September 2025

Fractal Measures

 \Leftrightarrow

Number Theory

Two open problems

1) Bernoulli Convolutions: Random Power Series

- ▶ $\lambda \in (0,1)$
- Consider

$$Y_{\lambda} = \sum_{i=0}^{\infty} \lambda^{i} X_{i} = X_{0} + \lambda X_{1} + \lambda^{2} X_{2} + \dots,$$

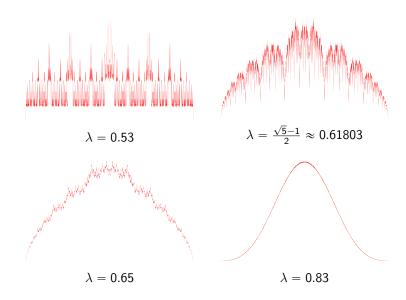
where $X_0, X_1, X_2, ...$ are independent random variables satisfying for all $i \ge 0$,

$$\mathbb{P}[X_i=1]=\mathbb{P}[X_i=-1]=\frac{1}{2}.$$

▶ The **Bernoulli convolution** ν_{λ} of parameter λ is the law of Y_{λ} , i.e. for $A \subset \mathbb{R}$,

$$\nu_{\lambda}(A) = \mathbb{P}[Y_{\lambda} \in A].$$

- Exercise: If $\lambda \in (0, \frac{1}{2})$, dim $\nu_{\lambda} < 1$.
- Exercise: If $\lambda = \frac{1}{2}$, ν_{λ} is the normalised Lebesgue measure on [-2,2] so dim $\nu_{\lambda} = 1$.
- ▶ Hard: What happens when $\lambda \in (\frac{1}{2}, 1)$?



Theorem (Erdős 1940 (while at IAS), Garsia 1962) If $\lambda^{-1} \neq 2$ is a Pisot number, then dim $\nu_{\lambda} < 1$.

▶ Example: $\frac{\sqrt{5}-1}{2}$. There are infinitely many such λ in $(\frac{1}{2},1)$.

Theorem (Hochman 2014 + Varjú 2019)

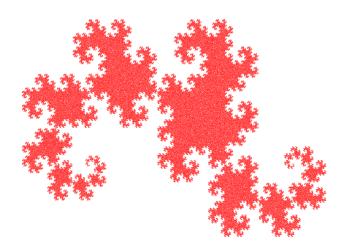
For $\lambda \in (0,1)$,

$$\dim \nu_{\lambda} = \min \left\{ 1, \frac{h_{\lambda}}{\log \lambda^{-1}} \right\} \qquad \text{ for } \qquad h_{\lambda} = \lim_{n \to \infty} \frac{1}{n} H \left(\sum_{i=0}^{n} \lambda^{i} X_{i} \right),$$

where $H(\cdot)$ is the Shannon entropy.

- If λ is transcendental, $h_{\lambda} = \log 2$ and so dim $\nu_{\lambda} = 1$ if $\lambda \in (\frac{1}{2}, 1)$.
- ▶ Open problem: Estimate h_{λ} to find all algebraic λ with dim $\nu_{\lambda} < 1$.

2) Self-similar Measures



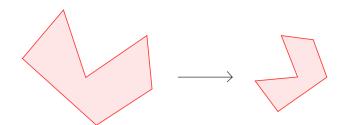
Let g_1, \ldots, g_k be contractive similarities of \mathbb{R}^d , i.e. for $x \in \mathbb{R}^d$,

$$g_i(x) = \rho_i U_i x + b_i$$

with $\rho_i \in (0,1), U_i \in O(d)$ and $b_i \in \mathbb{R}^d$.

Consider

$$\mu = \sum_{i=1}^k p_i \delta_{g_i}.$$

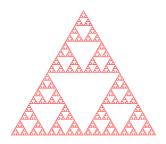


lacktriangle A **self-similar measure** u is a stationary measure for

$$\mu = \sum_{i=1}^k p_i \delta_{g_i},$$

i.e. the unique probability measure ν satisfying

$$\mu * \nu = \nu$$
.



$$\Delta_n = \min\{d(g, h) : g, h \in \operatorname{supp}(\mu^{*n}) \text{ with } g \neq h\}$$

Theorem (Hochman 2017)

Dimension formula for ν if there is c > 0 such that

$$\Delta_n \geqslant e^{-cn}$$
 for infinitely many $n \geqslant 1$. (1)

Fact

If $g_i \in G(\overline{\mathbb{Q}})$ there is c > 0 such that $\Delta_n \geqslant e^{-cn}$ for all $n \geqslant 1$.

Conjecture

(1) always holds.

Thank you for your attention