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I will discuss self-similar measures and touch on their connections to Diophantine
approximation and additive combinatorics. Initially, I will address related problems
that share a similar general flavor to those explored later. The structure of this
talk is as follows:

(1) General Flavor: Diameter on Groups, Additive Combinatorics, and Dio-
phantine Approximation.

(2) Introduction to Self-similar Sets and Self-similar Measures.
(3) Results on Bernoulli Convolutions.
(4) Results on General Self-similar Measures.

1. General Flavor: Diameter on Groups, Additive Combinatorics and
Diophantine Approximation

Given a compact metric group G and a subset S ⊂ G, we aim to understand

Sn = {s1 · · · sn : si ∈ S}.

Additive combinatorics often focuses on the size of Sn. We are additionally inter-
ested in the density of S in G. Specifically, we want to estimate the diameter of S
in G for a scale r > 0 define as

diamr(G,S) = min{n ≥ 1 : Sn is r-dense in G},

where Sn is said to be r-dense in G if for every g ∈ G, d(g, Sn) < r.
For instance, consider the case when G = T = R/Z and Sα = {0, α} for some α ∈

R. If α is irrational, Sn
α = {0, α, 2α, . . . , nα} and Sα generates a dense subgroup.

We seek to understand the diameter. A related question involves examining the
difference between two elements of Sn

α. The difference is small whenever

n1α− n2α ≈ m

for some integers n1, n2 and m. This is equivalent to

α ≈ m

n1 − n2
,

showing that α has a good rational approximation. Consequently, Sn
α becomes

denser in T when α has poor rational approximations, leading us to Diophantine
exponents. Notably, Roth proved in 1955 that every algebraic number satisfies∣∣qα− p

∣∣ ≥ C(α, ϵ)

q1+ϵ

for every ϵ > 0, with C(α, ϵ) being a constant depending on α and ϵ. This gives
rise to the following corollary.
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Corollary 1.1. For every algebraic number α and ϵ > 0, it holds that

diamr(T, Sα) ≪α,ϵ r
−(1+ϵ). (1.1)

We also have the following general fact, which relies on the observation that
random numbers in R satisfy Roth’s theorem. On the other hand, numbers with
very good rational approximations only have bad Diameter estimates.

Corollary 1.2. The diameter bound (1.1) holds for almost every α ∈ R.

Corollary 1.3. Let α be a Liouville number. Then for every n, there exists a scale
rn ∈ (0, 1) such that

diamr(T, Sα) ≥ r−n
n .

It is intriguing to explore what occurs in other compact groups, such as the
special orthogonal group

SO(d) = {g ∈ Mn(R) : ggT = I and det(g) = 1},

which is a connected compact Lie group. For a subset S ⊂ SO(d), we similarly aim
to study the diameter diamr(SO(d), S). Here, |Sn| generally grows exponentially,
as SO(d) is non-abelian. We have the following significant result, which can be
viewed as an analogue of Roth’s theorem.

Theorem 1.4. (Bourgain-Gamburd 2008, 2012; Benoist-de Saxcé 2016) Let d ≥ 3
and S ⊂ SO(d) be a finite subset generating a dense subgroup, assuming all elements
of S have algebraic entries. Then

diam(SO(d), S) ≪S log(r−1). (1.2)

The proof of this theorem relies on additive combinatorics (discretized product
theorems on Lie groups) and representation theory. Indeed, one first shows that
d(Sn, e) ≥ e−cn for some c > 0 and all n ≥ 1 (or rather a weakening of that)
and then deduces the claim under this assumption. It relates to similar results
for Cayley graphs of groups of Lie type (as seen in works by Helfgott, Bourgain-
Gamburd, Pyber-Szabo, and Breuillard-Green-Tao). Moreover, something stronger
holds: if µS = 1

|S|
∑

s∈S δs, then µ∗n
S → volSO(d) as n → ∞, where volSO(d) denotes

the volume probability measure (Haar measure) on SO(d). However, the following
problems remain open.

Conjecture 1.5. (Sarnak’s Conjecture) The diameter bound (1.2) holds for S =
{a, b} and almost all a, b ∈ SO(d) for d ≥ 3.

Conjecture 1.6. The diameter bound (1.2) holds for every S ⊂ SO(d) generating
a dense subgroup.

Both of these conjectures conjecture are wide open, and we have no examples
beyond the algebraic case.

2. Self-similar sets and self-similar measures

Recall that if g : Rd → Rd, then

Lip(g) = sup

{
|g(x)− g(y)|

|x− y|
: x, y ∈ Rd with x ̸= y

}
.
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Theorem 2.1. (Hutchinson 1981) Let g1, . . . , gn : Rd → Rd be maps with Lip(gi) <
1 for all 1 ≤ i ≤ n. Then there exists a unique compact set K ⊂ Rd such that

K =

n⋃
i=1

gi(K).

Proof. (Sketch) By Banach’s Fixed Point Theorem, for every g : Rd → Rd with
Lip(g) < 1, there is a unique fixed point z = Fix(g) ∈ Rd (i.e., satisfying g(z) = z).
Consider the map

Φ : {1, . . . , n}N → Rd, (i1, i2, . . .) 7→ lim
ℓ→∞

Fix(gi1 ◦ . . . ◦ giℓ)

and set K = Im(Φ).
To show uniqueness, assume such a set K exists. Then it follows that

K =

n⋃
i1,...,iℓ=1

(gi1 ◦ . . . ◦ giℓ)(K).

One can verify that for every sequence (i1, i2, . . .), it holds that⋂
ℓ≥1

(gi1 ◦ . . . ◦ giℓ)(K) =

{
lim
ℓ→∞

Fix(gi1 ◦ . . . ◦ giℓ)
}
.

□

The setK is called an attractor. We want to consider a special class of attractors,
namely self-similar sets which arise from similarities. Specifically, we consider the
maps g1, . . . , gn to be similarities, that is, maps for which there exists ρ > 0 such
that d(g(x), g(y)) = ρd(x, y) for all x, y ∈ Rd. Every similarity g : Rd → Rd can be
expressed as

g(x) = ρ(g)U(g)x+ b(g)

for a scalar ρ(g) ∈ R>0, an orthogonal matrix U(g) ∈ O(d), and a vector b(g) ∈ Rd.
To provide a few examples:

(1) If there exists x ∈ Rd such that gi(x) = x for all 1 ≤ i ≤ n, then K = {x}.
(2) (Cantor Set) If d = 1 and λ ∈ (0, 1/2), then consider

g1(x) = λx and g2(x) = λx+ (1− λ). (2.1)

The resulting self-similar set Cλ is known as a Cantor set.
Conversely, if we consider the same maps with λ ∈ (1/2, 1), then K =

[0, 1].
(3) (Sierpinski Triangle) Let d = 2 and consider the Sierpinski triangle arising

from the similarities

g1(x) =
1

2
x, g2(x) =

1

2
x+

(
1/2
0

)
, and g3(x) =

1

2
x+

(
1/4√
3/4

)
.

The main question in the study of self-similar sets is to determine their dimen-
sion. It is usually essential to specify the notion of dimension being used, but it is
a classical fact that, for self-similar sets, all major notions of dimension coincide,
particularly the Hausdorff dimension and the box (Minkowski) dimension. We now
define the box dimension. For a subset Y ⊂ Rd, denote its covering number at scale
r > 0 by

Nr(Y ) = min{k : Y can be covered by k sets of diameter ≤ r}.



JUNIOR NUMBER THEORY SEMINAR 4

The box dimension of Y , if it exists, is the exponential growth rate of Nr(Y ):

dimY = lim
r→0

logNr(Y )

log(1/r)
.

Equivalently, dimY = α if and only if Nr(Y ) = r−α+o(1) as r → 0. Calculating
the dimension is generally challenging, yet in the previously discussed cases, it is

straightforward. We note that the Cantor set satisfies dim(Cλ) = log(2)
log(λ−1) , while

the Sierpinski triangle has dimension log(3)
log(2) . Recently, there has been significant

progress in studying the dimension of self-similar sets. We state a special case of
Hochman’s recent work.

Theorem 2.2. (Hochman 2014, special case) Let g1, . . . , gn be similarities on Rd

satisfying the following properties:

(1) There exists ρ ∈ (0, 1) such that ρ = ρ(gi) for all 1 ≤ i ≤ n.
(2) The g1, . . . , gn generate a free semi-group.
(3) The coefficients of gi for all 1 ≤ i ≤ n are algebraic.

Then for the self-similar set K, it holds that

dimK = min

{
d,

log n

log(1/ρ)

}
.

Instead of studying self-similar sets, we can study measures supported on self-
similar sets. This leads to the notion of self-similar measures, which form a richer
class of objects to study. Hutchinson’s theorem can be generalized in this context.

Theorem 2.3. (Hutchinson 1981) Let µ be a probability measure supported on
finitely may similarities g1, . . . , gn satisfying ρ(i) < 1 for all 1 ≤ i ≤ n. Then
there exists a unique compactly supported probability measure ν on Rd that is µ-
stationary, i.e.,

µ ∗ ν = ν.

The measure ν is called the self-similar measure of µ. It is well-known that ν is
exact dimensional, meaning there exists some α ∈ [0, d], called the dimension of ν,
such that for ν-almost all x ∈ Rd we have

ν(Br(x)) = rα+oν,x(1).

One is typically interested in the following questions:

(1) What is dim ν?
(2) Is ν absolutely continuous? That is, is there fν ∈ L1(Rd) such that ν =

fν · volRd?

We note that if ν is absolutely continuous, then dim ν = 1. We will first review
a specific class of self-similar measures.

3. Bernoulli Convolutions

A particularly well-studied of self-similar measures are Bernoulli convolutions,
which arise from the maps (2.1). Specifically, for λ ∈ (0, 1), we denote by νλ the
self-similar measure of

1

2
δg1 +

1

2
δg2 .

The measure νλ is referred to as the Bernoulli convolution of λ. An alternative
description is that νλ has, up to translation and rescaling, the same distribution as
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i=0 Xiλ

i, where Xi are independent random variables satisfying P[Xi = −1] =
P[Xi = 1] = 1

2 . We make the following basic observations:

(1) When λ ∈ (0, 1/2), then supp(νλ) = Cλ and νλ is not absolutely continuous.
(2) For λ = 1/2, νλ is the Lebesgue measure on [0, 1].
(3) For λ ∈ (1/2, 1), supp(νλ) = [0, 1] and νλ may be absolutely continuous or

not.

Here is a selection of known results on Bernoulli convolutions in their historical
order:

(1) (Erdös 1939, Garcia 1962) When λ−1 is a Pisot number, then dim(νλ) < 1
and so νλ is not absolutely continuous. (A Pisot number is one where all

of its Galois conjugates have modulus < 1, for example λ =
√
5−1
2 .) This

uses that Pisot numbers are very closely approximated by integers.
(2) (Erdös 1940) There exists some c ≥ 1/2 such that νλ is almost surely

absolutely continuous in [c, 1]. Erdös conjectured that one can take c = 1/2.

Next, we recall the definition of the Mahler measure Mλ. We recall if H(λ) is the

algebraic height of λ, then H(λ) = M
1/d
λ for d the degree of the algebraic number.

Definition 3.1. The Mahler measure Mλ of an algebraic number λ is defined as

Mλ = |a|
∏

|zj |>1

|zj |

where a(x− z1) · · · (x− zℓ) is the minimal polynomial of λ over Z.
(3) (Garcia 1962) νλ is absolutely continuous if λ−1 is an algebraic integer and

Mλ = 2. Examples include λ = 2−1/k and the real roots of xp+n − xn − 2
for any max{p, n} ≥ 2.

(4) (Solomyak 1995) νλ is absolutely continuous for almost all λ ∈ [1/2, 1].
(5) (Hochman 2014) Provided a dimension formula for νλ when λ is algebraic

and also showed that if dim νλ < 1, then λ satisfies a Diophantine approx-
imation condition.

(6) (Varjú 2019) Showed that there exists a small c > 0 such that when λ is
algebraic and satisfies

λ > 1− cmin{logMλ, (logMλ)
−2}

then νλ is absolutely continuous. For instance, this implies that νλ is abso-
lutely continuous for λ = 1− 1

n for all n ≥ 1050. This result was strength-
ened by Kittle-Kogler in 2024.

(7) (Varjú 2019) Established that dim νλ = 1 for transcendental λ ∈ (1/2, 1).
(8) (Klepsyn-Pollicott-Vytnova 2022) Demonstrated that dim νλ ≥ 0.96399 for

all λ ∈ (1/2, 1).

4. Results on General Self-Similar Measures

The dimension theory of a general self-similar measure ν is quite well understood.
For simplicity of this exposition we focus on the case when d = 1. Specifically, we
denote by

hµ = lim
n→∞

1

n
H(µ∗n) = inf

n≥1

1

n
H(µ∗n)

the random walk entropy of µ, and by χµ the Lyapunov exponent defined as

χµ = Eg∼µ[log ρ(g)].
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It is well-known that

dim ν ≤ min

{
1,

hµ

|χµ|

}
and it is conjectured that this inequality is always an equality.

Theorem 4.1. (Hochman 2014) Let µ be a probability measure supported on finitely
may similarities g1, . . . , gn on R satisfying ρ(gi) < 1 for all 1 ≤ i ≤ n. Assume that
all g ∈ supp(µ) have algebraic coefficients. Then

dim ν = min

{
1,

hµ

|χµ|

}
. (4.1)

In light of this result, it is conjectured that if

hµ

|χµ|
> 1,

then ν is absolutely continuous. This conjecture remains wide open, also for
Bernoulli convolutions, where Varjú’s result are progress towards it. Together with
Samuel Kittle, I have made some advances on this conjecture. A simplified version
of what we have proved is the following.

Theorem 4.2. (Kittle-Kogler 2024, Special case) For every ε > 0 there exists a
constant C > 1 and ρ̂ ∈ (0, 1) such that the following holds. Let µ =

∑n
i=1 δigi

be a probability measure supported on finitely may similarities g1, . . . , gn on R with
δi ≥ ε and ρ(g)i ∈ (ρ̂, 1) for all 1 ≤ i ≤ n. Assume furthermore that all of the
coefficients of g1, . . . , gn are in a number field K and have height at most H. Then
ν is absolutely continuous if

hµ

|χµ|
≥ C[K : Q] max

{
1, log

(
logH

hµ

)}2

.
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