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Abstract

In Part I, we establish the first examples of finitely supported measures on semisim-

ple Lie groups that satisfy a local limit theorem on the associated symmetric space.

We reduce the problem at hand to a spectral gap question for a natural operator

associated with the measure. When the given measure satisfies strong Diophantine

properties and is supported close to the identity, the latter spectral gap problem is

proven. Moreover, quantitative error rates for the local limit theorem are shown under

additional assumptions, and Cℓ-smoothness of the Furstenberg measure is discussed.

Part II, which is joint work with Samuel Kittle, is concerned with absolutely

continuous self-similar measures. A condition for absolute continuity in arbitrary

dimensions is shown. We thereby construct the first explicit absolutely continuous

examples of genuinely inhomogeneous self-similar measures in dimensions one and

two. Varjú’s result for Bernoulli convolutions is strengthened, and in dimension ≥ 3

we improve the condition on absolute continuity by Lindenstrauss-Varjú.
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ETH Zürich and for introducing me to homogeneous dynamics. I am also grateful to

Thomas Wurms, my mathematics teacher at the Freies Gymnasium Zürich, for his
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Chapter 1

Introduction

The study of random walks on Lie groups is a broad topic. This thesis addresses two

subjects in the area: local limit theorems and the study of stationary measures, with

an emphasis on self-similar measures. Both topics have a rich historical background

and there are analogies and connections in the recent developments. Crucially, several

results from the past 20 years as well as the primary theorems from Part I and

Part II of this thesis require that the entries of the matrices in the support of our

given distribution are algebraic. More precisely, these advancements rely on distinct

problems in Diophantine approximation on Lie groups, which are well understood

when the entries are algebraic but remain mostly unresolved in the transcendental

case. We will direct our attention towards these facets in the introduction.

To set the stage, let G be a topological group acting on a space X, and let µ be a

Borel probability measure on G. Consider independent random variables X1, X2, . . .

each distributed according to µ, and fix a starting point x0 ∈ X. Denote

Zn,x0 = X1 · · ·Xn.x0. (1.0.1)

The main goal in the subject is to study the behavior of Zn,x0 as n→ ∞. We further

note that Zn,x0 is distributed as µ∗n ∗ δx0 , where µ
∗n denotes the n-fold convolution

of µ.

In the introduction, we first present some notation, then discuss local limit theo-

rems and state some of the results from Part I. Thereafter, we give an overview on

self-similar measures and finally discuss the main result from Part II.

1.1 Notation

We review notation that will be used throughout this thesis. More specific notation

that will be used in Part I will be reviewed in section 3.1 and for Part II in section 8.3.
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The following asymptotic notation is used. We write A ≪ B or A = O(B) to

denote that |A| ≤ CB for a constant C > 0 and for sequences Xn and Yn we write

Xn = o(Yn) to symbolize |Xn

Yn
| → 0 as n → ∞. If the constant C or the speed of

convergence depends on additional parameters, we add subscripts. Moreover, A ≍ B

denotes A≪ B and B ≪ A.

For a topological group G we denote by mG a fixed choice of a left Haar measure,

i.e. a measure satisfying mG(hA) = mG(A) for all Borel measurable subsets A ⊂ G

and h ∈ G. Recall that the (left) Haar measure exists and is unique up to scaling

when G is a locally compact Hausdorff group. When G is compact, we denote by mG

the Haar probability measure. For G = R we write mR for the standard Lebesgue

measure.

When G acts on a space X, µ is a Borel measure on G and ν one on X, we define

the convolution µ ∗ ν as the measure uniquely determined by satisfying

(µ ∗ ν)(f) =
∫ ∫

f(g.x) dµ(g)dν(x)

for all continuous compactly supported functions f : X → R.

1.2 Local limit theorems

To review some classical results, we first consider the case where G = X = R, and
let X1, X2, . . . be independent random variables distributed according to µ. Assume

that the mean E[Xi] is zero and that the variance σ2 = E[X2
i ] < ∞ is finite. The

central limit theorem states that

Zn,0√
n

→ N (0, σ2),

where the convergence is in distribution and N (0, σ2) is the distribution of a centered

Gaussian with variance σ2. Thus, the central limit theorem provides information

about Zn,0 at scale
√
n. On the other hand, it is of interest to describe Zn,0 at scale

1, which is addressed by local limit theorems. Indeed, as long as µ is non-lattice,

meaning µ is not supported on βZ for some β ∈ R, we have, as n→ ∞,

√
nµ∗n → mR√

2πσ2
, (1.2.1)

where mR denotes the Lebesgue measure on R and the measures converge vaguely,

that is (1.2.1) holds for functions f ∈ Cc(R).
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Our interest in this section lies in similar questions for arbitrary transitive actions

of a topological group G on a space X. While a central limit theorem in this general

context is difficult to formulate, it is expected that a local limit theorem usually holds,

provided the measure in question is non-degenerate and symmetric. Specifically, we

give the following definition.

Definition 1.2.1. A probability measure µ on a locally compact group G is called

aperiodic if the support of µ is not contained in a coset gH for some g ∈ G and a

proper closed subgroup H < G.

The probability measure µ is called symmetric if for all continuous compactly

supported functions f : G→ R we have that∫
f(g) dµ(g) =

∫
f(g−1) dµ(g).

We offer the following general question on the behaviour of random walks for

transitive actions.

Question 1.2.2. (Does a Local Limit Theorem hold?) Let G be a locally compact,

second countable and Hausdorff group acting continuously and transitively on a space

X. Let µ be an aperiodic, symmetric and compactly supported Borel probability mea-

sure on G.

Does there then exists a sequence of real numbers (an)n≥1 with an > 0 such that for

every x0 ∈ X there is a limiting non-zero Borel measure mµ,x0 on X of full support

such that

anµ
∗n ∗ δx0 → mµ,x0 (1.2.2)

vaguely? More precisely, we ask whether for all continuous compactly supported func-

tions f : X → R it holds that

lim
n→∞

an

∫
f(g.x0) dµ

∗n(g) =

∫
f(x) dmµ,x0(x).

If in addition X is endowed with a Borel measure mX and the G action on X

is measure preserving, is then the limiting measure mµ,x0 absolutely continuous with

respect to mX for every x0 ∈ X?

We have made the above strong assumptions on the measure µ in order to for-

mulate a question that could be valid for all groups. However, when working with

concrete groups, some of the assumptions can be weakened. For example, when

G = R, it suffices to assume that µ is centered, or when G is compact, we can drop

the assumption that µ is symmetric, as in Theorem 1.2.3.
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The author does not know of a group or group action where (1.2.2) is false, yet as

the setting is vast, we have not dared to formulate the question as a conjecture. As

we discuss later, it is known that Question 1.2.2 can be answered in the affirmative

when G = X is a discrete ameanable group or a free group. In the remainder of this

section we discuss the case when G is a Lie group and Part I of this thesis addresses

G being a semisimple Lie group such as SLn(R).
When (1.2.2) is known, it is of further interest to describe the limiting measure

mµ,x0 or to prove error rates for the convergence. When G is an ameanable group

and X = G, then in all known cases the limit measure mµ,x0 is a multiple of the Haar

measure. As discussed below, the latter does not hold for the free group (1.2.7) or

for semisimple Lie groups (Theorem 1.3.1).

Compact Groups

When G is compact, the Haar probability measure mG is the natural candidate for

the limit measure in (1.2.2). Indeed, for compact groups the local limit theorem was

proven by Ito-Kawada in 1940. This is actually the first paper of Kyoshi Ito, the

pioneer of stochastic integration.

Theorem 1.2.3. ([IK40]) Let G be a compact topological group and let µ be an

aperiodic probability measure on G. Then µ∗n converges to mG vaguely as n→ ∞.

The latter theorem affirms Question 1.2.2 for compact topological groups. In fact,

every continuous function on X can be lifted to a continuous function on G and

(1.2.2) follows from Theorem 1.2.3.

Having established that µ∗n converges to mG, one may wonder about the speed

of convergence. When G = T = R/Z and µ = 1
2
(δα + δ−α) for some irrational α,

then the speed of equidistribution of µ∗n is equivalent to Diophantine properties of

α. Indeed, this relies on the Fourier inversion formula and the observation that for

n ∈ Z,
µ̂(n) =

∫
e2πinx dµ(x) = cos(2πnα).

Similar phenomena occur whenever G is a compact abelian Lie group.

We turn our attention for the remainder of this section to compact simple Lie

groups such as, for example, the orthogonal group SO(d) for d ≥ 3 or the special

unitary group SU(r) for r ≥ 2. When µ is supported on finitely many elements

generating a dense subgroup of G, then it follows from the Tits alternative [Tit72]

that the cardinality of the support of µ∗n grows exponentially. It is therefore natural

4



to conjecture that µ∗n converges to mG with exponential speed, in other words that

for every f ∈ C∞(G),

µ∗n(f) = mG(f) +Oµ,f (e
−θn). (1.2.3)

for a constant θ = θ(µ) depending on µ.

The following two important results were proved by Benoist-de Saxcé, generalising

pioneering work by Bourgain-Gamburd [BG08], [BG12]. We first define the weak

Diophantine property of probability measures.

Definition 1.2.4. Let G be a compact group. Then µ is called weakly Diophantine

if there are constants c1, c2 > 0 such that for sufficiently large n,

sup
H<G

µ∗n(Be−c1n(H)) ≤ e−c2n,

where the supremum is taken over all proper closed subgroups H of G and Be−c1n(H) =

{g ∈ G : d(g,H) ≤ e−c1n}.

Theorem 1.2.5. ([BdS16, Theorem 1.1]) Let G be a connected compact simple Lie

group and let µ be a symmetric Borel probability measure on G. Then µ is weakly

Diophantine if and only if it has a spectral gap on L2(G), that is there is γ > 0 such

that

||µ ∗ f ||2 ≤ (1− γ)||f ||2 (1.2.4)

for all f ∈ L2(G) with mG(f) = 0 and where (µ ∗ f)(x) =
∫
f(gx) dµ(g) for x ∈ G.

Theorem 1.2.6. ([BdS16, Theorem 1.2]) Let G ⊂ GLd(R) be a connected compact

simple Lie group. Let µ be a probability measure supported on finitely many matrices

in GLd(Q) and generating a dense subgroup. Then µ is weakly Diophantine, and

therefore has a spectral gap on L2(G).

When µ has a spectral gap on L2(G), then (1.2.3) holds as it follows for example

from [KK24, Corollary 3.11] that there is a constant θ = θ(µ) such that for any

bounded Lipschitz function f : G→ R,

µ∗n(f) = mG(f) +Oµ(max(||f ||∞,Lip(f))e−θn),

where ||f ||∞ = supg∈G |f(g)| and Lip(f) is the Lipschitz constant of f .

Analogously to (1.2.3), it is believed that every probability measure on a connected

compact simple Lie group whose support generates a dense subgroup has a spectral

gap on L2(G). It is a major open problem in the field to remove the assumption

of Theorem 1.2.6 that the entries of the matrices in the support of µ are algebraic.
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Throughout this thesis we will encounter numerous results that are understood in the

case when the entries of the matrices in the support are algebraic, yet open in the

general case.

Isom(Rd) action on Rd

Denote by Isom(Rd) the group of isometries of Rd, i.e. maps of the form x 7→ Ux+ b

for U ∈ O(d) and b ∈ Rd with x ∈ Rd. Instead of studying the sum of random

variables on Rd, it is an interesting question to study random walks for the Isom(Rd)

action on Rd.

The problem of establishing a central limit theorem or a local limit theorem in

this setting can be traced back to the paper by Arnold-Krylov [AK63] from 1963.

After the work of several people (we refer to [Var15] for a historical account), Varjú

finally proved a local limit theorem in 2015.

Theorem 1.2.7. ([Var15], Local Limit Theorem with error rates) Let µ be an aperi-

odic, compactly supported probability measure on Isom(Rd). Then there exists y0 ∈ Rd,

a quadratic form ∆ and constants C∆ > 0 and c > 0, all depending only on µ, such

that the following holds.

Let f : Rd → R be a smooth function with compact support. Then for Zn,x0 as

defined in (1.0.1), it holds that

nd/2E[f(Zn,x0)] = C∆

∫
f(x)e−∆(x−y0,x−y0)/n dmRd(x)

+Oµ(n
−1/2 + |x0|2n−1)||f ||1 +Oµ(e

−cn1/4

)||f ||W 2,(d+1)/2 ,

where || · ||1 is the L1-norm and || · ||W 2,(d+1)/2 is the L2 Sobolev norm defined by

||f ||2
W 2,(d+1)/2 =

∫
|f̂(ξ)|2(1 + |ξ|)d+1 dmRd(ξ).

In [Var15], Theorem 1.2.7 is proved under weaker assumptions on µ, yet we have

stated the result in the above form for simplicity. We denote by U(µ) the push forward

of µ under the map that sends an isomtery to the orthogonal part, i.e. g ∈ Isom(Rd) 7→
U(g) ∈ O(d), where g(x) = U(g)x+ b(g) for all x ∈ Rd. The proof of Theorem 1.2.7

relies on establishing a weakening of the L2(O(d)) spectral gap discussed in the last

subsection. In the case when U(µ) has a spectral gap on L2(SO(d)), the following

strengthening of Theorem 1.2.7 was established by Lindenstrauss-Varjú in 2016.

Theorem 1.2.8. ([LV16], Local Limit Theorem with strong error rates) Let d ≥ 3

and let µ be a compactly supported probability measure on Isom(Rd). Assume that

U(µ) is supported on SO(d) and has a spectral gap on L2(SO(d)). Moreover, assume

6



that there is no point x ∈ Rd such that X1(x) = x almost surely. Then there exists

y0 ∈ Rd, a quadratic form ∆ and constants C∆ > 0 and c > 0, all depending only on

µ, such that the following holds.

Let f : Rd → R be a smooth function with compact support. Then

nd/2E[f(Zn,x0)] = C∆

∫
f(x)e−∆(x−y0,x−y0)/n dmRd(x)

+Oµ(n
−1/2 + |x0|2n−1)||f ||1 +Oµ(e

−cn)||f ||W 2,(d+1)/2 .

The difference between Theorem 1.2.8 and Theorem 1.2.7 is that the decay of the

term in front of the Sobolev norm ||f ||W 2,(d+1)/2 is exponential and not onlyOµ(e
−cn1/4

).

The former is optimal because the number of points in the support of µ grows expo-

nentially.

The proof of Theorem 1.2.7 and Theorem 1.2.8 relies on spectral estimates of

natural operators arising from the theory of unitary representations on Isom(Rd).

Indeed, as above, for g ∈ Isom(Rd) we denote by U(g) the rotation part and by b(g)

the translation part. Then for r ∈ R consider the unitary representation ρr : G →
U(L2(Sd−1)) defined by

(ρr(g)φ)(ξ) = e−2πir⟨ξ,b(g)⟩φ(U(g)−1ξ)

for φ ∈ L2(Sd−1), g ∈ Isom(Rd) and ξ ∈ Sd−1.

For a given probability measure µ on Isom(Rd) one considers the operator

Sr = ρr(µ) =

∫
ρr(g) dµ(g). (1.2.5)

We observe that for n ≥ 1,

Sn
r = ρr(µ

∗n) =

∫
ρr(g) dµ

∗n(g)

Then by the Fourier inversion formula and Fubini’s theorem the following holds, which

we state for simplicity in the case when x0 = 0 (note that g.0 = b(g)),

E[f(Zn,0)] =

∫
f(b(g)) dµ∗n(g) =

∫ ∫
f̂(ξ)e−2πi⟨ξ,b(g)⟩ dmRd(ξ)dµ∗n(g)

=

∫
f̂(ξ)(Sn

|ξ|1)(ξ/|ξ|) dmRd(ξ). (1.2.6)

The proof of Theorem 1.2.7 and Theorem 1.2.8 proceeds using distinct bounds

for Sn
|ξ|1 in the ranges when the frequency ξ is low and when it is high. For the low

frequency range one applies a Taylor expansion to deduce satisfactory bounds. For

Theorem 1.2.7 the high frequency range is dealt with by subtle estimates relying on

the weakened spectral gap for U(µ). The following important theorem is proven in

[LV16] to deal with the high frequency range in Theorem 1.2.8.
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Theorem 1.2.9. ([LV16, Corollary 8.1]) Let d ≥ 3 and suppose that µ is a compactly

supported probability measure on Isom(Rd). Assume that U(µ) is supported on SO(d)

and has a spectral gap on L2(SO(d)). Then there is a constant c > 0 such that

sup
r≥1

||Sr|| ≤ 1− c,

where || · || is the operator norm.

Remarkably, Theorem 1.2.9 has important applications in establishing absolute

continuity of self-similar measures in dimension d ≥ 3, the topic addressed in Part II

of this thesis. The paper [LV16] is indeed a central source of inspiration for all the

results of this thesis.

Further results

We briefly mention a few further papers on local limit theorems in various contexts.

Nilpotent Lie groups were studied by Breuillard [Bre05b], Hough [Hou19], Diaconis-

Hough [DH21] and Bénard-Breuillard [BB23].

The case of discrete groups is also an active area of research. When G is a discrete

amenable group, it follows for a symmetric aperiodic probability measure µ on G by

[Ave73] (c.f. furthermore [Ger80]) that

lim
n→∞

µ∗n(g)

µ∗n(e)
= 1

for all g ∈ G, which affirms Question 1.2.2 when G = X is amenable. On the other

hand, it was proven by Gouëzel [Gou14], generalising work by Lalley for free groups

[Lal93], that if G is a discrete hyperbolic group and µ is an aperiodic probability

measure on G, then for every x, y ∈ G there exists a constant C(x, y) such that

lim
n→∞

n3/2

σn
P[Zn,x = y] = C(x, y) (1.2.7)

for σ ∈ (0, 1) a constant depending on µ.

Another topic of interest is to study volume preserving actions of discrete sub-

groups on finite-volume homogeneous spaces. We mention Bourgain-Furman-Lindenstrauss-

Mozes [BFLM11] establishing quantitative results for SLn(Z) acting on Td, Benoist-

Quint [BQ11] classifying stationary measures for the action on finite-volume homo-

geneous spaces of semi-simple Lie groups G by Zariski dense subgroups of G, and

the recent work of Bénard-He [BH24] proving a quantitative local limit theorem in

the latter setting for arithmetic quotients of for example G = SL2(R) and measures

supported on algebraic elements.
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1.3 Results of Part I

In contrast to the above, the understanding of local limit theorems for non-compact

semisimple Lie groups such as SLn(R) is much less complete. The only known case

where a local limit theorem is proven assumes that µ is spread out, meaning a con-

volution power µ∗n for some n ≥ 1 is not singular with respect to the Haar measure.

Indeed, the following theorem was proven by Bougerol in 1981.

Theorem 1.3.1. ([Bou81]) Let G be a non-compact connected semisimple Lie group

with finite center and let µ be a compactly supported spread out probability measure

on G whose support generates a dense subgroup of G. Then there exists a constant

σ = σ(µ) ∈ (0, 1) and a continuous function ψ0 on G depending on µ such that

lim
n→∞

nℓ/2

σn

∫
f(g) dµ∗n(g) =

∫
f(g)ψ0(g) dmG(g) (1.3.1)

for all f ∈ C∞
c (G) and where ℓ = ℓ(G) is an integer depending only on G. The

function ψ0 satisfies µ ∗ ψ0 = ψ0 ∗ µ = σψ0.

The assumption that µ is compactly supported is not necessary. Indeed, one only

requires that µ has a finite second moment as defined in (2.0.2). The reader may

observe the analogy between (1.3.1) and (1.2.7).

Ever since Bougerol’s theorem, it has been an open problem to extend (1.3.1) to

finitely supported measures whose support generates a dense subgroup. This question

motivates the first part of this thesis. Although we cannot solve this problem, we give

the first examples of finitely supported probability measures that satisfy a local limit

theorem on the associated symmetric space.

Theorem 1.3.2. (Follows from Theorem 2.0.1 and Theorem 2.0.7) Let G be a non-

compact connected semisimple Lie group with finite center, let K ⊂ G be a maximal

compact subgroup and denote by X = G/K the associated symmetric space. Then

there exists finitely supported probability measures µ on G such that (1.3.1) holds on

X.

Indeed, there exists a constant σ = σ(µ) ∈ (0, 1) and a continuous function ψ0 on

G depending on µ such that for all x0 ∈ X,

lim
n→∞

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =

∫
f(g.x0)ψ0(g) dmG(g) (1.3.2)

for all f ∈ C∞
c (X) and where ℓ = ℓ(G) is an integer depending only on G.
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The proof of Theorem 1.3.1 and Theorem 1.3.2 is based on studying an analogous

class of operators to Sr as defined in (1.2.5) for Isom(Rd). For symmetry, we also

denote this class of operators as Sr. In Theorem 2.0.1, we prove (1.3.2) under the

assumption that S0 is quasicompact, that is, the essential spectral radius (see (3.1.1))

is strictly less than the spectral radius. We also show quantitative bounds for (1.3.2),

inspired by Theorem 1.2.7 and Theorem 1.2.8, in Theorem 2.0.2 and Theorem 2.0.3.

To deduce Theorem 1.3.2 from Theorem 2.0.1, we need to show that there exist

finitely supported measures with S0 quasicompact. When G = SL2(R), such ex-

amples were constructed by Bourgain [Bou12]. In fact, as we discuss next section,

Bourgain showed that there exist finitely supported measures with absolutely contin-

uous Furstenberg measure. The method of [Bou12] was generalised in [BISG17] to

arbitrary connected simple Lie groups and we use the results there to conclude that

S0 is quasicompact for numerous examples as well as to generalise Bourgain’s result

for Furstenberg measures. All this is stated in Theorem 2.0.7 and Theorem 2.0.8.

Connecting to the weak Diophantine property from Definition 1.2.4, the measures

we work with have strong Diophantine properties while being supported close to the

identity. This leads to the definition of (c1, c2, ε)-Diophantine measures as given in

Definition 2.0.5.

1.4 Self-similar measures

Returning to the setting of (1.0.1), when most of the elements of the measure µ

exhibit a contracting behavior, it can be shown that Zn,x0 converges to a limiting

distribution. More concretely, let us assume that X is a complete metric space and

the measure µ is contracting, that is, for every g ∈ supp(µ) it holds that Lip(g) < 1,

for Lip(g) the Lipschitz constant of g. According to Hutchinson’s theorem [Hut81],

there exists a unique probability measure ν on X such that for any starting point

x0 ∈ Rd, as n→ ∞,

µ∗n ∗ δx0 → ν. (1.4.1)

This measure ν is µ-stationary, satisfying µ ∗ ν = ν, and the convergence stated

above is exponentially fast. The study of properties of the limiting distributions ν in

various settings is an active area of research. We also note that (1.4.1) is an instance

of (1.2.2).

From now on, consider the case where X = Rd and that µ is supported on sim-

ilarities. A similarity on Rd is a map g : Rd → Rd that, for some ρ > 0, satisfies

d(g(x), g(y)) = ρ · d(x, y) for all x, y ∈ Rd. We denote the group of similarities as
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Sim(Rd). For each similarity g ∈ Sim(Rd), there exist a scalar ρ(g) > 0, an orthogonal

matrix U(g) ∈ O(d), and a vector b(g) ∈ Rd such that

g(x) = ρ(g)U(g)x+ b(g) (1.4.2)

for all x ∈ Rd.

For a contracting measure µ on Sim(Rd), the limiting measure ν from (1.4.1) is

referred to as the self-similar measure of µ. Self-similar measures are well-known to

be exact-dimensional ([FH09]), that is, there exists a constant α ∈ [0, d] such that

ν(Br(x)) = rα+oµ,x(1) (1.4.3)

as r → 0 for ν-almost every x ∈ Rd, where Br(x) denotes the r-ball around x. The

quantity α is known as the dimension of ν. Key questions in the study of self-similar

measures are:

1. What is the dimension of ν?

2. Is ν absolutely continuous on Rd? That is, does there exist a function fν ∈
L1(Rd) such that ν = fν · volRd?

Hochman’s Theorem

Recent decades have seen significant advances on these problems. We first recall

Hochman’s pivotal contributions ([Hoc14], [Hoc17]). Let µ be a finitely supported

probability measure. The random walk entropy of µ is defined as

hµ = lim
n→∞

1

n
H(µ∗n) = inf

n≥1

1

n
H(µ∗n),

where H(·) is the Shannon entropy. The Lyapunov exponent is given by

χµ = Eg∼µ[log ρ(g)]. (1.4.4)

Furthermore, we say that µ is irreducible if the subgroup generated by {U(g) : g ∈
supp(µ)} acts irreducibly on Rd, meaning it has no invariant subspaces other than

the trivial ones {0} and Rd. When all of the maps g ∈ supp(µ) have the same fixed

point x ∈ Rd, then the Dirac measure δx is the self-similar measure of µ. When the

latter is not the case, we say that µ does not have a common fixed point.

It is well known (cf. for example [FH09]) that

dim ν ≤ min

{
d,

hµ
|χµ|

}
. (1.4.5)

Moreover the following conjecture is expected to hold.

11



Conjecture 1.4.1. (Generalised Exact Overlaps Conjecture) Let µ be a finitely sup-

ported, irreducible and contracting probability measure on Sim(Rd) without a common

fixed point. Then

dim ν = min

{
d,

hµ
|χµ|

}
.

Much of the literature on self-similar measures assumes that the support of µ

generates a free semigroup, which is referred to as the support of µ having no exact

overlaps. In this case, if µ =
∑k

i=1 piδgi , then the random walk entropy can be

computed as

hµ = H(p1, . . . , pk) = −
k∑

i=1

pi log pi.

Hochman proved Conjecture 1.4.1 under a mild separation assumption. Indeed,

denote by

∆n = min{d(g, h) : g, h ∈ supp(µ∗n) with g ̸= h}, (1.4.6)

where d(·, ·) is the metric on Sim(Rd) given in (7.0.3).

Theorem 1.4.2. ([Hoc14], [Hoc17]) Let µ be a finitely supported, irreducible and

contracting probability measure on Sim(Rd) without a common fixed point. Suppose

that there is c > 0 and infinitely many n ≥ 1 such that ∆n ≥ e−cn, then

dim ν = min

{
d,

hµ
|χµ|

}
. (1.4.7)

We also mention the following proposition, which implies, as we can embed Sim(Rd)

in GLd+1(R), that (1.4.7) holds for all µ supported on finitely many similarities with

algebraic coefficients.

Proposition 1.4.3. (follows as Proposition 15.2.3) Let µ be a probability measure on

GLd(R) for some d ≥ 1 supported on finitely many matrices with algebraic coefficients.

Then there exists c > 0 such that ∆n ≥ e−cn for all n ≥ 1.

We invite the reader to compare Theorem 1.4.2 with Theorem 1.2.5. In both cases,

noticeable results concerning random walks on Lie groups are reduced to Diophan-

tine problems. There is an important difference: The weak Diophantine property

of Theorem 1.2.5 requires information on all scales whereas for the condition from

Theorem 1.4.2 only infinitely many scales are necessary.

In the following discussion, for simplicity we consider G = SO(3). In the following

argument, that was communicated to me by Emmanuel Breuillard, it is shown that
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the conclusion of Proposition 1.4.3 does not hold for every measure supported on two

elements generating a free group.

Denote by

Tn = {(g, h) ∈ SO(3) : gn = hn = I}

the n-torsion elements. It is simple to verify that
⋃

n≥k Tn is dense in SO(3)×SO(3)

for every k ≥ 1. When n, k ≥ 1 there exists a small number rn,k > 0 such that if

d((x, y), (a, b)) < rn,k for some tuple (a, b) ∈ Tn then it holds that

d(xn, I) < e−kn and d(yn, I) < e−kn.

We then write

Ek =
⋃
n≥k

⋃
(a,b)∈Tn

Brn,k
((a, b))\Vn,

where Brn,k
((a, b)) denotes the open rn,k ball of (a, b) in G × G and Vn is the set of

all (g, h) ∈ SO(3) × SO(3) such that w(g, h) = I for some word w of length ≤ n.

Since Vn is a proper algebraic subset of SO(3) × SO(3), it follows that Ek is open

and dense. We finally denote

E =
⋂
k≥1

Ek,

which by the Baire category theorem is a dense subset of SO(3)×SO(3). Also, every
element (x, y) ∈ E generates a free group and for every k there is some n such that

0 < d(xn, yn) < 2e−kn.

Therefore for a probability measure supported on x and y the conclusion of Proposi-

tion 1.4.3 that ∆n ≥ e−cn for some c > 0 and all n ≥ 1 does not hold.

In contrast to the above discussion, Hochman’s theorem (Theorem 1.4.2) only

requires separation on infinitely many scales. To the author’s knowledge, there is

no counterexample to the latter condition and one could therefore conjecture that it

always holds.

Conjecture 1.4.4. For every finitely supported probability measure on GLd(R), for
any d ≥ 1, there exists c > 0 such that ∆n ≥ e−cn for infinitely many n ≥ 1.

Bernoulli Convolutions

The simplest interesting example of self-similar measures are Bernoulli convolutions.

For λ ∈ (0, 1) we denote by

νλ the distribution of
∞∑
i=0

Xiλ
i
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where Xi are independent random variables satisfying

P[Xi = −1] = P[Xi = 1] =
1

2
.

The measure νλ is referred to as the Bernoulli convolution of parameter λ. It is the

self-similar measure associated to the unbiased measure supported on the two maps

x 7→ λx+ 1 and x 7→ λx− 1. We make the following basic observations:

1. When λ ∈ (0, 1/2), then νλ is supported on a Cantor set and νλ is not absolutely

continuous.

2. For λ = 1/2, νλ is the Lebesgue measure on [−2, 2].

3. For λ ∈ (1/2, 1), supp(νλ) = [ −1
1−λ

, 1
1−λ

] and νλ may be absolutely continuous or

not.

The study of Bernoulli convolution is at least 90 years old and we expose the

following selection of known results:

1. (Jessen-Wintner 1935 [JW35, Theorem 11]) νλ is of pure type, i.e. is either

singular or absolutely continuous to the Lebesgue measure.

2. (Erdős 1939 [Erd39]) When λ−1 is a Pisot number, then νλ is not absolutely

continuous. A Pisot number is an algebraic number with all of its Galois con-

jugates having modulus < 1, as for example the golden ratio λ =
√
5+1
2

. Erdös

result exploits that powers of Pisot numbers are well approximated by integers.

3. (Erdős 1940 [Erd40]) There exists some c > 1/2 such that νλ is absolutely

continuous for almost all λ ∈ [c, 1].

4. (Garsia 1962 [Gar62]) When λ−1 is a Pisot number, then dim νλ < 1.

To continue our exposition, we recall the definition of the Mahler measure Mλ.

Definition 1.4.5. The Mahler measure Mλ of an algebraic number λ is defined as

Mλ = |a|
∏

|zj |>1

|zj|

where a(x− z1) · · · (x− zℓ) is the minimal polynomial of λ over Z.

4. (Garsia 1962 [Gar62]) νλ is absolutely continuous if λ−1 is an algebraic integer

and Mλ = 2. Examples include λ = 2−1/k and the real roots of xp+n − xn − 2

for any max{p, n} ≥ 2.
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5. (Solomyak 1995 [Sol95]) νλ is absolutely continuous for almost all λ ∈ (1/2, 1).

6. (Hochman 2014 [Hoc14]) It follows from Theorem 1.4.2 that dim νλ = 1 if λ is

algebraic, but not the zero of a polynomial with coefficients in −1, 0, 1. Also,

it can be deduced from Theorem 1.4.2 that the set of λ ∈ (1/2, 1) such that

dim νλ < 1 has Hausdorff dimension zero.

7. (Feng-Zhou 2022 [FF22]) Demonstrated that dim νλ ≥ 0.98040856 for all λ ∈
(1/2, 1).

We give special emphasis to the following two recent results by Varjú, both pub-

lished in 2019.

Theorem 1.4.6. ([Var19a]) For every ε > 0 there is a constant cε > 0 such that νλ

is absolutely continuous if λ ∈ (1/2, 1) is algebraic and

λ > 1− cε min{logMλ, (logMλ)
−1−ε}.

Theorem 1.4.6 established the first explicit examples of absolutely continuous

Bernoulli convolutions since the work of Garsia [Gar62] in 1962. For instance, Theo-

rem 1.4.6 implies that νλ is absolutely continuous for λ = 1− p
q
with coprime positive

integers p, q and
p(log q)1+ε

q
≤ cε. (1.4.8)

Theorem 1.4.7. ([Var19b]) For every transcendental λ ∈ (1/2, 1),

dim νλ = 1.

Together with Hochman’s Theorem 1.4.2, Theorem 1.4.7 solves Conjecture 1.4.1

for Bernoulli convolutions. Varjú’s proof strategy does not establish Conjecture 1.4.4

in the case of Bernoulli convolutions. Rather, the proof, roughly speaking, relies on

weakening the separation condition from Theorem 1.4.2 for Bernoulli convolutions, as

was achieved by [BV19], as well as on exploiting subtle number-theoretic properties.

It is a remarkable achievement as it is the first time in the area where something can

be said about genuinely transcendental measures.

Similarly to the work of Breuillard-Varjú [BV19], in my joint paper with Samuel

Kittle [KK25a], we show that a weaker separation condition than exponential sep-

aration on all scales is sufficient for arbitrary self-similar measures to establish the

conclusion of Theorem 1.4.2. The latter leads to an analogue of Theorem 1.4.7 for

complex Bernoulli convolutions.

15



Spectral Gap and Dimension d ≥ 3

As mentioned above, the work of Lindenstrauss-Varjú [LV16] on the local limit the-

orem for Isom(Rd) has applications to self-similar measures. In fact, the following

result is a consequence of Theorem 1.2.9.

Theorem 1.4.8. ([LV16, Theorem 1.3]) Let d ≥ 3 and µU be a probability measure

on SO(d) with a spectral gap on L2(SO(d)). Then for every ℓ ≥ 1 and ε > 0 there

exists a constant ρℓ = ρℓ(d, ε, µU) ∈ (0, 1) depending on d, ℓ, ε and the spectral gap of

µU such that the following holds.

Let µ =
∑k

i=1 piδgi be a finitely supported probability measure on Sim(Rd) without

a common fixed point. Then assume that

U(µ) = µU

as well as for all 1 ≤ i ≤ k,

ρ(gi) ∈ (ρℓ, 1) and pi ≥ ε.

Then the self-similar measure of µ is absolutely continuous with a density in Cℓ.

Before Theorem 1.4.8 there was essentially nothing known on explicit examples of

absolutely continuous self-similar measures beyond the case proved by Garsia [Gar62]

in 1962 on Bernoulli convolutions with Mahler measure Mλ = 2. In addition, Cℓ

densities are established, about which nothing explicit is known for Bernoulli convo-

lutions beyond the case when λ = 2−1/k for k ≥ 2, where Wintner [Win35] proved

that νλ has a density in Ck−2(R).

Furstenberg Measure

Another case of interest are Furstenberg measures. We only discuss SL2(R) as much

of the recent work on Furstenberg measures is only established for this case.

Consider the SL2(R) action on one-dimensional projective space P1(R) = R2/ ∼
given for g = ( a b

c d ) and [ xy ] ∈ P1(R) by

g.

[(
x
y

)]
=

[(
ax+ by
cx+ dy

)]
.

We recall the following definitions.
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Definition 1.4.9. A probability measure µ on SL2(R) is called strongly irreducible

if there is no finite subset S ⊂ P1(R) that is invariant under the action of elements

of the support of µ.

The measure µ is called unbounded if its support is not contained in a compact

subgroup.

It is a well-known theorem of Furstenberg (cf. for example [BL85]) that if µ is a

strongly irreducible, unbounded probability measure on SL2(R), then there exists a

unique probability measure ν on P1(R) that is µ-stationary, i.e. µ ∗ ν = ν. Moreover,

the Lyapunov exponent χµ, given in this setting by

χµ = lim
n→∞

Eg∼µ∗n [log ||g||]
n

,

is positive, for || · || the operator norm. The measure ν is called the Furstenberg

measure of µ. Furstenberg measures and self-similar measures are analogous and

there are numerous recent results in both settings.

Kaimanovich-Le Prince [KLP11] initially conjectured that the Furstenberg mea-

sure of a finitely supported measure is always singular with respect to the volume

measure on P1(R). Although there is evidence for the latter conjecture when the

support of µ generates a discrete group, Bourgain [Bou12] disproved it.

Theorem 1.4.10. ([Bou12]) For every ℓ ≥ 1, there exists a finitely supported measure

on SL2(R) whose Furstenberg measure is absolutely continuous with a density in Cℓ.

As discussed previously, I have proved in Part I of this thesis that the measures

Bourgain constructed satisfy the local limit theorem as in (1.3.2). Moreover, I have

generalised Theorem 1.4.10 to simple Lie groups in Theorem 2.0.8. We also point out

that Theorem 1.4.10 establishes Cℓ-densities as in Theorem 1.4.8.

We next mention the following result on the dimension of Furstenberg measures.

Hochman and Solomyak proved an analogue of Theorem 1.4.2 for Furstenberg mea-

sures.

Theorem 1.4.11. ([HS17]) Let µ be a finitely supported, strongly irreducible and

unbounded probability measure on G. Then the Furstenberg measure ν is exact-

dimensional (as in (1.4.3)). Moreover, if there is c > 0 such that ∆n ≥ e−cn for

all n ≥ 1, then

dim ν = min

{
1,

hµ
2χµ

}
.
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Similarly to (1.4.5), for Furstenberg measures dim ν ≤ min{1, hµ

2χµ
}. Therefore, as

an absolutely continuous Furstenberg measure has dimension 1, for ν to be absolutely

continuous, it must hold hµ ≥ 2χµ. It is therefore natural to conjecture that

hµ
2χµ

> 1

implies absolute continuity for ν. Recently, my collaborator Samuel Kittle [Kit23]

proved a weakening of the latter conjecture and thereby provided numerous new

examples of absolutely continuous Furstenberg measures.

To state Kittle’s result, let d(·, ·) be a left-invariant metric on SL2(R), write

Mn = min

{
d(g, h) for g, h ∈

n⋃
i=0

supp(µ∗n) with g ̸= h

}
,

and set

Sn = − 1

n
logMn and Sµ = lim sup

n→∞
Sn. (1.4.9)

It is proven in Proposition 15.2.3 that if µ is supported on matrices with coefficients

in a number field K of logarithmic height at most L, then

Sµ ≪ L[K : Q]. (1.4.10)

Kittle worked with the following definition, for which we endow P1(R) with a

metric such that it is isometric to S1.

Definition 1.4.12. A measure ν on P1(R) is said to be (α, t)-non-degenerate when-

ever

ν(Bt(x)) ≤ α

for all x ∈ P1(R), there Bt(x) is the open t-ball around x in P1(R).

Theorem 1.4.13. ([Kit23]) For every R > 1, α ∈ (0, 1
3
) and t > 0 there is a constant

C > 0 depending on R,α and t such that the following holds.

Let µ be a finitely supported, strongly irreducible and unbounded probability mea-

sure measure on G such that ||g|| ≤ R for all g ∈ supp(µ) and the Furstenberg measure

is (α, t)-non-degenerate. Then ν is absolutely continuous if

hµ
χµ

> C

(
max

{
1, log

Sµ

hµ

})2

.
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We refer to Kittle’s paper for a discussion on how to apply Theorem 1.4.13 to

construct absolutely continuous Furstenberg measures. As the parameter α needs to

be less than 1
3
, the constructed measures are intricate. To state a concrete example,

denote for n ≥ 1 by

g =

(
n2−1
n2+1

− 2n
n2+1

2n
n2+1

n2−1
n2+1

)
and h =

(
n3+1
n3 0

0 n3

n3+1

)
.

Then the Furstenberg measure of 1
2
(δg + δh) is absolutely continuous for sufficiently

large n.

1.5 Results of Part II

I will state the main result of Part II (joint work with Samuel Kittle) and mention

a few consequences. The main discussion of the result presented will be given in the

introduction to Part II. We vastly generalise and strengthen Varjú’s result on abso-

lutely continuous Bernoulli convolutions (Theorem 1.4.6) and Lindenstrauss-Varjú’s

condition on absolute continuity of self-similar measures in dimension d ≥ 3 (The-

orem 1.4.8). The result can be viewed as a strengthening of Theorem 1.4.13 in the

context of self-similar measures in arbitrary dimensions.

Similarly to the case of Furstenberg measures, it is conjectured that

hµ
|χµ|

> d

implies that ν is absolutely continuous. The main result of Part II establishes a

weakening of this conjecture in the case where the rotation part of the self-similar

measure is fixed and the term d is replaced by a constant depending on the rotation

part and mildly on the separation rate.

We define Sµ as for Theorem 1.4.13 and note that (1.4.10) holds too.

Theorem 1.5.1. (Theorem 7.0.4) Let d ≥ 1 and ε ∈ (0, 1). Given an irreducible

probability measure µU on O(d) there exist constants C ≥ 1 and ρ̃ ∈ (0, 1) depending

on d, ε and µU such that the following holds. Let µ =
∑k

i=1 piδgi be a contracting

probability measure on G without a common fixed point satisfying U(µ) = µU and

pi ≥ ε as well as ρ(gi) ∈ (ρ̃, 1) for all 1 ≤ i ≤ k. Then the self-similar measure ν is

absolutely continuous if

hµ
|χµ|

> C

(
max

{
1, log

Sµ

hµ

})2

.
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While leaving an extensive discussion of Theorem 1.5.1 to the introduction of Part

II, we make the following remarks:

1. Theorem 1.5.1 is significantly simpler to apply than Theorem 1.4.13. However,

the proof method of Theorem 1.5.1 is closely related to that of Theorem 1.4.13.

The reason why these methods lead to a more applicable result for self-similar

measures is because the dynamics of the Sim(Rd) action on Rd is easier to

control than the one of the SL2(R) action on P1(R).

2. Theorem 1.5.1 strengthens Theorem 1.4.6 (see Corollary 7.0.11). For example,

when λ = 1− p
q
∈ (0, 1) for coprime natural numbers p, q, then νλ is absolutely

continuous if
p(log log q)2

q
≤ c,

for c an absolute constant. We deduce similar results for complex Bernoulli

convolutions (Corollary 7.0.12).

3. Although our methods cannot conclude results on Cℓ densities, we can recover

the same condition as Theorem 1.4.8 for absolute continuity. Indeed, as dis-

cussed in Theorem 8.1.5, our methods establish more explicit dependencies on

some of the parameters.

4. An inhomogeneous version of Theorem 1.4.6 (or rather Corollary 7.0.11) is given

in Theorem 7.0.7. Indeed, denote for λ1, λ2 ∈ (0, 1) the similarities

g1(x) = λ1x and g2(x) = λ2x+ 1.

Suppose that λi = 1− pi
qi

for i = 1, 2 and coprime natural numbers pi, qi. Then

the self-similar measure of µ = 1
2
δg1 +

1
2
δg2 is absolutely continuous if

pi(log log qi)
2

qi
≤ c

for i = 1, 2 and c an absolute constant. This established the first absolutely

continuous examples of this form when λ1 ̸= λ2.

5. We construct examples of absolutely continuous self-similar measures for any

given collection of irreducible orthogonal matrices U1, . . . , Uk and translations

b1, . . . , bk, provided they all have algebraic entries (Corollary 7.0.8). We note

that our result also applies in the case where U1, . . . , Uk generates a finite irre-

ducible subgroup of O(d).
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6. We also give examples of absolutely continuous measures that arise from gen-

erating measures that may have expanding similarities in their support, yet

satisfy χµ < 0 (Corollary 7.0.9). We call such measures contracting on average

and they will be further discussed in the introduction to Part II.
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Part I

Local Limit Theorem on
Symmetric Spaces
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Chapter 2

Introduction to Part I

Let G be a group and µ a probability measure on G. A fundamental problem in the

theory of random walks is to describe the distribution of the product of independent

µ-distributed random elements, in other words, to study the measures µ∗n. Local limit

theorems, which establish the existence of a sequence an ∈ R such that anµ
∗n con-

verges to a limit measure, were, as discussed in section 1.2, studied by many authors.

The case where G is commutative or compact is classical (cf. for instance [Sto65],

[IK40]). Breuillard [Bre05b] and Diaconis-Hough [DH21] considered the Heisenberg

group and a local limit theorem for the Isom(Rd) action on Rd was proved by Varjú

[Var15] (Theorem 1.2.7). For the latter case, under further assumptions on µ, results

with strong error terms were shown by Lindenstrauss-Varjú [LV16] (Theorem 1.2.8).

The reader interested in discrete groups may consult Lalley’s local limit theorem for

the free group [Lal93], which was extended by Gouëzel [Gou14] to hyperbolic groups.

The above results establish local limit theorems for the various mentioned set-

tings under weak assumptions on µ. In contrast, the understanding for non-compact

semisimple Lie groups is less developed. The only case where a local limit theorem

is known is by assuming that µ is spread out, i.e. a convolution power µ∗n for some

n ≥ 1 is not singular to the Haar measure. For spread out measures Bougerol [Bou81]

(Theorem 1.3.1) proved in 1981 a local limit theorem.

For a finitely supported measure whose support generates a dense subgroup, the

convolutions µ∗n become increasingly well-distributed, more and more resembling a

continuous measure. Therefore Bougerol’s theorem is expected to hold. In this part

of the thesis we give the first examples of finitely supported measures on semisimple

Lie groups that satisfy Bougerol’s theorem for the Lie group acting on the associated

symmetric space. Indeed, we reduce the question at hand to understanding spectral

properties of a natural operator S0 = S0(µ) associated to µ.
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The operator S0 may be viewed as the Fourier transform of the measure µ at 0 and

was studied by Bourgain [Bou12] in his construction of a finitely supported measure

on SL2(R) with absolutely continuous Furstenberg measure. Further results on S0

are due to [BISG17], generalizing [Bou12], as well as [BQ18]. These results imply the

necessary spectral properties for S0 in order to establish local limit theorems and will

be discussed after stating Theorem 2.0.3. In certain cases, the necessary results for

S0 will also be proved following closely Bourgain’s [Bou12] original ideas.

In addition, we deduce quantitative error rates for the local limit theorem (Theo-

rem 2.0.2 and Theorem 2.0.3).

We proceed with stating Bougerol’s theorem more precisely than in Theorem 1.3.1.

Recall that a measure µ on G is said to be non-degenerate whenever the semigroup

generated by its support is dense in G. Let G be a non-compact connected semisimple

Lie group with finite center. For a probability measure µ on G, denote σ = ||λG(µ)||,
where λG is the left regular representation and λG(µ) =

∫
λG(g) dµ(g). Furthermore

denote by p the number of positive indivisible roots of G and by d the rank of G

(these notions are further discussed in section 3.1) and write ℓ = 2p + d. For a non-

degenerate and spread out probability measure µ with finite second moment (defined

in (2.0.2)), Bougerol [Bou81] showed that there is a continuous function ψ0 on G

(depending on µ) such that

lim
n→∞

nℓ/2

σn

∫
f(g) dµ∗n(g) =

∫
f(g)ψ0(g) dmG(g) (2.0.1)

for all f ∈ C∞
c (G). The function ψ0 satisfies µ ∗ ψ0 = ψ0 ∗ µ = σψ0.

To introduce further notation, let K be a maximal compact subgroup of G and

denote by X = G/K the associated symmetric space. We recall the definition of

the Furstenberg boundary. Let G = KAN be an Iwasawa decomposition of G as

introduced in section 3.1. Let M be the centralizer of A in K and write P =MAN .

The Furstenberg boundary of G is defined as Ω = G/P = K/M . The measure mΩ is

the pushforward of the Haar probability measure mK onto Ω.

Denote by ρ0 the Koopman unitary representation of the G action on the mea-

sure space (Ω,mΩ), which is also called the 0-principal series representation (see

section 3.1). For a probability measure µ on G, consider the operator S0 = ρ0(µ) =∫
ρ0(g) dµ(g). In order to state the first theorem, recall that a bounded operator

is called quasicompact if the essential spectral radius ρess(A) (defined in (3.1.1)) is

strictly less than the spectral radius.
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Let a = Lie(A) and choose a closed Weyl chamber a+. Then for every g ∈ G

denote by κ(g) ∈ a+ the unique element such that g ∈ K exp(κ(g))K. We say that µ

has finite k-th moment for some k ≥ 1 if∫
|κ(g)|k dµ(g) <∞. (2.0.2)

Theorem 2.0.1. (Local limit theorem) Let G be a non-compact connected semisimple

Lie group with finite center. Choose a maximal compact subgroup K and denote

X = G/K. Let µ be a non-degenerate probability measure on G with finite second

moment and assume that S0 = ρ0(µ) is quasicompact. Write σ = ||λG(µ)|| = ||S0||
and ℓ = 2p + d for p the number of indivisible positive roots of G and d the rank of

G.

Then there is a continuous real-valued function ψ0 on G satisfying µ∗ψ0 = ψ0∗µ =

σψ0 such that for x0 ∈ X and f ∈ C∞
c (X),

lim
n→∞

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =

∫
f(g.x0)ψ0(g) dmG(g). (2.0.3)

Moreover, the operator S0 has a unique σ-eigenfunction η0 ∈ L2(Ω) of unit norm and

there exists a unique σ-eigenfunction η′0 of S∗
0 satisfying ⟨η0, η′0⟩ = 1. Then η0 and η′0

are positive almost surely and ψ0 is given as ψ0(g) = cµ · ⟨η0, ρ0(g)η′0⟩ for cµ > 0 a

constant depending on µ.

The only difference between (2.0.1) and (2.0.3) is that the latter is only proved on

X. Indeed, the limit function of Bougerol’s theorem arises as in Theorem 2.0.1 and

since a non-degenerate, spread out measure µ satisfies that S0 is quasicompact (cf.

Proposition 2.2.1 of [Bou81]), Theorem 2.0.1 is a generalization of Bougerol’s theorem

on X. We furthermore mention that it is conjectured that (2.0.1) and therefore

also (2.0.3) holds for every non-degenerate probability measure (with finite second

moment) on G.

Having stated Theorem 2.0.1, the question arises to give quantitative error rates

for (2.0.3). Towards this aim and in order to motivate Theorem 2.0.2, we discuss

G = R. Let µ be a non-degenerate measure on R with mean zero and variance σ2 <∞.

The local limit theorem on R (cf. [Bre92] section 7.4) states that
√
nµ∗n → mR√

2πσ2
.

Denote

ηn(x) =
1√
2πσ2

exp

(
− x2

2nσ2

)
.

Using that |µ̂(r)| < 1 for r ̸= 0 and µ̂(r) =
∫
eirx dµ(x) the Fourier transform of µ,

one can show for f ∈ C∞(R) a smooth function whose Fourier transform is compactly
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supported that there is a constant cf = cf (µ) depending on µ and the support of f̂

such that

√
nµ∗n(f) =

∫
f(x)ηn(x) dmR(x) +

(
Oµ(n

−1) +Oµ,f (e
−cfn)

)
||f ||1, (2.0.4)

where the first implied constant depends on µ and the second on µ and the support

of f̂ . The result (2.0.4) may be referred to as the local central limit theorem as

it implies the local limit theorem as well as the central limit theorem. Using that

| 1√
2πσ2

− ηn(x)| ≪σ n
−1x2, it follows that

√
nµ∗n(f) =

1√
2πσ2

∫
f(x) dmR(x) +Oµ(n

−1||f ||∗) +Oµ,f (e
−cfn||f ||1) (2.0.5)

for

||f ||∗ =
∫

|f(x)|(1 + x2) dmR(x).

We deduce the same behaviour as (2.0.5) even with matching error terms for

the G action on its symmetric space under the assumption that S0 is quasicompact.

Choosing a maximal compact subgroup K corresponds to fixing the origin o = eK ∈
X of X. Denote by dX(·, ·) the distance function induced by a Riemannian metric on

X (for which X is a symmetric space, see (3.1.10)). In the theorem below we refer to

the Fourier transform of a function f ∈ C∞(X) as discussed in section 3.1. For the

asymptotic notation used see also section 3.1.

Theorem 2.0.2. (Local limit theorem with weak quantitative error rates) With the

notation and assumptions from Theorem 2.0.1, assume further that µ has finite fourth

moment. Then for f ∈ C∞(X) with compactly supported Fourier transform, there is

a constant cf = cf (µ) > 0 depending on µ and the support of f̂ such that for n ≥ 1

and all x0 ∈ X,

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =

∫
f(g.x0)ψ0(g) dmG(g) (2.0.6)

+Oµ(n
−1||f ||∗ + n−1dX(x0, o)

2||f ||1) +Oµ,f (e
−cfn||f ||1),

where the first implied constant depends on µ, the second on µ and the support of f̂

and

||f ||∗ =
∫

|f(x)|(1 + dX(x, o)
2) dmX(x). (2.0.7)

For G = R, it is only possible to give strong error rates for (2.0.5) if one gains

control over the behaviour of the function |µ̂(r)| as r → ∞, which as is shown in
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[Bre05a] is equivalent to assuming certain Diophantine properties on the support of

µ.

In similar vein, we give strong error rates for (2.0.6) under a suitable Fourier decay

assumption. The Schwartz space S (X) of the theorem below is defined in section 3.1.

For r ∈ a∗ denote by ρr the r-principal series representation defined in (3.1.14) and

write

Sr = ρr(µ).

Theorem 2.0.3. (Local limit theorem with strong quantitative error rates) With the

notation and assumptions from Theorem 2.0.1, assume further that µ has finite fourth

moment and that

sup
|r|≥1

||Sr|| < ||S0||. (2.0.8)

Then for f ∈ S (X), x0 ∈ X and n ≥ 1,

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =

∫
f(g.x0)ψ0(g) dmG(g) (2.0.9)

+Oµ(n
−1||f ||∗ + n−1dX(x0, o)

2||f ||1 + e−cn||f ||Hs),

where c = c(µ) is a constant depending on µ, s = 1
2
(dimX +1), || · ||Hs is the Sobolev

norm (3.1.18) of degree s and the implied constant depends only on µ. Moreover,

the assumption (2.0.8) holds whenever µ is spread out or bi-K-invariant (i.e. µ =

mK ∗ µ ∗mK).

We proceed with discussing spectral properties of the operator S0 and also related

results on absolute continuity of the Furstenberg measure. In order to introduce

convenient notation, the definition of weakly Diophantine measures introduced in

[BdS16] and stated in section 1.2 is recalled. We will need to be quantitative about

the constants, so we use the following terminology.

Definition 2.0.4. Let G be a connected Lie group, µ a probability measure on G

and let c1, c2 > 0. The measure µ is called (c1, c2)-weakly Diophantine or simply

(c1, c2)-Diophantine if

sup
H<G

µ∗n(Be−c1n(H)) ≤ e−c2n

for sufficiently large n, where Be−c1n(H) = {g ∈ G : d(g,H) < e−c1n} and the

supremum is taken over all closed connected subgroups H of G.
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As mentioned in section 1.2, weakly Diophantine measures are useful in under-

standing random walks on compact groups. Generalizing the Bourgain-Gamburd

method developed for SU(2) by [BG08] and for SU(d) in [BG12], it was shown in

[BdS16] for K a compact connected simple Lie group, that a symmetric measure µ is

(c1, c2)-Diophantine for some c1, c2 > 0 if and only if λK(µ) has strong spectral gap

on L2(K) (Definition 4.2.1), in this setting being equivalent to ||λK(µ)|L2
0(K)||op < 1

for L2
0(K) = {f ∈ L2(K) : mK(f) = 0}. Indeed, the essential spectral radius of

λK(µ) can be bounded in terms of K, c1 and c2. As discussed in section 1.2, strong

spectral gap on L2
0(K) can be used to deduce that µ∗n equidistributes towards the

Haar measure with exponential speed.

For finitely supported measures, most known spectral results for S0 also rely on the

Bourgain-Gamburd method. However, one requires stronger Diophantine conditions.

Indeed, as in contrast to compact groups it is necessary to control the exponential

norm growth of the µ-random walk on G, we have to demand that the measure

is (c1, c2)-Diophantine while being close to the identity in terms of c1 and c2. We

therefore introduce the following definition.

Definition 2.0.5. Let G be a connected Lie group, µ a probability measure on G and

let c1, c2, ε > 0. The measure µ is called (c1, c2, ε)-Diophantine if

(i) µ is (c1 log
1
ε
, c2 log

1
ε
)-Diophantine, i.e. for n large enough,

sup
H<G

µ∗n(Bεc1n(H)) ≤ εc2n.

(ii) supp(µ) ⊂ Bε(e).

We state a result of [BISG17] showing that there is an abundant collection of

examples of (c1, c2, ε)- Diophantine measures for arbitrarily small ε.

Theorem 2.0.6. (Theorem 3.1 of [BISG17]) Let G be a connected simple Lie group

with finite center and adjoint representation Ad : G → GL(g). Let Γ < G be a

countable dense subgroup and assume that there is a basis of g such that Ad(γ) is

algebraic with respect to that basis for every γ ∈ Γ.

Then there exist c1, c2 > 0 such that for every ε0 > 0 there is 0 < ε < ε0 and

a finitely supported symmetric (c1, c2, ε)-Diophantine probability measure µ satisfying

supp(µ) ⊂ Γ ∩Bε.

Using the above defined notion of Diophantine measures, one can establish the

following result on quasicompactness of S0. Together with Theorem 2.0.6, numerous

examples of finitely supported measures satisfying (2.0.3) are provided.
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Theorem 2.0.7. Let G be a non-compact connected simple Lie group with finite

center. Let c1, c2 > 0. Then there is ε0 = ε0(G, c1, c2) > 0 depending on G and

c1, c2 > 0, such that every symmetric and (c1, c2, ε)-Diophantine probability measure

µ with ε ≤ ε0 satisfies that S0 = ρ0(µ) is quasicompact. In particular, Theorem 2.0.1

and Theorem 2.0.2 holds for µ.

Theorem 2.0.7 is a straightforward consequence of the techniques and results de-

veloped in [BISG17] and will be deduced in section 6.0.1. Under the additional as-

sumption that the maximal compact subgroup is semisimple, we offer an alternative

proof following more closely the method by Bourgain [Bou12], leading to marginally

stronger results (Theorem 6.0.2). Indeed, using an idea from [LV16], we simplify

Bourgain’s original approach by exploiting that the irreducible representations of K

have high dimension.

We proceed with discussing the Furstenberg measure. Let µ be a measure on G

whose support generates a Zariski dense subgroup. Then the Furstenberg measure

of µ is the unique µ-stationary Borel probability measure νF on the boundary Ω

(cf. for example [GdM89]). It was initially conjectured by Kaimanovich-Le Prince

[KLP11] that the Furstenberg measure of a finitely supported measure is singular

to the Haar measure mΩ. However Bourgain [Bou12] and Bárány-Pollicott-Simon

[BPS12] disproved the latter conjecture, with Bourgain [Bou12] giving an explicit

construction while [BPS12] exploiting probabilistic methods.

[BQ18] also provide examples of finitely supported measures with absolutely con-

tinuous Furstenberg measure, yet their construction does not lead to results as ver-

satile as Theorem 2.0.6. It is apparent from their proof, that S0 is also quasicompact

for these examples.

A further result of [Bou12] is the construction of finitely supported measures on

SL2(R) satisfying dνF
dmΩ

∈ Ck(Ω) for any k ∈ Z≥1. Following Bourgain’s technique, we

also deduce smoothness results for the Furstenberg measure for arbitrary simple Lie

groups.

Theorem 2.0.8. Let G be a non-compact connected simple Lie group with finite

center. Let c1, c2 > 0 and m ∈ Z≥1. Then there is εm = εm(G, c1, c2) > 0 depending

on G, c1, c2 and m such that every symmetric and (c1, c2, ε)-Diophantine probability

measure µ with ε ≤ εm has absolutely continuous Furstenberg measure with density

in Cm(Ω).

After publishing [Kog22], the author became aware of [Leq22] who establishes

a similar yet less general result to Theorem 2.0.8. Since our proof is short and
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differs from [Leq22] for instance in introducing Agmon’s inequality (Lemma 6.4.2) for

compact Lie groups, it is included in this thesis.

We comment on the organization of Part I. After reviewing the necessary notation

and giving an outline of proofs in section 3, we discuss some preliminary results in

section 4. Then the local limit theorems Theorem 2.0.1, Theorem 2.0.2 and Theo-

rem 2.0.3 are proved in section 5. Finally, quasicompactness of S0 and the Furstenberg

measure are discussed in section 6, establishing Theorem 2.0.7 and Theorem 2.0.8.
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Chapter 3

Notation and Outline

3.1 Notation for Part I

In this section we collect the notations used in Part I. The reader may also recall the

notation stated in section 1.1.

Throughout Part I of this thesis, we denote by G a non-compact connected

semisimple Lie group with finite center, by K a maximal compact subgroup of G

and write X = G/K for the associated symmetric space.

Let B be a Banach space and let A : B → B be a bounded operator. Recall

that A is called a Fredholm operator if there exists a bounded operator T such that

TA− Id and AT − Id are compact operators. Denote by spec(A) the spectrum of A.

The essential spectrum specess(A) is defined as the set of complex numbers λ such that

A− λ · Id is not Fredholm. The spectral radius is defined as ρ(A) = maxλ∈spec(A) |λ|
and the essential spectral radius as

ρess(A) = max
λ∈specess(A)

|λ|, (3.1.1)

if ρess(A) ̸= ∅ and otherwise ρess(A) = 0.

For a locally compact Hausdorff group H, writemH for a fixed choice of Haar mea-

sure. Whenever H is compact, mH is the Haar probability measure. The left-regular

representation is denoted λH while we write ρH for the right regular representation.

If µ is a finite measure on H and π : H → U (H ) is a unitary representation,

where H is a Hilbert space and U (H ) the space of unitary operators H → H ,

then

π(µ) =

∫
πg dµ(g) (3.1.2)

is the operator uniquely characterized by ⟨π(µ)v, w⟩ =
∫
⟨πgv, w⟩ dµ(g) for v, w ∈ H .
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For a group H with metric dH , for R > 0 and x ∈ H we will denote by BR(x) =

{y ∈ H : dH(y, x) < R} and abbreviate BR = BR(e) for e ∈ H the identity

element. On G we fix a left invariant metric such that BR(g) = gBR(e). For a closed

subset H ′ ⊂ H we define BR(H
′) = {h ∈ H : d(h,H ′) < R}, where d(h,H ′) =

suph′∈H′ d(h, h′).

We first fix notation for structure theory on K. Write T for a maximal torus in

K with Lie algebra t and real dual Lie algebra t∗. Let WK be the Weyl group and

we fix a WK-invariant inner product on t, inducing a WK-invariant inner product on

t∗. The set of real roots is denoted as R and we choose a fundamental Weyl chamber

C which we consider as a subset of t∗. The fundamental Weyl chamber determines a

basis S of the real roots and the set of positive roots R+. We denote by I∗ ⊂ t∗ the

set of integral forms. Then (cf. [BtD85] section 6) the set C ∩ I∗ parametrizes the

irreducible representations of K.

For γ ∈ C ∩ I∗ denote by πγ the associated irreducible unitary representation of

K and by Mγ the span of matrix coefficients of πγ. By the Peter-Weyl Theorem it

holds that

L2(K) =
⊕

γ∈C∩I∗
Mγ, (3.1.3)

where we used the convention applied throughout this paper that by a direct sum we

denote the closure of the algebraic direct sum of the involved vector spaces. For any

γ ∈ C ∩ I∗ and an orthonormal basis v1, . . . , vdγ of πγ, we set χγ
ij(k) = ⟨πγ(k)vi, vj⟩.

Then the set of functions d
1/2
γ χγ

ij forms an orthonormal basis of L2(K). For φ ∈
L2(K), we set φ̂γ

ij = aγij = ⟨φ, d1/2γ χγ
ij⟩. For φ ∈ C∞(K) and all k ∈ K,

φ(k) =
∑

γ∈C∩I∗

dγ∑
i,j=1

d1/2γ aγijχ
γ
ij(k). (3.1.4)

We want to group together functions on K that oscillate at roughly the same rate.

Therefore, one defines

V0 =
⊕

γ∈C∩I∗
0≤||γ||<1

Mγ and Vℓ =
⊕

γ∈C∩I∗
2ℓ−1≤||γ||<2ℓ

Mγ (3.1.5)

for ℓ ≥ 1. The decomposition

L2(K) =
⊕
ℓ≥0

Vℓ (3.1.6)

is referred to as the Littlewood-Paley decomposition of L2(K). For ℓ ≥ 0 we denote

by πℓ the orthogonal projection from L2(K) to Vℓ. Therefore any φ ∈ L2(K) can
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be decomposed as φ =
∑

ℓ≥0 πℓφ. For Littlewood-Paley decompositions on groups in

more general contexts we refer the reader to [MKMSG22].

We finally define Sobolev spaces and Sobolev norms on K. Denote by k the Lie

algebra ofK and fix an orthonormal basis X1, . . . , Xn of k. Then the Casimir operator

given by △ = −
∑n

i=1Xi ◦Xi is a central element of the universal enveloping algebra

U(k). For γ ∈ C ∩ I∗ denote by λγ the eigenvalue of △ acting on πγ. For s ∈ Z≥0, we

define

Hs(K) = {φ ∈ L2(K) : λK(△)s/2φ ∈ L2(K)} (3.1.7)

=

φ =
∑

γ∈C∩I∗
φγ ∈

⊕
γ∈C∩I∗

Mγ : ||φ||2Hs =
∑

γ∈C∩I∗
λsγ||φγ||22 <∞

 .

We also need structure theory for G. We take care not to confuse the notation

introduced for the structure theory of K. The Lie algebra of G is denoted as g and

we choose a Cartan decomposition g = k⊕ a⊕ n for k the Lie algebra of K. Denote

by a∗ the real dual of a. Let Σ be the sets of roots, choose a closed Weyl chamber

a+ and let Σ+ = {r1, . . . , rk} ⊂ a∗ be the system of positive roots. For a root r ∈ Σ

write m(r) for the multiplicity of r and denote by δ = 1
2

∑
r∈Σ+ m(r)r the half sum of

the positive roots counted with multiplicities. We fix a norm | · | on g arising from an

Ad-invariant inner product. The latter norm restricts to a and induces the operator

norm on a∗.

Denote A = exp(a), N = exp(n) and P+ = AN . Then (cf. [Kna02] chapter

VI) the multiplication map K × A × N → G is a diffeomorphism, giving rise to the

Iwasawa decomposition G = KAN . Write further K : G → K, A : G → A and

N : G → N for the maps induced from the Iwasawa decomposition and the map

H : G→ a is defined for g ∈ G as

H(g) = logA(g). (3.1.8)

Set A+ = exp(a+). Then the Cartan decomposition G = KA+K holds and denote

by κ : G→ a+ the map uniquely characterized by g ∈ K exp(κ(g))K. We furthermore

define

||g|| = |κ(g)|. (3.1.9)

On the symmetric space X = G/K, one defines the metric dX as

dX(g.o, o) = |κ(g)| (3.1.10)
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for the origin o = K ∈ X and all g ∈ G. Then for g ∈ KA it holds that |H(g)| =
dX(g.o, o) = |κ(g)|. Recall Exercise B2 (iv) from Chapter VI of [Hel78] stating that

d(a.o, o) ≤ d(an.o, o) for all a ∈ A and n ∈ N , which follows by applying suitably

that the manifolds A.o and N.o are perpendicular at their unique intersection point

o ∈ X. It therefore holds for all g ∈ G that

|H(g)| ≤ |κ(g)| = ||g||. (3.1.11)

For each g ∈ G consider the diffeomorphism

αg : K → K, k 7→ αg(k) = K(gk).

The map G → Diff(K), g 7→ αg defines an action of G on K. Denote by α′
g the

Radon-Nikodym derivative of (αg)∗mK with respect to mK . Then by I Lemma 5.19

of [Hel84],

α′
g(k) =

d(αg)∗mK

dmK

(k) = e−2δH(g−1k). (3.1.12)

For r ∈ a∗, we consider the unitary representation ρ+r : G→ L2(K) defined for g ∈ G

and φ ∈ L2(K) as

(ρ+r (g)φ)(k) = e−(δ+ir)H(g−1k)φ(K(g−1k)) (3.1.13)

with k ∈ K.

The representation (3.1.13) is not irreducible in general. In order to make it

irreducible, denote by M the centralizer of A in K and write P = MAN for the

associated minimal parabolic subgroup. The Furstenberg boundary Ω = G/P can be

identified with K/M and we therefore view functions on Ω as M -invariant functions

on K. The probability measure mΩ is the pushforward of mK under the projection

map. For r ∈ a∗ we consider the r-principal series ρr : G → U (L2(Ω)) defined for

g ∈ G and φ ∈ L2(Ω),

(ρr(g)φ)(ω) = e−(δ+ir)H(g−1ω)φ(g−1ω) (3.1.14)

for ω ∈ Ω where we denote by g−1ω the element K(g−1k)M for any representative

ω = kM with k ∈ K and note that H(g−1ω) does not depend on the representative

of ω (cf. [War72] section 5.5). The principal series is irreducible.

The Weyl group WG of G is defined as the group quotient NK(a)/ZK(a), where

NK(a) = {k ∈ K : Ad(k)a ⊂ a} and ZK(a) = M = {k ∈ K : ka = ak for all a ∈
A}.
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We call a root r ∈ Σ indivisible if 1
2
r is not a root and we order the positive roots

in such a way that r1, . . . , rp are the indivisible roots. For any complex linear form r

on a denote

I(r) =

(
p∏

ℓ=1

B

(
m(rℓ)

2
,
⟨r, rℓ⟩
⟨rℓ, rℓ⟩

))
·

(
k∏

ℓ=p+1

B

(
m(rℓ)

2
,
m(rℓ/2)

4
+

⟨r, rℓ⟩
⟨rℓ, rℓ⟩

))
,

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt is the Beta function. We further set for r ∈ a∗,

c(r) =
I(ir)

I(δ)
.

The spherical function of parameter r ∈ a∗ is defined as ϕr(g) = ⟨ρr(g)1, 1⟩.Denote
by D(G) the set of differential operators on G (see [Hel84] chapter 2). The Harish-

Chandra Schwartz space introduced in [HC58] (see further page 230 of [Wal88]) is

defined as

S (G) = {f ∈ C∞(G) : (1 + |H(g)|)ℓ|Df |(g) ≪f,D,ℓ ϕ0(g) for all D ∈ D(G), ℓ ≥ 0}.
(3.1.15)

The Schwartz space on X, denoted S (X), is defined as the set of right K-invariant

functions in S (G).

Recall that a function f on G is called bi-K-invariant or radial if f(k1gk2) = f(g)

for all g ∈ G and k1, k2 ∈ K. For a radial function f ∈ S (G) we denote by ρr(f)

as in (3.1.2) the operator
∫
f(g)ρr(g) dmG(g). We then define the spherical Fourier

transform as

f̂(r) = ⟨1, ρr(f)1⟩ = ⟨ρ−r(f)1, 1⟩ =
∫
G

f(g)ϕ−r(g) dmG(g).

Note that by using that f is bi-K-invariant, it follows that for all ω ∈ Ω we have

f̂(r) = (ρ−r(f)1)(ω). For all g ∈ G, the spherical Fourier inversion formula holds

f(g) =

∫
a∗
f̂(r)ϕr(g) dνsph(r), (3.1.16)

where dνsph(r) = |c(r)|−2dma∗(r) is the spherical Plancharel measure.

We furthermore define for f ∈ S (X), r ∈ a∗ and ω ∈ Ω,

f̂(r, ω) = (ρ−r(f)1)(ω) =

∫
G

f(g)(ρ−r(g)1)(ω) dmG(g).

Then it follows by a brief calculation from (3.1.16), for f ∈ S (X) and g ∈ G,

f(g) =

∫
a∗

∫
Ω

f̂(r, ω)(ρr(g)1)(ω) dmΩ(ω)dνsph(r). (3.1.17)
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We say that f ∈ S (X) has compactly supported Fourier transform if there is a

constant R > 0 such that f̂(r, ω) = 0 for |r| ≥ R and ω ∈ Ω.

We will further need Sobolev spaces and Sobolev norms on X, defined for s ≥ 0

as

Hs(X) =

{
f ∈ L2(X) : ||f ||2Hs =

∫
a∗
||f̂(r, ·)||2L2(Ω)(1 + |r|2)s dνsph(r) <∞

}
.

(3.1.18)

It holds that C∞
c (X) ⊂ S (X) ⊂ Hs(X) for all s ≥ 0 (c.f. [Hel84] chapter IV).

For a probability measure µ on G, we write for r ∈ a∗

S+
r = ρ+r (µ) and Sr = ρr(µ), (3.1.19)

using the definition (3.1.2) for the unitary representations ρ+r and ρr.

We further use the notation σ = ||S0||. SinceMAN is an amenable group, it holds

by section D of [Gui80] that σ = ||λG(µ)||. If λ(r) ∈ C satisfying |λ(r)| = ρ(Sr) is in

the discrete spectrum of Sr, has geometric multiplicity one and is the unique element

of spec(Sr) on the circle of radius ρ(Sr), then we denote by ηr ∈ L2(Ω) the λ(r)-

eigenfunction of Sr with unit norm. Furthermore, if the same properties hold for S∗
r

and λ(r), choose η′r the S∗
r -eigenfunction with eigenvalue λ(r) satisfying ⟨η′r, ηr⟩ = 1,

provided there exists such an η′r. Then we denote

ψµ,r(g) = ⟨ηr, ρr(g)η′r⟩ (3.1.20)

for g ∈ G.

The operator T0 : L
2(Ω) → L2(Ω) is defined as

T0φ =

∫
φ ◦ αg dµ(g)

for φ ∈ L2(Ω), where we equally denote by αg : Ω → Ω the map on Ω induced by

αg : K → K, and

T+
0 : L2(K) → L2(K) defined as T+

0 φ =

∫
φ ◦ αg dµ(g)

for φ ∈ L2(K).
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3.2 Outline of Proofs

For the proof of Theorem 2.0.1, Theorem 2.0.2 and Theorem 2.0.3 one uses the Fourier

inversion formula on X to reduce the question at hand to spectral problems about

the operators Sr. Indeed, by (3.1.17) it holds for x0 = h0K ∈ X with h0 ∈ G and

f ∈ S (X),

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =
nℓ/2

σn

∫
a∗

∫
Ω

f̂(r, ω)(Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r). (3.2.1)

One then decomposes (3.2.1) into high and low frequencies. Namely for δ0 ∈ (0, 1)

small enough depending on µ and for f ∈ S (X),

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =
nℓ/2

σn

∫
|r|>δ0

∫
Ω

f̂(r, ω)(Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r)

(3.2.2)

+
nℓ/2

σn

∫
|r|≤δ0

∫
Ω

f̂(r, ω)(Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r).

(3.2.3)

The following spectral properties of Sr are used to deal with the arising terms:

(1) There are operators E0 and D0 such that

S0 = σE0 +D0, (3.2.4)

where E0 is a projection to a one-dimensional subspace, E0 ◦D0 = D0 ◦E0 = 0

and D0 satisfies ρ(D0) < σ = ||S0||. In section 4.2 we refer to the property

(3.2.4) as strong spectral gap.

(2) For |r| ≤ δ0, the operator Sr has a decomposition as (3.2.4), i.e.

Sr = λ(r)Er +Dr, (3.2.5)

for Er and Dr as in (3.2.4).

(3) For any r ̸= 0, ρ(Sr) < σ = ||S0||.

One deduces (1) from quasicompactness of S0 and by using that S0 is a positive

operator in the sense of Banach lattices (c.f. section 4.2). (2) will follow as quasi-

compactness is an open property under certain assumptions (Corollary 4.1.2) and (3)

by a convexity argument similar to an argument of Conze-Guivarc’h [CG13]. The

necessary spectral properties are proved in section 5.1.
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Properties (1) and (2) will be necessary to deal with low frequencies (3.2.3),

whereas (3) is used for high frequencies (3.2.2). However, (3) only allows to prove a

decay for (3.2.2) either by assuming that f has compactly supported Fourier transform

or by imposing the stronger assumption (sup|r|≥1 ||Sr||) < ||S0|| of Theorem 2.0.3. One

then deduces Theorem 2.0.1 and Theorem 2.0.2 by approximating a given function

f ∈ S (X) with functions whose Fourier transform is compactly supported.

A novel contribution is the observation that the functions ψµ,r as defined in

(3.1.20), where |r| ≤ δ0 such that (3.2.5) holds, satisfy∫
f · ψµ,r dmG =

∫
Ω

f̂(r, ω)(Er1)(ω) dmΩ(ω) (3.2.6)

for f ∈ S (X) (see Lemma 5.2.1). We further mention that (3.2.6) may be viewed as

an analogue of the formula∫
f(x)e−σ2 x2

2 dmR(x) =
1√
2πσ2

∫
f̂(r)e−

r2

2σ2 dmR(r) (3.2.7)

on R, where f ∈ S (R) and σ > 0, which is used in the proof of the local limit

theorem on R.
The outline of the proof of the local limit theorem is concluded. We next discuss

quasicompactness of S0. As in [Bou12] and [BISG17], the main tool are flattening

statements for µ. These results, which will be recalled in section 4.4, have as a

consequence that for any γ > 0 and x ∈ G,

µ∗n(Bδ(x)) ≪ δdimG−γ (3.2.8)

for δ small enough depending on µ and γ and n ≍µ,γ log 1
δ
. A measure with property

(3.2.8) can be referred to as having high dimension, since an absolutely continuous

measure ν satisfies ν(Bδ(x)) ≍ν δ
dimG.

The proof of quasicompactness of S0 comprises two steps. First we will show that

the restricted operator S0|Vℓ
has small norm for all ℓ large enough, where Vℓ is the

Littlewood-Paley space introduced in (3.1.5). The second step is to use the latter

to deduce that S0 restricted to
⊕

ℓ≥L Vℓ has small norm for a suitable L > 0 and

therefore is quasicompact. This exploits the first step and that the spaces Vℓ are

mutually orthogonal. Indeed, since the measure µ in question is supported close to

the identity, the spaces S0Vℓ and Vℓ′ for ℓ ̸= ℓ′ are almost orthogonal too.

For the first step, one uses that for φ ∈ Vℓ the matrix coefficients |⟨ρ0(g)φ, φ⟩| are
small on average. Indeed, it is shown in section 4.5, following [LV16], that

1

mG(BR)

∫
BR

|⟨ρ0(g)φ, φ⟩| dmG(g) ≪ 2−ℓ/2||φ||2. (3.2.9)
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Since µ has high dimension, we are able to use (3.2.9) to give strong estimates for

⟨S0φ, φ⟩ and therefore conclude a bound on the operator norm of S0|Vℓ
.

In order to use (3.2.9), we ought to control the size of the support of µ∗n while en-

suring that µ∗n has high dimension (3.2.8) quickly enough. Analogous to [Bou12] and

[BISG17], this is where the (c1, c2, ε)-Diophantine property comes into play. Indeed,

as ε becomes smaller, a (c1, c2, ε)-Diophantine measure is increasingly rapidly non-

concentrated on subgroups and therefore a strong flattening lemma applies (Lemma 4.4.2).

The latter holds while the measure is still close to the identity, which will allow us to

conclude the claimed properties for S0.

3.3 Relation to Other Work

As mentioned in the introduction, the necessary results for S0 are also proved in

[BISG17]. The main difference between [BISG17] and our proof is in the use of

a different Littlewood-Paley decomposition. [BISG17] develop a Littlewood-Paley

decomposition on G, which leads to more general results as they are able to deal with

all possible quotients of G, while we work with the Littlewood-Paley decomposition

on K, leading to marginally stronger results.

For the Isom(Rd) action on Rd, a similar representation theoretic decomposition

to (3.1.17) holds for a suitable family of unitary representations ρr : Isom(Rd) →
U (L2(Sd−1)) for r ∈ R. In [LV16], a local limit theorem with strong error terms as in

Theorem 2.0.3 is proved by just assuming that S0 = ρ0(µ) is quasicompact. Indeed

they establish (2.0.8) for their setting by solely assuming that S0 is quasicompact. It

seems reasonable to believe that the same result may hold for a semisimple Lie group

acting on its symmetric space, yet the proof of [LV16] is not transferable as several

properties only applicable to Isom(Rd) are used.

We further mention that in [Tol00] a Berry-Essen result is shown on G for a

probability measure with a smooth density of compact support.
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Chapter 4

Preliminary Results

4.1 Quasicompact Operators

Throughout this section we denote by B a separable Banach space and the reader

may recall the notations introduced in section 3.1. A bounded operator A : B →
B is called quasicompact if ρess(A) < ρ(A). In this secton we show that being

quasicompact is an open property. We first state a useful lemma.

Lemma 4.1.1. For any bounded operator A : B → B the following properties hold:

(i)

ρess(A) = inf
U compact

ρ(A− U).

(ii) A is quasicompact whenever A∗ is. Moreover,

ρess(A
∗) = ρess(A).

(ii) The set of spectral values of A with modulus > ρess(A) is at most countable and

all of its accumulation points have modulus ρess(A).

Proof. (i) follows as the essential spectral radius is the spectral radius of the image

of A in the Calkin algebra (c.f section 2.4 in the appendix of [BQ16]) and (ii) as a

bounded operator is Fredholm whenever its adjoint is (Corollary 2.12 of appendix B

in [BQ16]). Finally (iii) is contained in Proposition 2.14 of appendix B in [BQ16].

Corollary 4.1.2. Let An : H → H be a sequence of bounded operators on a Hilbert

space H converging in operator norm to a bounded operator A : H → H . If A is

quasicompact then so is An for n large enough and there is ε > 0 such that for n large

enough ρess(An) < ρess(A) + ε < ρ(A)− ε < ρ(An).
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Proof. By Lemma 4.1.1 (i) for any ε > 0 there is a compact operator U (depending on

ε) such that ρ(A−U) < ρess(A)+ε. We choose a small ε > 0 such that ρess(A)+2ε <

ρ(A) − 2ε. Recall that the spectral radius is upper semi-continuous and since A is

quasicompact, A is a continuity point for the spectral radius (cf. [New51]). Thus for

large enough n it holds that ρ(An−U) < ρ(A−U)+ ε and ρ(A)− 2ε < ρ(An). Then

for the above compact operator U ,

ρess(An) ≤ ρ(An − U) < ρ(A− U) + ε < ρess(A) + 2ε < ρ(A)− 2ε < ρ(An),

showing the claim upon replacing 2ε by ε.

4.2 Strong Spectral Gap and Quasicompact Posi-

tive Operators

We introduce the following definition of strong spectral gap.

Definition 4.2.1. Let S : B → B be a bounded operator on a Banach space B. We

say that S has strong spectral gap if there are two operators E,D : B → B and a

decomposition S = λE +D with λ ∈ C satisfying |λ| = ||S|| such that the following

properties are satisfied:

(i) The operator E is a projection onto its image and dim(Im(E)) = 1.

(ii) E ◦D = D ◦ E = 0.

(iii) ρ(D) < ||S||.

In the literature, an operator is referred to as having a spectral gap if there is

an isolated eigenvalue λ of maximal modulus and the rest of the spectrum lies in a

ball of radius |λ| − ε for some ε > 0. The definition of a strong spectral gap implies

the latter while requiring the above further conditions, which explains this choice of

terminology.

The aim of this section is to prove Corollary 4.2.4 below on quasicompact operators

which are positive in the sense of Banach lattices. We refer to the book [Sch74] as a

reference on Banach lattices. For the convenience of the reader, we recall the definition

of a Banach lattice from [Sch74] and a few further definitions. In this thesis, we will

work with the Banach lattice L2(Ω) (or L2(K)) endowed with the partial order defined

for f, g ∈ L2(Ω) as f ≤ g if and only if f(ω) ≤ g(ω) for all ω ∈ Ω.
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Definition 4.2.2. A Banach space B with norm || ◦ || is called a Banach lattice

if it is equipped with a partial order ≤ satisfying the following properties:

(i) (Ordered vector space) For two elements x, y ∈ B with x ≤ y we have for all

z ∈ B and λ ∈ R>0 that

x+ z ≤ y + z and λx ≤ λy.

(ii) (Vector lattice) For two elements x, y ∈ B the supremum sup{x, y} (resp. infi-

mum inf{x, y}) is the, if it exists, unique element z ∈ B with z ≥ x and z ≥ y

(resp. z ≤ x and z ≤ y) that satisfies for every further element z′ ∈ B with

z′ ≥ x and z′ ≥ y (resp. z′ ≤ x and z′ ≤ y) that z′ ≥ z (resp. z′ ≤ z). We

assume that B is closed under taking suprema and infima of two elements, that

is, if x, y ∈ B then sup{x, y} and inf{x, y} exist in B.

(iii) (Monotonicity) For x ∈ B denote |x| = sup{x,−x}. If two elements x, y ∈ B

satisfy |x| ≤ |y|, then we have ||x|| ≤ ||y||.

For a Banach lattice B denote by B+ = {x ∈ B : x ≥ 0} the set of positive

elements. We note x ≥ y whenever x − y ∈ B+ and further write x > y if and only

if x ≥ y and x ̸= y. We say that a bounded operator A : B → B is positive if

A(B+) ⊂ B+, in notation A ≥ 0. We write A > 0 if Ax > 0 for x > 0.

We furthermore say that the operator A : B → B has a strictly positive

invariant form if there is a linear form η : B → R that maps vectors > 0 to real

numbers > 0 and that is invariant under A, i.e. η ◦ A = η.

For an element u ∈ B+ we denote by

Iu = {x ∈ B : 0 ≤ |x| ≤ λu for some λ > 0}

the principal ideal generated by u, where as above we write |x| = sup{x,−x}. The

element u is called quasi-interior if Iu is dense in B.

A subspace I of B is called an ideal if Iu ⊂ I for all u ∈ I. An operator

A : B → B is referred to as irreducible if the only A-invariant ideals are the trivial

ideals {0} and B.

The resolvent of a bounded operator A is defined as

R(λ,A) = (λI − A)−1,

which by [DS58, VII Lemma 3.2] is an analytic collection of operators well-defined

on the complement of the spectrum of A. A complex number λ0 in the spectrum of
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A is called a pole of the resolvent of A if there is k ∈ Z>0 and ε > 0 such that for all

λ ∈ C with |λ− λ0| < ε we have that

R(λ,A) =
∞∑

n=−k

Bn(λ− λ0)
n

for {Bn}∞n=−k a collection of bounded operators from B → B. The number k is the

order of the pole.

The following is the main result on Banach lattices that we use in this thesis,

which is a generalisation of the Perron-Frobenius theorem to Banach spaces.

Theorem 4.2.3. (Corollary to Theorem V 5.2 of [Sch74]) Let B be a Banach lattice

and let A : B → B be a positive irreducible bounded operator > 0 satisfying ρ(A) = 1

and such that 1 is a pole of the resolvent of A. Then the following properties hold:

(i) 1 is an eigenvalue. The eigenspace of 1 is one-dimensional and spanned by a

quasi-interior element of B+.

(ii) Every eigenvalue λ of A with |λ| = 1 is a root of unity and has a one dimensional

eigenspace. Moreover, the latter set of eigenvalues form a group.

(iii) 1 is the unique eigenvalue of A with a positive eigenvector.

Using Theorem 4.2.3, combinded with basic properties of quasicompact operators,

we can draw the following corollary.

Corollary 4.2.4. Let B be a Banach lattice and let A : B → B be a positive

quasicompact bounded operator > 0 and assume that An is irreducible for every n ≥ 1.

Then A has strong spectral gap.

Proof. Without loss of generality, we may replace A by A/ρ(A) and assume that

ρ(A) = 1. Therefore, since A is positive, by [Sch74, Proposition V 4.1] it follows that

1 is an eigenvalue of A. Moreover, by [DS58, VII 8.2], since A is quasicompact, the

resolvent R(λ,A) has a pole at 1. Therefore, Theorem 4.2.3 applies and as is shown

in the proof of the Corollary to Theorem V 5.2 of [Sch74] we moreover have that

E = lim
λ→1

(λ− 1)R(λ,A)

is a strictly positive projection of rank 1.

Set D = A− E. Then E ◦D = D ◦ E = 0 as A commutes with E and we claim

that ρ(D) < 1, which follows if we show that 1 is the unique eigenvalue of A on the

43



circle of radius 1. To show the latter, if λ is an eigenvalue of A with |λ| = 1 and

eigenvector vλ, then by Theorem 4.2.3 (ii) λ is a root of unity and hence T nvλ = vλ

for some n > 0. Therefore by Theorem 4.2.3 (i) applied to T n, it follows that vλ ≥ 0.

Finally, by Theorem 4.2.3 (iii) applied to T , the vector vλ must be the unique positive

eigenvector of T and hence λ = 1.

We return to the operators S0 and S+
0 defined in (3.1.19).

Lemma 4.2.5. Let G be a connected semisimple Lie group with finite center and let µ

be a non-degenerate probability measure on G. Then S0 and S+
0 are positive bounded

operators and Sn
0 and (S+

0 )
n are irreducible for all n ≥ 1.

Proof. We show that S0 is irreducible and the same argument will apply to Sn
0 and

(S+
0 )

n for all n ≥ 1 since G is connected. By III Proposition 8.3 of [Sch74], it suffices

to show for any φ1, φ2 ∈ L2(Ω) with φ1 > 0 and φ2 > 0 that ⟨Sℓ
0φ1, φ2⟩ is > 0 for

some ℓ ≥ 1. Indeed, we may reduce to the case where φ1 = 1U1 and φ2 = 1U2 for U1

and U2 two sets of positive measure. Using that the support of µ generates a dense

subgroup, we may choose ℓ large enough such that the support of Sℓ
01U1 has measure

larger that 1−mΩ(U2)/2 and therefore ⟨Sℓ
01U1 , 1U2⟩ > 0.

4.3 Preliminaries on Representation Theory of Com-

pact Lie Groups

Recall the notation introduced in section 3.1.

For γ ∈ C ∩ I∗, by Schur’s Lemma, the operator πγ(△) acts as a scalar. For

functions on K, the operator λG(△) can be understood as the Laplacian. There-

fore (3.1.3) is a decomposition into eigenfunctions of the Laplacian and on Mγ the

Laplacian has eigenvalue λγ = πγ(△).

Lemma 4.3.1. For γ ∈ C ∩ I∗ denote dγ := dim πγ and λγ := πγ(△). Then for γ

large enough it holds that λγ ≍ ||γ||2 and dγ ≪ ||γ|||R+| . Moreover, assuming that K

is semisimple, ||γ|| ≪ dγ.

Proof. By Lemma 10.6 of [Hal15], λγ := πγ(△) = ⟨γ + ρ, γ + ρ⟩ − ⟨ρ, ρ⟩, where

ρ = 1
2

∑
α∈R+ α is the sum of positive half roots (notice that the multiplicity of each

root is one cf. Theorem 7.23 of [Hal15]). This easily implies λγ ≍ ||γ||2. The upper

bound on dγ follows by Weyl’s dimension formula:

dγ =
∏

α∈R+

⟨α, γ + ρ⟩
⟨α, ρ⟩

≤

( ∏
α∈R+

||α||
|⟨α, ρ⟩|

)
||γ + ρ|||R+| ≪G ||γ|||R+|

44



for ||γ|| large enough. For the lower bound we recall that in [dS13], also using the

Weyl dimension formula, it is proved that ||γ|||R+|−p ≪ dγ, where p is the number of

maximal elements of R+ that are contained in one hyperplane. If K is semisimple,

the roots span the vector space t∗ and therefore (|R+| − p) ≥ 1.

Recall the Sobolev spaces defined in (3.1.7). We deduce a condition for a function

being in Cm(K) under an assumption on the decay of ||πℓφ||2.

Lemma 4.3.2. Let m ∈ Z≥0, s > m+ 1
2
dimK and let φ ∈ L2(K). Assume that for

all ℓ ∈ Z≥0 large enough,

||πℓφ||2 ≤ 2−(s+1)ℓ.

Then φ ∈ Hs(K) ⊂ Cm(K).

Proof. If φ =
∑

γ∈C∩I∗ φγ, by the assumption for large enough ℓ, 22sℓ||πℓφ||22 =

22sℓ
∑

2ℓ−1≤||γ||<2ℓ ||φγ||22 ≤ 2−2ℓ and hence using Lemma 4.3.1,∑
γ∈C∩I∗

λsγ||φγ||22 ≪
∑
ℓ≥0

22sℓ
∑

2ℓ−1≤||γ||<2ℓ

||φγ||22 ≪
∑
ℓ≥0

2−2ℓ <∞,

showing that φ ∈ Hs(K). The inclusion Hs(K) ⊂ Cm(K) follows from the Sobolev

embedding theorem (cf. [Aub98] Theorem 2.10).

4.4 Flattening of µ∗n

In this section we state strong flattening results from [BISG17] for (c1, c2, ε)-Diophantine

measures. To introduce notation, denote

Pδ =
1Bδ

mG(Bδ)

and for a measure ν and g ∈ G, we note that (ν ∗ Pδ)(g) =
ν(Bδ(g))
mG(Bδ)

. We also use the

notation νδ = (ν)δ = ν ∗ Pδ.

We first relate the condition that a measure is (c1, c2, ε)-Diophantine to the as-

sumptions of several theorems in [BISG17].

Lemma 4.4.1. Let c1, c2, ε > 0 and let µ be a probability measure on G satisfying

supp(µ) ⊂ Bε. Then µ is (c1, c2, ε)-Diophantine if and only if for δ small enough and

n =
log 1

δ

c1 log
1
ε

,

sup
H<G

µ∗n(Bδ(H)) ≤ δ
c2
c1 ,

where Bδ(H) = {g ∈ G : d(g,H) < δ} and the supremum is taken over all closed

subgroups of G.
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Proof. This follows from the fact that µ is (c1, c2)-Diophantine if and only if supH<G µ
∗n(Bδ(H)) ≤

δ
c2
c1 for n = 1

c1
log 1

δ
.

We state Corollary 4.2 from [BISG17].

Theorem 4.4.2. (Flattening Lemma, Corollary 4.2 of [BISG17]) Let G be a con-

nected simple Lie group with finite center. Let c1, c2 > 0. Then for every γ > 0 there

is ε0 = ε0(c1, c2, γ) > 0 and C0 = C0(c1, c2, γ) > 0 such that the following holds:

If 0 < ε < ε0 and µ is a symmetric and (c1, c2, ε)-Diophantine probability measure

on G, then for δ > 0 small enough,

||(µ∗n)δ||2 ≤ δ−γ for any integer n ≥ C0

log 1
δ

log 1
ε

.

4.5 Estimate of Averages of Matrix Coefficients

for Oscillating Functions

In this subsection we prove the following proposition, which is inspired by [LV16].

We denote BR = {g ∈ G : d(g, e) < R}.

Proposition 4.5.1. Let G be a non-compact semisimple Lie group with finite center

and maximal compact subgroup K. Recall the Littlewood-Paley decomposition (3.1.6)

L2(K) =
⊕

ℓ≥0 Vℓ and assume further that K is a semisimle Lie group. Then for any

r ∈ R and ℓ ∈ Z≥1, for φ1, φ2 ∈ Vℓ ⊂ L2(K),

1

mG(BR)

∫
BR

|⟨ρ+r (g)φ1, φ2⟩| dmG(g) ≪ 2−ℓ/2||φ1||2||φ2||2,

where the representation ρ+r is defined in (3.1.13).

We recall the following lemma from [LV16].

Lemma 4.5.2. (Proposition 5.1 of [LV16]) Let (π,H ) be a unitary representation

of a compact group K and let D be the minimum of the dimension of all irreducible

representations contained in π. Then for any vectors u, v ∈ H ,(∫
|⟨π(g)u, v⟩|2 dmK(k)

)1/2

≤ ||u|| ||v||
D1/2

.

If π is irreducible, then Lemma 4.5.2 follows from Schur’s Lemma (see [Kna02]

section I.5). For the general case one decomposes π as a direct sum of irreducible

representations.
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Proof. (of Proposition 4.5.1) Let B′
R = BR · K. By left invariance of the metric,

it follows that BR′ ⊂ BR+C for C an absolute constant and therefore mG(BR′) ≪
mG(BR). Using Cauchy-Schwarz and that for k ∈ K the operator ρ+r (k) acts as the

regular representation, it follows by Lemma 4.5.2,∫
BR

|⟨ρ+r (g)φ1, φ2⟩| dmG(g) ≤
∫
B′

R

|⟨ρ+r (g)φ1, φ2⟩| dmG(g)

=

∫
BR′

(∫
K

|⟨ρ+r (k)φ1, ρ
+
r (g

−1)φ2⟩| dmK(k)

)
dmG(g)

≤
∫
BR′

(∫
K

|⟨ρ+r (k)φ1, ρ
+
r (g

−1)φ2⟩|2 dmK(k)

)1/2

dmG(g)

≤ mG(BR′)

(
min

2ℓ−1≤||γ||<2ℓ
dγ

)−1/2

||φ1|| ||φ2||

≪ mG(BR)2
−ℓ/2||φ1|| ||φ2||,

having used in the last line that ||γ|| < dγ from Lemma 4.3.1 under the assumption

that K is semisimple.
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Chapter 5

Proof of Local Limit Theorem

We fix throughout a non-compact semisimple Lie group G with finite center. In this

section we prove Theorem 2.0.1, Theorem 2.0.2 and Theorem 2.0.3. The reader may

recall the outline given in section 3.2.

In section 5.1 we prove the necessary spectral properties for the operators Sr.

Then in section 5.2 we prove the claimed properties of the limit measure as well as

deduce (3.2.6). In section 5.3 we deal with the high frequency term (3.2.2) while in

section 5.4 we establish most of the necessary results to deal with the low frequency

term (3.2.3). The proof of Theorem 2.0.2 and Theorem 2.0.3 is then completed in

section 5.5, while Theorem 2.0.1 is deduced in section 5.6.

5.1 Spectral Properties of Sr

In this section we discuss spectral results for the operators S0 and Sr and the func-

tion r 7→ ρ(Sr) under the assumption that S0 is quasicompact and using the results

developed in section 4.1 and section 4.2. Notice that if µ is non-degenerate and S0 is

quasicompact, then by Lemma 4.2.5 and Corollary 4.2.4 the operator S0 has strong

spectral gap.

Before stating the first lemma, we mention that |Srη| ≤ S0|η| for all r ∈ a∗ and

η ∈ L2(Ω), which implies ρ(Sr) ≤ ||S0||. Lemma 5.1.1 is concerned with improving

the latter inequality to ρ(Sr) < ||S0|| under suitable assumptions on µ.

Lemma 5.1.1. Let µ be a non-degenerate probability measure and assume that S0 is

quasicompact. Then for any non-zero r ∈ a∗,

ρ(Sr) < ρ(S0) = ||S0||. (5.1.1)
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Moreover, for any c2 > c1 > 0 and n large enough depending on c1 and c2,

sup
c1≤|r|≤c2

||Sn
r ||

1
n < ||S0||. (5.1.2)

Proof. To prove (5.1.1), we follow ideas from the proof of Theorem 3.9 of [CG13]. Fix

a non-zero r ∈ a∗. We assume for a contradiction that ρ(Sr) = ρ(S0) and therefore

there is λ = eiγρ(S0) ∈ spec(Sr) for γ ∈ R. Then (cf. section 12.1 of [EW17]) either

λ is in the discrete spectrum or in the approximate spectrum, i.e. there is a sequence

ηℓ ∈ ker(Sr − λ · Id)⊥ with ||ηℓ|| = 1 and

lim
ℓ→∞

||Srηℓ − ληℓ|| = 0. (5.1.3)

Note that as S0 is quasicompact, ρ(S0) = ||S0||. We first treat the case where

λ is in the discrete spectrum, i.e. that there exists η ∈ L2(Ω) such that Srη = λη.

Then ||S0|| |η| = |Srη| ≤ S0|η| and thus ||S0|η| || = ||S0|| ||η||. Denote by η0 the ||S0||-
eigenfunction of S0 with unit norm. As S0 has strong spectral gap (by Lemma 4.2.5

and Corollary 4.2.4), it follows that η(ω) = eiθ(ω)η0(ω), for θ : Ω → R a measurable

function and ω ∈ Ω.

Then for almost all ω ∈ Ω and n ≥ 1,∫
e−(δ+ir)H(g−1ω)+iθ(g−1ω)η0(g

−1ω) dµ∗n(g) = (Sn
r η)(ω)

= λnη(ω)

= einγ||S0||neiθ(ω)η0(ω)

= ei(nγ+θ(ω))

∫
e−δH(g−1ω)η0(g

−1ω) dµ∗n(g).

As η0 is a quasi-interior element by Theorem 4.2.3, it must hold that η0(ω) > 0 for

almost all ω ∈ Ω. Hence for almost all ω ∈ Ω and g ∈ supp(µ∗n),

e−i(rH(g−1ω)−θ(g−1ω)+θ(ω)+nγ) = 1.

If r ̸= 0, for a fixed ω ∈ Ω and n ≥ 1, we can choose hn ∈ G such that e−irH(h−1
n ω) =

ei(nγ+π) yet ei(θ(h
−1
n ω)−θ(ω)) = 1. Indeed, for a representative ω = kM for k ∈ K, we

may choose hn = kank
−1 for an element an ∈ A satisfying e−irH(a−1

n ) = ei(nγ+π) as then

H(h−1
n k) = H(a−1

n ) and θ(h−1ω) = θ(ω). We may choose the hn within a bounded

region of G and therefore upon replacing hn with a subsequence we may assume that

hn converges to some element h ∈ G. Since µ is non-degenerate we can find some n

and g ∈ supp(µ∗n) such that g becomes arbitrarily close to h and hence for n large

enough also to hn. This is a contradiction.
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It remains to assume that λ is in the approximate spectrum. Let ηℓ as in (5.1.3).

Since ⟨Srηℓ, ληℓ⟩ = ⟨Srηℓ − ληℓ, ληℓ⟩ + ||S0||2, it follows that ⟨Srηℓ, ληℓ⟩
ℓ→∞−−−→ ||S0||2

and furthermore exploiting |⟨Srηℓ, ληℓ⟩| ≤ ⟨S0|ηℓ|, ||S0|| |ηℓ|⟩ one concludes

lim
ℓ→∞

⟨S0|ηℓ|, ||S0|| |ηℓ|⟩ = ||S0||2

and hence ||S0|ηℓ| − ||S0|| |ηℓ| ||2 ≤ 2||S0||2 − 2⟨S0|ηℓ|, ||S0|| |ηℓ|⟩
ℓ→∞−−−→ 0.

Denote ψℓ = |ηℓ| − ⟨|ηℓ|, η0⟩η0 ∈ ⟨η0⟩⊥ ⊂ L2(Ω). Then it holds that

||(S0 − ||S0||)ψℓ||2 = ||S0|ηℓ| − ||S0|| |ηℓ| ||2
ℓ→∞−−−→ 0.

Since ψℓ in ⟨η0⟩⊥ and S0−||S0|| is invertible on ⟨η0⟩⊥ it follows that ||ψℓ||2 → 0. Notice

that ||ψℓ||22 = 1 − ⟨|ηℓ|, η0⟩2 and hence ⟨|ηℓ|, η0⟩ → 1 and further || |ηℓ| − η0||2 → 0.

Upon replacing ℓ by a subsequence, we can assume that |ηℓ| converges pointwise to

η0 almost everywhere.

We further note that for all n ≥ 1, ⟨Sn
r ηℓ, λ

nηℓ⟩ → ||S0||2n as ℓ→ ∞. Indeed this

follows by induction as

⟨Sn
r ηℓ − Sn−1

r ληℓ + Sn−1
r ληℓ, λ

nηℓ⟩

= ⟨Sn−1
r (Srηℓ − ληℓ), λ

nηℓ⟩+ ||S0||2⟨Sn−1
r ηℓ, λ

n−1ηℓ⟩ → ||S0||2n.

Write λ = eiγ||S0|| and ηℓ(ω) = eiθℓ(ω)|ηℓ|(ω) for θℓ : Ω → R a measurable function

and ω ∈ Ω. Notice that ⟨Sn
r ηℓ, λ

nηℓ⟩ equals∫ ∫
e−(δ+ir)H(g−1ω)+i(θℓ(g

−1ω)−θℓ(ω)−nγ)||S0||n |ηℓ|(g−1ω)|ηℓ|(ω) dµ∗n(g)dmΩ(ω)

and on the other hand

⟨Sn
0 η0, ||S0||nη0⟩ =

∫ ∫
e−δH(g−1ω)||S0||nη0(g−1ω)η0(ω) dµ

∗n(g)dmΩ(ω).

As ⟨Sn
r ηℓ, λ

nηℓ⟩
ℓ→∞−−−→ ||S0||2n = ⟨Sn

0 η0, ||S0||nη0⟩ and since almost surely |ηℓ| → η0, we

conclude that for almost all g ∈ supp(µ∗n) and ω ∈ Ω,

lim
ℓ→∞

ei(rH(g−1ω)−θℓ(g
−1ω)+θℓ(ω)+γ) = 1.

This leads to a contradiction by a similar argument to the case of the discrete spec-

trum.

To prove (5.1.2), we notice that for an operator T on a Hilbert space H with

||T || ≤ 1, the value of ||T n|| 1n for a given n controls ||T k|| 1k for any k ≥ n. Indeed (cf.

[Rem]) if k = ℓn+ j for 0 ≤ j ≤ n− 1 then it holds that

||T k||
1
k ≤ (||T ℓn||

1
ℓn )

ℓn
k ||T ||

j
k ≤ (||T n||

1
n )1−

j
k ||T ||

j
k . (5.1.4)
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Therefore for k large enough in terms of n, ||T k|| 1k is at most slightly larger than

||T n|| 1n . Assume now for a contradiction that (5.1.2) does not hold. Then there is a

sequence (ni)i≥1 with ni → ∞ and for each i there is ri with ||Sni
ri
||

1
ni = ||S0||. As

the set {c1 ≤ |r| ≤ c2} is compact, we may choose a subsequence of the i such that

ri converges to r ∈ a∗ with c1 ≤ |r| ≤ c2. We arrive at a contradiction as by (5.1.4),

||Sni
ri
||

1
ni is at most marginally larger than ||Sn

r ||
1
n for ri close enough to r. Indeed,

choose ε > 0 small enough such that ρ(Sr) + 3ε < ||S0|| and fix n large enough such

that ||Sn
r ||

1
n ≤ ρ(Sr)+ε. Then for ri close enough to r, ||Sn

ri
|| 1n ≤ ρ(Sr)+2ε and hence

by (5.1.4), choosing i sufficiently large, ||Sni
ri
||

1
ni ≤ ρ(Sr)+3ε < ||S0||, a contradiction

to the assumption.

Proposition 5.1.2. Let µ be a non-degenerate probability measure with finite second

moment and assume that S0 is quasicompact. Then there is δ0 = δ0(µ) > 0 such that

for any r ∈ a∗ with |r| ≤ δ0 the operators Sr and S∗
r have strong spectral gap.

More precisely there is 0 < δ0 < 1 small enough satisfying the following properties.

For |r| ≤ δ0 we can write

Sr = λ(r)Er +Dr and S∗
r = λ(r)E∗

r +D∗
r (5.1.5)

where λ(r), Er and Dr and equally λ(r), E∗
r and D∗

r satisfy the assumptions of Defi-

nition 4.2.1, and the following properties hold:

(i) sup|r|≤δ0 ||Dr|| ≤ (1− c)||S0|| for c = c(µ) > 0.

(ii) ||Er − E0|| ≪µ |r|2 and ||E∗
r − E∗

0 || ≪µ |r|2 for |r| ≤ δ0.

(iii) Let ηr be the unique λ(r)-eigenfunction of Sr with unit norm. Then for small

enough r there exists a unique λ(r)-eigenfunction η′r of S
∗
r satisfying ⟨η′r, ηr⟩ = 1.

Additionally, for φ ∈ L2(Ω),

Erφ = ⟨φ, η′r⟩ηr.

(iv) Moreover,

||ηr − η0||2 ≪µ |r|2, and ||η′r − η′0|| ≪µ |r|2

for |r| ≤ δ0.

Proof. As µ has finite second moment, the directional derivatives of second order of

the family of operators Sr and S
∗
r exist. Therefore the function r 7→ ||Sr − S0|| is C2.

Since Srφ = S−rφ for φ ∈ L2(Ω), it follows by Taylor’s theorem that ||Sr − S0|| ≪µ

51



|r|2 for small r. By Corollary 4.1.2 and Corollary 4.2.4, S0 has strong spectral gap

and Sr is quasicompact for small r. Equally by Lemma 4.1.1 (ii) and since S∗
0 =∫

ρ0(g
−1) dµ(g) is a positive operator too, it follows that S∗

0 has strong spectral gap

and S∗
r is quasicompact for small r.

We show that there is δ0, c > 0 small enough such that for |r| ≤ δ0 and two

orthogonal functions of unit norm φ1, φ2 ∈ L2(Ω) it must hold for either i = 1 or

i = 2 that

||Srφi||2 ≤ (1− c)||S0||. (5.1.6)

Indeed, assume for a contradiction that (5.1.6) does not hold. Then ||S0φi||2 ≥
||Srφi||2−||(Sr −S0)φi||2 ≥ (1− c)λ(0)+Oµ(|r|2) ≥ (1− 2c)||S0|| for r small enough.

For c small enough, as S0 has strong spectral gap and ⟨φ1, φ2⟩ = 0, the latter is a

contradiction.

Therefore we have shown for |r| ≤ δ0 that the λ(r)-eigenspace of Sr is one dimen-

sional and on its complement the norm of Sr is bounded by (1−c)||S0||. Choose δ0 > 0

in addition small enough such ||S0||(1 − c
2
) < inf |r|≤δ0 λ(r). Denote by γ1 : S1 → C

a smooth parametrization of the closed circle of radius ||S0||(1− c
2
) around zero and

by γ2 : S1 → C a smooth parametrization of the circle of radius ||S0||c
2

around ||S0||.
Consider the operators

Pr = − 1

2πi

∫
γ1

R(z, Sr) dz, and Er = − 1

2πi

∫
γ2

R(z, Sr) dz, (5.1.7)

for R(z, Sr) = (Sr−z ·Id)−1 the resolvent of Sr at z. Then by Theorem 6.17 of Chapter

3 in [Kat95], the operators Er and Pr are commuting projections with Id = Er+Pr and

where ker(Pr) = Im(Er) is the one dimensional eigenspace of Sr with eigenvalue λ(r).

By setting Dr = SrPr , we therefore have shown that Sr = Sr(Er+Pr) = λ(r)Er+Dr

has strong spectral gap and that (i) holds.

We claim that the operators Er and Pr are also C
2. Indeed by Lemma 3 of Chapter

VII.6 of [DS58], it holds that whenever ||Sr − S0|| < ||R(z, S0)||−1, then for any z in

the resolvent set of S0 that z is also in the resolvent set for Sr and that

R(z, Sr) = R(z, S0)
∞∑
n=0

(Sr − S0)
nR(z, S0)

n.

Since Sr is C2 it therefore follows that for r small enough R(z, Sr) is also C2 on γ1

and γ2. Thus ||Pr − P0|| ≪µ |r|2 and ||Er − E0|| ≪µ |r|2 and the claim for E∗
r is

established similarly.

To show (iii), first assume that such an η′r exists. Then as Erφ = ⟨φ, ψ⟩ηr for

some ψ ∈ L2(Ω) with SrEr = ErSr and E2
r = Er it follows that S∗

rψ = λ(r)ψ and
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that ⟨ηr, ψ⟩ = 1, which implies that ψ = η′r. By the above, it follows that there is

a unique λ(r)-eigenfunction of S∗
r with unit norm for |r| ≤ δ0, yet we need to show

that there exists one with ⟨ηr, η′r⟩ = 1. For r = 0 this holds as both eigenfunctions

are positive almost surely and for small r we apply (iv) (for η′r with a fixed norm) to

show that there is a λ(r)-eigenfunction η′r of S∗
r satisfying ⟨ηr, η′r⟩ ≠ 0 and therefore

upon normalizing η′r the claim follows.

To conclude, we show (iv) for ||ηr−η0||2 and note that the same argument applies

to ||η′r − η′0||2. The claim is deduced from (ii) by noticing that for δ0 small enough,

ηr =
Erη0

||Erη0|| . Indeed, ||Erη0|| = |||Erη0 − η0 + η0|| ≥ ||η0|| − ||(Er − E0)η0|| > 1
2
for δ

small enough. To prove (iv), notice

||ηr − η0||2 ≤ || Erη0
||Erη0|| −

E0η0
||Erη0|| ||2 + || E0η0

||Erη0|| − η0||2
≪µ ||Er − E0||+ | 1

||Erη0|| − 1| ≪µ |r|2,

using that 1 = ||E0η0|| and | 1
||Erη0|| − 1| ≤ | ||E0η0||−||Erη0||

||Erη0|| | ≪µ ||Er − E0|| ≪µ |r|2.

Proposition 5.1.3. Let µ be a non-degenerate probability measure with finite second

moment and assume that S0 is quasicompact. Then λ(r) is a C2-function and the

Hessian Hλ,0 of λ at 0 is a negative definite sesquilinear form.

Proof. Using the notation of the proof of Proposition 5.1.2, it holds that λ(r) =
⟨SrErη0,η′0⟩
⟨Erη0,η′0⟩

and therefore for r small enough it follows that r 7→ λ(r) is a C2-function.

For the remainder we follow roughly the proof of Proposition 2.2.7 of [Bou81]. To

show that Hλ,0 is negative definite, we fix a non-zero element r ∈ a∗ and prove that

the function ξ(t) = λ(tr) has strictly negative second derivative at zero. Consider the

function hn(t) = ⟨Dn
trη0, η

′
0⟩. As Dn

tr = (Id− Etr)D
n
tr(Id− Etr) it holds that

|hn(t)| = |⟨Dn
tr(Id− Etr)η0, (Id− Etr)

∗η′0⟩|

≤ ||Dtr||n||(Id− Etr)η0|| ||(Id− Etr)
∗η′0||

≤ ||Dtr||n||(E0 − Etr)η0|| ||(E0 − Etr)
∗η′0||

≤ ||Dtr||n||(E0 − Etr)|| ||(E∗
0 − E∗

tr)|| ≪ ||Dn
rt||t2,

using Proposition 5.1.2 (ii). In particular, using Proposition 5.1.2 (i), λ(0)−n|hn(t)| ≪µ,r

t2 for all n ≥ 1 and small t and therefore λ(0)−nh′′n(0) is bounded for all n ≥ 1 as

otherwise Taylor’s theorem would yield a contradiction.
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As ξ(0) = λ(0) and ξ′(0) = 0, it follows that

d2

d2t

∣∣∣∣
t=0

(
λ(0)−n⟨Sn

trη0, η
′
0⟩
)
=

d2

d2t

∣∣∣∣
t=0

(
λ(0)−nξ(t)n⟨Etrη0, η

′
0⟩+ λ(0)−nhn(t)

)
= nλ(0)−1ξ′′(0) +

d2

d2t

∣∣∣∣
t=0

⟨Etrη0, η
′
0⟩+ λ(0)−nh′′n(0).

(5.1.8)

Note that d2

d2t
|t=0⟨Etrη0, η

′
0⟩ is also bounded as by Proposition 5.1.2, |⟨Etrη0, η

′
0⟩| ≪µ,r

1 + t2.

We finally consider the functions fn(t) = λ(0)−n⟨Sn
trη0, η

′
0⟩ for n ≥ 1. We claim

that the function fn(t) is positive definite. Indeed, for t1, . . . , tm ∈ R and α1, . . . , αm ∈
C,

λ(0)n
∑
k,ℓ

αkαℓfn(tk − tℓ) =
∑
k,ℓ

⟨Sn
(tk−tℓ)r

αkη0, αℓη
′
0⟩

=
∑
k,ℓ

∫
αkαℓe

−i(tk−tℓ)rH(g−1k)e−δH(g−1k)η0(g
−1.k)η′0(k) dµ(g)dmΩ(k)

=

∫ ∣∣∣∣∑
k

e−itkrH(g−1k)αk

∣∣∣∣2e−δH(g−1k)η0(g
−1.k)η′0(k) dµ(g)dmΩ(k),

which is positive as η0 ≥ 0 and η′0 ≥ 0. Therefore by Bochner’s theorem and since

fn(0) = 1 one may expresses fn as the Fourier transform of a real valued random

variable Xn, i.e. fn(t) =
∫
eitx dµXn(x). Denote by vn = −if ′

n(0) the expected

value of Xn and by σ2
n = −f ′′

n(0) its variance. For any given c > 0 we notice that

P [|Xn − vn| < c] → 0 as n → ∞ since by Lemma 5.1.1 it holds that fn(t) → 0 for

t ̸= 0 as n → ∞ and therefore µn weakly converges to the zero measure. Applying

Chebyschev’s inequality,

1− σ2
n

c2
≤ 1− P [|Xn − vn| ≥ c] = P [|Xn − vn| < c] → 0

and hence σ2
n ≥ c2/2 for any large enough n. Thus f ′′

n(0) → −∞ which by (5.1.8)

can only happen if ξ′′(0) < 0. This concludes the proof.

5.2 The Limit Measure

In this section we establish the claimed properties of the functions ψµ,r as stated in

(3.2.6). A multiple of ψµ,0 is the limit function of Theorem 2.0.1.

The main lemma of this section may be viewed as a Lie group analogue of (3.2.7).
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Lemma 5.2.1. Let µ and δ0 ∈ (0, 1) be as in Proposition 5.1.2. Denote for |r| ≤ δ0 by

ηr the unique λ(r)-eigenfunction of Sr with unit norm and by η′r the S
∗
r -eigenfunction

with eigenvalue λ(r) satisfying ⟨η′r, ηr⟩ = 1. Then the continuous function

ψµ,r(g) = ⟨ηr, ρr(g)η′r⟩ (5.2.1)

satisfies µ ∗ ψµ,r = ψµ,r ∗ µ = λ(r)ψµ,r. Moreover, for any f ∈ S (X) and h ∈ G,∫
f · ρG(h)ψµ,r dmG =

∫
Ω

f̂(r, ω)(Erρr(h
−1)1)(ω) dmΩ(ω), (5.2.2)

where ρG is the right regular representation of G and we view f as a right K-invariant

eigenfunction on G.

Proof. The relation (5.2.2) follows as for f ∈ S (X) and h ∈ G,∫
f · ρG(h)ψµ,r dmG = ⟨ηr, ρr(f)ρr(h)η′r⟩

= ⟨ηr, ρr(f)ρr(mK)ρr(h)η
′
r⟩

= ⟨ηr, ρr(f)⟨η′r, ρr(h−1)1⟩1⟩

= ⟨⟨ρr(h−1)1, η′r⟩ηr, ρr(f)1⟩

=

∫
Ω

f̂(r, ω)(Erρr(h
−1)1)(ω) dmΩ(ω),

having used in the last line that f̂(r, k) = ρ−r(f)(1) = ρr(f)(1).

To show that µ ∗ ψµ,r = λ(r)ψµ,r, we calculate for g ∈ G

(µ ∗ ψµ,r)(g) =

∫
ψµ,r(h

−1g) dµ(h)

= ⟨ηr, S∗
rρr(g)η

′
r⟩

= ⟨Srηr, ρr(g)η
′
r⟩ = λ(r)ψµ,r(g).

A similar argument shows that ψµ,r ∗ µ = λ(r)ψµ,r.

For later reference we show the following lemma.

Lemma 5.2.2. Let µ be a non-degenerate probability measure on G with finite second

moment and assume that S0 is quasicompact. Denote by δ0 the constant obtained from

Proposition 5.1.2. Then for |r| ≤ δ0 with δ0 small enough, and g ∈ G,

|ψµ,r(g)− ψµ,0(g)| ≪ |r|(1 + ||g||). (5.2.3)

Moreover, for |r| ≤ δ0 and g ∈ G,∣∣∣∣ψµ,r(g) + ψµ,−r(g)

2
− ψµ,0(g)

∣∣∣∣≪ |r|2(1 + ||g||2). (5.2.4)
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Proof. Observe that

|ψµ,r(g)− ψµ,0(g)| = |⟨ηr, ρr(g)η′r⟩ − ⟨η0, ρ0(g)η′0⟩|

= |⟨ρr(g−1)ηr, η
′
r⟩ − ⟨ρ0(g−1)η0, η

′
0⟩|

≤ |⟨ρr(g−1)ηr, η
′
r − η′0⟩|+ |⟨ρr(g−1)ηr − ρ0(g

−1)η0, η
′
0⟩|

≪µ ||η′r − η′0||2 + ||(ρr(g−1)− ρ0(g
−1))η0||2.

Thus in order to prove (5.2.3), by using Proposition 5.1.2 (iii) it suffices to deal with

||(ρr(g−1)− ρ0(g
−1))η0||2. One calculates that for g ∈ G and ω ∈ Ω,

|(ρr(g−1)− ρ0(g
−1))η0(ω)| = |(e−irH(gω) − 1)||e−δH(gω)η0(gω)|

≪ |r| ||g|| |e−δH(gω)η0(gω)|. (5.2.5)

Equation (5.2.3) therefore follows by squaring the latter term, integrating over Ω and

using that ||ρ0(g)η0||2 = ||η0||2 = 1. For (5.2.4) one performs the same calculation

and notices that∣∣∣∣ (ρr(g) + ρ−r(g)

2
− ρ0(g)

)
η0(ω)

∣∣∣∣ = |(cos(rH(g−1ω))− 1)||e−δH(g−1ω)η0(g
−1ω)|.

Then (5.2.4) follows by using that |(cos(rH(g−1ω))− 1)| ≪ |r|2||g||2.

5.3 High Frequency Estimate

For a Schwartz function f ∈ S (X), we say that the Fourier transform f̂ : a×K → C
has compact support if there is R ≥ 0 such that f̂(r, ω) = 0 for r ≥ R and all ω ∈ Ω.

In this section with make no notational difference between a function f ∈ S (X) and

its G-lift. We first prove a preliminary lemma on the Fourier transform.

Lemma 5.3.1. For f ∈ S (X),

||f̂(r, ·)||L2(Ω) ≤ ||f ||1

Proof. We calculate for r ∈ a and ω ∈ Ω that

|f̂(r, ω)|2 =
∣∣∣∣ ∫

G

f(g)(ρ−r(g)1)(ω) dmG(g)

∣∣∣∣2
≤
∣∣∣∣ ∫

G

|f(g)| |(ρ−r(g)1)(ω)| dmG(g)

∣∣∣∣2
≤
∣∣∣∣ ∫

G

|f(g)| |(ρ0(g)1)(ω)| dmG(g)

∣∣∣∣2.
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Set f1 =
|f |

||f ||1 so that it follows that

|f̂(r, ω)|2 ≤ ||f ||21 ·
∣∣∣∣ ∫

G

(ρ0(g)1)(ω) f1(g) dmG(g)

∣∣∣∣2.
Recall that ifX is a random variable on a probability space then by Jensen’s inequality

E[X]2 ≤ E[X2]. By construction f1dmG is a probability measure and hence it follows

that

|f̂(r, ω)|2 ≤ ||f ||21
∫
G

(ρ0(g)1)(ω)
2 f1(g) dmG(g)

≤ ||f ||21
∫
G

d(αg)∗mΩ

dmΩ

(ω) f1(g) dmG(g)

Thus we conclude that

||f̂(r, ·)||22 ≤ ||f ||21
∫
G

(∫
Ω

d(αg)∗mΩ

dmΩ

(ω) dmΩ(ω)

)
f1(g) dmG(g)

≤ ||f ||21.

Lemma 5.3.2. Let µ be a non-degenerate probability measure on G assume that S0 is

quasicompact and let δ0 ∈ (0, 1) be the constant from Proposition 5.1.2. Let R ≥ 1 and

let f ∈ S (X) be a Schwartz function whose Fourier transform satisfies f̂(r, ω) = 0

for all |r| ≥ R and ω ∈ Ω. Then there is cR = cR(µ) > 0 depending on µ and R such

that for n ≥ 1,∣∣∣∣nℓ/2

σn

∫
|r|≥δ0

∫
Ω

f̂(r, ω) (Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r)

∣∣∣∣≪µ R
dimXe−cRn||f ||1.

Proof. Choose R such that f̂(r, ω) = 0 for r ≥ R and ω ∈ Ω. Then using Cauchy-

Schwarz and Lemma 5.1.1,∣∣∣∣nℓ/2

σn

∫
δ0≤|r|≤R

∫
Ω

f̂(r, ω) (Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r)

∣∣∣∣
≤ nℓ/2

σn

∫
δ0≤|r|≤R

||f̂(r, ·)||L2(Ω)||Sn
r ρr(h0)1||2 dνsph(r)

≤ nℓ/2

σn
sup

δ0≤|r|≤R

||Sn
r ||
∫
1≤|r|≤R

||f̂(r, ·)||L2(Ω) dνsph(r)

≤ e−cRn

∫
δ0≤|r|≤R

||f̂(r, ·)||L2(Ω) dνsph(r)

≪µ e
−cRn||f ||1

∫
|r|≤R

|c(r)|−2 dma∗(r)

≪µ e
−cRn||f ||1

∫
|r|≤R

(1 + |r|dimN) dma∗(r) ≪µ R
dimXe−cRn||f ||1,
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using (5.1.2) in order to choose a constant cR > 0 depending on µ and R such that(
nℓ/2

σn supδ0≤|r|≤R ||Sn
r ||
)
≤ e−cRn for n large enough and Proposition 7.2 of chapter IV

in [Hel84], asserting that |c(r)|−2 ≪ 1 + |r|dimN for any r ∈ a∗

Towards proving Theorem 2.0.3, we strengthen Lemma 5.3.2 under strong as-

sumptions on ||Sr||.

Lemma 5.3.3. Let µ be a non-degenerate probability measure on G. Assume that

S0 is quasicompact and that
(
sup|r|≥1 ||Sr||

)
< ||S0||. Let δ0 be the constant from

Proposition 5.1.2. Then for f ∈ S (X), s > 1
2
dimX and n ≥ 1,∣∣∣∣nℓ/2

σn

∫
|r|≥δ0

∫
Ω

f̂(r, ω) (Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r)

∣∣∣∣≪µ,s e
−cn||f ||Hs .

Proof. The left hand side of the claimed equation is bounded by

≤ nℓ/2

σn

∫
|r|≥δ0

||f̂(r, ·)||L2(Ω)||Sn
r ρr(h0)1||2 dνsph(r)

≤ e−cn

∫
|r|≥δ0

||f̂(r, ·)||L2(Ω)|r|s|r|−s dνsph(r)

≤ e−cn

√∫
|r|≥δ0

|r|−2s dνsph(r)

√∫
|r|≥δ0

||f̂(r, ·)||2L2(Ω)|r|2s dνsph(r)

≪δ0,s e
−cn||f ||Hs ,

for n large enough and choosing s sufficiently large such that
∫
|r|≥1

|r|−2s dνsph(r)

is bounded. Indeed, by Proposition 7.2 of chapter IV in [Hel84], it holds that

|c(r)|−2 ≪ 1 + |r|dimN for any r ∈ a∗ and therefore |c(r)|−2 ≪δ0 |r|dimN for |r| ≥ δ0.

Thus
∫
|r|≥δ0

|r|−2s dνsph(r) ≪δ0

∫
|r|≥δ0

|r|dimN−2s dma∗(r) and the latter term is < ∞
whenever dimN − 2s < − dimA.

5.4 Low Frequency Estimate

Throughout this section we assume that S0 is quasicompact and denote by δ0 ∈ (0, 1)

the constant from Proposition 5.1.2. In this section we deal with the some preliminary

estimates for the frequency range |r| ≤ δ0. We recall that by Proposition 5.1.2 for

|r| ≤ δ0 we have a decomposition

Sr = λ(r)Er +Dr,

where Er and Dr satisfy the properties of Definition 4.2.1. We first show that we can

ignore the contribution of Dr.
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Lemma 5.4.1. Let µ be a non-degenerate probability measure on G and assume that

S0 is quasicompact. There exists a constant c > 0 depending on µ such that for all

f ∈ S (X) and h0 ∈ G,∣∣∣∣nℓ/2

σn

∫
|r|≤δ0

∫
Ω

f̂(r, ω)(Dn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r)

∣∣∣∣≪ ||f ||1e−cn.

Proof. Using Proposition 5.1.2, we deduce nℓ/2

σn sup|r|≤δ0 ||D
n
r ρr(h0)1|| ≪ e−cn for c > 0

a constant depending on µ. Using Cauchy-Schwarz the term in question is bounded

by
nℓ/2

σn

∫
|r|≤δ0

||f̂(r, ·)||L2(Ω) ||Dn
r ρr(h0)1||2 dνsph(r).

The lemma follows as ||f̂(r, ·)||L2(Ω) ≤ ||f ||1 by Lemma 5.3.1 and by estimating∫
|r|≤δ0

1 dνsph(r) ≪ 1 since δ0 ≤ 1.

Therefore, up to an exponential error term, we only need to deal with

nℓ/2

σn

∫
|r|≤δ0

λ(r)n
∫
Ω

f̂(r, ω)(Erρr(h0)1)(ω) dmΩ(ω)dνsph(r). (5.4.1)

Recall that ℓ = 2p + d for d the rank of G, where the rank is defined as the real

dimension of a. We therefore may rewrite (5.4.1) by replacing r by r√
n
as

np

σn

∫
|r|≤δ0

√
n

λ( r√
n
)n|c( r√

n
)|−2

∫
Ω

f̂( r√
n
, ω)(E r√

n
ρ r√

n
(h0)1)(ω) dmΩ(ω)dma∗(r). (5.4.2)

Towards proving the local limit theorem, we first replace λ(r/
√
n)n

σn by a suitable

function. Before doing so we give some elementary calculative results.

Lemma 5.4.2. The following inequalities hold:

(i) For any A,B ∈ R,

|eA − eB| ≤ |A−B|max{eA, eB}

(ii) For any c > 0, r ̸= 0 and n ≥ 1,

ne−cnr2 ≤ 2

c
e−cnr2/2r−2.
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Proof. For the first inequality by assuming without loss of generality that A ≥ B

we deduce that |eA − eB| ≤ eA|1 − eB−A| and hence reduce to showing that |1 −
eB−A| ≤ |A − B|. For this we use that ex ≥ 1 + x and hence as B − A is negative,

|1− eB−A| = 1− eB−A ≤ −(B − A) = |A−B|.
For the second inequality we apply the observation that e−x ≤ 1

x
to deduce that

ne−cnr2/2 ≤ n 2
cnr2

= 2
cr2

which implies the claim by multiplication with e−cnr2/2.

As in the proof of Proposition 5.1.3 one shows that λ(r) is C4 if µ has finite fourth

moment. Indeed, by conducting a Taylor expansion of λ, for small r,

λ(r) = λ(0)−Q(r, r) +OG(|r|4),

where Q(r, r) = −Hλ,0(r, r)/2 for Hλ,0 the Hessian of λ at 0. By Proposition 5.1.3

the sesquilinear form Q is positive definite.

Lemma 5.4.3. Assume that µ has finite fourth moment. There are constants c2, c
∗ >

0 such that for Q the above positive definite sesquilinear on a we have for |r| ≤ δ0,∣∣∣∣λ(r)nσn
− e−c2nQ(r,r)

∣∣∣∣≪µ e
−c∗n|r|2 |r|2.

In particular, for |r| ≤ δ0
√
n,∣∣∣∣λ(r/√n)nσn

− e−c2Q(r,r)

∣∣∣∣≪µ n
−1e−c∗|r|2|r|2.

Proof. We may choose for small enough r a constant c∗ > 0 such that |λ(r)| ≤
λ(0)(1− c∗|r|2). Using that ln(1 + x) ≤ x, it therefore follows that

n ln(λ(r)
λ(0)

) ≤ −c∗n|r|2.

Throughout set c2 =
1

λ(0)
and choose c∗ ≤ c2. Then

max{e−c2nQ(r,r), en ln(
λ(r)
λ(0)

)} ≤ e−c∗n|r|2 .

Using Lemma 5.4.2 (i) it follows that

|λ(r)
n

λ(0)n
− e−c2nQ(r,r)| = |en ln(

λ(r)
λ(0)

) − e−c2nQ(r,r)|

≤ max{e−c2nQ(r,r), en ln(
λ(r)
λ(0)

)}|n ln(λ(r)
λ(0)

) + c2nQ(r, r)|

≪ e−c∗nQ(r,r)n|r|4

≪ e−c∗nQ(r,r)|r|2,

by using Lemma 5.4.2 (ii) in the last line by changing the constant c∗.
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Recall by the definition of the c-function:

|c(r)|−2 =
1

I(δ)

(
p∏

ℓ=1

∣∣∣∣B(m(ri)

2
,
i⟨r, rℓ⟩
⟨rℓ, rℓ⟩

) ∣∣∣∣
)−2

·

(
k∏

ℓ=p+1

∣∣∣∣B(m(rℓ)

2
,
m(rℓ/2)

4
+
i⟨r, rℓ⟩
⟨rℓ, rℓ⟩

) ∣∣∣∣
)−2

=
1

I(δ)

(
p∏

ℓ=1

|Γ(m(rℓ)
2

+ i⟨r,rℓ⟩
⟨rℓ,rℓ⟩

)|2

|Γ(m(rℓ)
2

)|2|Γ( i⟨r,rℓ⟩⟨rℓ,rℓ⟩
)|2

)
·

(
k∏

ℓ=p+1

|Γ(m(rℓ)
2

+ m(rℓ/2)
4

+ i⟨r,rℓ⟩
⟨rℓ,rℓ⟩

)|2

|Γ(m(rℓ)
2

)|2|Γ(m(rℓ/2)
4

+ i⟨r,rℓ⟩
⟨rℓ,rℓ⟩

)|2

)
,

(5.4.3)

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt is the Beta function satisfying B(x, y) = Γ(x)Γ(y)

Γ(x+y)
.

Lemma 5.4.4. There is a constant cG depending only on G such that for |r| ≤ δ0,

|c(r)|−2 = cG

p∏
ℓ=1

|⟨r, rℓ⟩|2 +O
(
|r|2p+2

)
.

In particular, for |r| ≤ δ0
√
n,∣∣∣∣np|c( r√
n
)|−2 − cG

p∏
ℓ=1

|⟨r, rℓ⟩|2
∣∣∣∣≪ n−1|r|2p+2.

Proof. As the singularities of the Γ function are at 0,−1,−2, . . . and Γ(z) behaves

around 0 like 1
z
, it holds that | 1

|Γ(ix)|2 − x2| ≪ x4 and | |Γ(n
2
+ ix)|2 − Γ(n

2
)2| ≪ x2.

Therefore, ∣∣∣∣ |Γ(m(rℓ)
2

+ i⟨r,rℓ⟩
⟨rℓ,rℓ⟩

)|2

|Γ(m(rℓ)
2

)|2|Γ( i⟨r,rℓ⟩⟨rℓ,rℓ⟩
)|2

−
|Γ(m(rℓ)

2
)| |⟨r, rℓ⟩|2

|Γ(m(rℓ)
2

)|2 |⟨rℓ, rℓ⟩|2

∣∣∣∣≪ |r|4

and similarly∣∣∣∣ |Γ(m(rℓ)
2

+ m(rℓ/2)
4

+ i⟨r,rℓ⟩
⟨rℓ,rℓ⟩

)|2

|Γ(m(rℓ)
2

)|2|Γ(m(rℓ/2)
4

+ i⟨r,rℓ⟩
⟨rℓ,rℓ⟩

)|2
−

|Γ(m(rℓ)
2

+ m(rℓ/2)
4

)|2

|Γ(m(rℓ)
2

)|2|Γ(m(rℓ/2)
4

)|2

∣∣∣∣≪ |r|4.

Using these two estimates in (5.4.3) the lemma follows for a suitable constant cG.

Denote by

γ(r) = cGe
−c2Q(r,r)

p∏
ℓ=1

|⟨r, rℓ⟩|2

for cG the constant from Lemma 5.4.4. We then may draw the following corollary.

Corollary 5.4.5. Assume that µ has finite fourth moment. For |r| ≤ δ0
√
n and

c′ > 0 a constant depending on µ,∣∣∣∣np

σn
λ( r√

n
)n|c( r√

n
)|−2 − γ(r)

∣∣∣∣≪µ n
−1e−c′|r|2 .
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Proof. Combining Lemma 5.4.3 and Lemma 5.4.4,∣∣∣∣np

σn
λ( r√

n
)n|c( r√

n
)|−2 − γ(r)

∣∣∣∣ ≤ ∣∣∣∣λ( r√
n
)n

σn
− e−c2Q(r,r)

∣∣∣∣|npc( r√
n
)−2|

+

∣∣∣∣np|c( r√
n
)|−2 − cG

p∏
ℓ=1

|⟨r, rℓ⟩|2
∣∣∣∣e−c2Q(r,r)

≪µ n
−1e−c′|r|2 ,

by using in the last line and that |r|2p+2e−c2Q(r,r) ≪µ e
−c′|r|2 for a suitable constant

c′ > 0.

5.5 Proof of Theorem 2.0.2 and Theorem 2.0.3

Throughout this section assume that µ has finite fourth moment. We are now in a

suitable position to prove Theorem 2.0.2 and Theorem 2.0.3. Let f ∈ S (X). Recall

that we expressed in (3.2.1) the term in question nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) for x0 = h0K

by using the Fourier inversion formula as

nℓ/2

σn

∫
a∗

∫
Ω

f̂(r, ω)(Sn
r ρr(h0)1)(ω) dmΩ(ω)dνsph(r).

The latter term is decomposed into the high frequency (3.2.2) and low frequency

(3.2.3) component for δ0 ∈ (0, 1) small enough such that Lemma 5.1.2 holds. Under

the assumption sup|r|≥1 ||Sr|| < 1, the high frequency term (3.2.2) is dealt with by

Lemma 5.3.3 collecting an error term of size Oµ(e
−cn||f ||Hs) for s = 1

2
(dimX + 1).

Without this assumption, one requires that the Fourier transform of f is compactly

supported yielding by Lemma 5.3.2 an error term of size Oµ,f (e
−cfn).

For the low frequency term, one applies Lemma 5.4.1, thereby collecting an error

term of sizeOµ(e
−cn||f ||1). It remains to deal with (5.4.1), which after the substitution

r to n√
r
is of the form (5.4.2). Using Lemma 5.2.1 and Corollary 5.4.5, we arrive at

the term ∫
|r|≤δ0

√
n

γ(r)

∫
Ω

f̂( r√
n
, ω)(E r√

n
ρ r√

n
(h)1)(ω) dmΩ(ω)dma∗(r)

=

∫
f(g)ρG(h

−1)

(∫
|r|≤δ0

√
n

γ(r)ψµ, r√
n
(g) dma∗(r)

)
dmG(g)

admitting an additional error term of size

≪µ n
−1||f ||1

∫
|r|≤δ0

√
n

e−c′|r|2 dma∗(r) ≪µ n
−1||f ||1,
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using that the latter integral converges.

We define for n ≥ 1 the continuous real-valued functions on G,

ψn(g) =

∫
|r|≤δ0

√
n

γ(r)ψµ, r√
n
(g) dma∗(r) and (5.5.1)

ψ0(g) = cµ · ψµ,0(g) for cµ =

∫
r∈a∗

γ(r) dma∗(r).

While ψµ, r√
n
is not necessarily real-valued, the function ψn is as ψµ, r√

n
= ψµ,− r√

n
and

the definition of ψn is invariant under r 7→ −r.
We have so far collected a total error of size

Oµ(n
−1||f ||1 + e−cn||f ||Hs)

under the assumption sup|r|≥1 ||Sr|| < ||S0|| and for f ∈ S (X) and

Oµ(n
−1||f ||1) +Oµ,f (e

−cfn||f ||1)

without the latter assumption yet requiring that the Fourier transform of f has com-

pact support. To conclude the proof, we show the following lemma.

Lemma 5.5.1. For g ∈ G and n ≥ 1,

|ψn(g)− ψ0(g)| ≪µ n
−1(1 + ||g||2).

Proof. Since γ(r) ≪µ e
−c′|r|2 for a suitable constant c′ it follows that

|ψµ,0(g)|
∫
|r|>δ0

√
n

γ(r) dma∗(r)

decays exponentially fast in n (using that |ψµ,0(g)| = |⟨η0, ρ0(g)η′0⟩| ≪µ 1) and there-

fore we need to deal with∣∣∣∣ψn(g)−
∫
|r|≤δ0

√
n

γ(r)ψµ,0(g) dma∗(r)

∣∣∣∣. (5.5.2)

By Lemma 5.2.2 it holds that∣∣∣∣ψµ, r√
n
(g) + ψµ,− r√

n
(g)

2
− ψµ,0(g)

∣∣∣∣≪µ n
−1|r|2(1 + ||g||2)

and therefore using again that γ(r) ≪µ e
−c∗|r|2 and as the defining integral of ψn is

invariant under replacing r by −r,

(5.5.2) ≪
∫
|r|≤δ0

√
n

γ(r)|ψµ, r√
n
(g)− ψµ,0(g)| dma∗(r)

≪µ n
−1(1 + ||g||2)

∫
|r|≤δ0

√
n

γ(r)|r|2 dma∗(r)

≪µ n
−1(1 + ||g||2).
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Recall that we have defined

||f ||∗ =
∫

|f(x)|(1 + dX(x, o)
2) dmX(x) =

∫
|f(g)|(1 + ||g||2) dmG(g),

where we make no notational difference between f and its lift to G. To conclude the

proof of (2.0.6) and (2.0.9) we estimate∣∣∣∣ ∫ f(g.x0)ψn(g) dmG(g)−
∫
f(g.x0)ψ0(g) dmG(g)

∣∣∣∣
≤
∫

|f(g)||ψn(gh
−1
0 )− ψ0(gh

−1
0 )| dmG(g)

≪µ n
−1

∫
|f(g)|(1 + ||gh−1

0 ||2) dmG(g)

≪µ n
−1

∫
|f(g)|(1 + ||g||2 + ||h0||2) dmG(g)

≪µ n
−1||f ||∗ + n−1dX(x0, o)

2||f ||1,

having used in the penultimate line that ||gh−1
0 || ≤ ||g||+ ||h−1

0 || by Corollary 7.20 of

[BQ16] as G is connected. This concludes the proof of Theorem 2.0.2 and of (2.0.9).

The final claim of Theorem 2.0.3 is proved in the following lemma.

Lemma 5.5.2. Let G be a non-compact connected semisimple Lie group with finite

center and let µ be a non-degenerate probability measure on G with finite second

moment. Assume that µ satisfies one of the following properties:

(i) µ is spread out.

(ii) µ is bi-K-invariant, i.e. mK ∗ µ ∗mK.

Then S0 is quasicompact and
(
sup|r|≥1 ||Sr||

)
< ||S0||.

Proof. The claim of the lemma was established for spread out measures in section

2.2 of [Bou81]. It remains to treat the case where µ is bi-K-invariant. Note that

as Sr = ρr(mK) ∗ Sr ∗ ρr(mK) it holds that Sr1Ω = λ(r)1Ω and Sr⟨1Ω⟩⊥ = {0} and

therefore λ(r) =
∫
ϕr(g) dµ(g). The claim now follows as ϕr(g) → 0 (cf. for example

appendix A of [FM21]) for fixed g ∈ G\K and r → ∞ and using that µ(G\K) > 0

as µ is non-degenerate.
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5.6 Proof of Theorem 2.0.1

Lemma 5.6.1. Let G and µ be as in Theorem 2.0.1. Let f ∈ S (X) be a Schwartz

function whose Fourier transform is compactly supported. Then

lim
n→∞

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) =

∫
f(g.x0)ψ0(g) dmG(g).

Proof. The proof is as the one of Theorem 2.0.3 expect that we cannot use Lemma 5.4.3.

Revising the argument of Lemma 5.4.3, it follows that for the positive definite quadratic

form Q from Lemma 5.4.3, under the assumption that µ has finite second moment,

it holds that λ(r) = λ(0)−Q(r, r) + o(|r|2) and therefore for |r| ≤ δ0
√
n,

lim
n→∞

λ(r/
√
n)n

σn
= e−c2Q(r,r) and

λ(r/
√
n)n

σn
≪ ec

′|r|2

for a suitable constant c′ > 0. Similarly to Lemma 5.4.5,

lim
n→∞

np

σn
λ( r√

n
)n|c( r√

n
)|−2 = γ(r).

Arguing as in the proof of Theorem 2.0.2, it therefore follows by dominated conver-

gence,

lim
n→∞

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g) = lim
n→∞

(5.4.1)

=

∫
r∈a∗

γ(r)

∫
Ω

f̂(0, ω)(E0ρ0(h0)1)(ω) dmΩ(ω)dma∗(r)

=

∫
f(g.x0)ψ0(g) dmG(g).

Lemma 5.6.2. Let f ∈ S (X). Then

lim sup
n→∞

∣∣∣∣nℓ/2

σn

∫
f(g.x0) dµ

∗n(g)

∣∣∣∣≪ ||f ||1,

where the implied constant depends only on G.

Proof. One may reduce to functions f ≥ 0. By covering the latter function suitably

by a linear combination of characteristic functions, it suffices to show the claim for

f = 1Bε(x) with ε > 0 small and x ∈ X. By Theorem 5.7 of [And04] there is a

positive function h ∈ S (X), whose Fourier transform has compact support, satisfying

1Bε(x) ≤ h and ||h||1 ≪ volX(Bε). The lemma follows by applying Lemma 5.6.1 to

h.
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Proof. (of Theorem 2.0.1) Let δℓ ∈ S (X) be an approximation to the identity on

G that is bi-K-invariant and whose Fourier transform has compact support. Such

functions exists by choosing a sequence ωℓ of smooth bi-K-invariant approximations

to the identity that are supported on smaller and smaller balls around e ∈ G. As a

Schwartz function is characterized by its Fourier transform, it suffices to determine

δ̂ℓ. Indeed one may choose δ̂ℓ to be equal to ω̂ℓ in a sufficiently large ball around the

identity and to decay to zero rapdily outside of it. One then readily checks that δℓ

satisfies the required properties.

Then for f ∈ S (X), it holds for r ∈ a∗ and k ∈ Ω,

f̂ ∗ δℓ(r, k) = (ρ−r(f ∗ δℓ)1)(k) = (ρ−r(f)ρ−r(δℓ)1)(k) = f̂(r, k)δ̂ℓ(r).

Therefore the Fourier transform of f ∗ δℓ has compact support.

Combining Corollary 5.6.1 and Lemma 5.6.2, for f ∈ S (X),

nℓ/2

σn

∫
f(g.x0) dµ

∗n(g)

=
nℓ/2

σn

∫
(f ∗ δℓ)(g.x0) dµ∗n(g) +

nℓ/2

σn

∫
(f − f ∗ δℓ)(g.x0) dµ∗n(g)

=

∫
f(g.x0)ψ0(g) dmG(g) +Oµ(||f − f ∗ δℓ||1) + of,ℓ(1)

having used Lemma 5.6.2 and that |
∫
(f−f ∗δℓ)(g)ψ0(gh

−1
0 ) dmG(g)| ≪µ ||f−f ∗δℓ||1

as ψ0 is bounded. The claim follows by choosing ℓ sufficiently slowly increasing in

n.
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Chapter 6

Quasicompactness of S0

In this section we discuss how to establish quasicompactness of S0 under strong Dio-

phantine assumption. The reader may recall the Littlewood-Paley decomposition

L2(K) =
⊕

ℓ≥0 Vℓ (see (3.1.6)), where the space of functions Vℓ can be pictured as

oscillating with frequency 2ℓ. The main result of this section states that under suit-

able assumptions, the operator S0 has small norm on the space of functions with high

enough oscillations.

Recall that we denoted by ρ+0 the Koopman representation induced by the G

action on K, which contains the zero principal series ρ0 as a subrepresentation and

write S+
0 = ρ+0 (µ). Instead of considering S0, we study S+

0 , which leads to stronger

statements.

Theorem 6.0.1. Let G be a non-compact connected simple Lie group with finite

center. For c1, c2 > 0 there exists ε0 = ε0(c1, c2) > 0 such that the following holds.

For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine probability measure

µ there is L = L(c1, c2) ∈ Z≥1 such that for φ ∈
⊕

ℓ≥L Vℓ,

||S+
0 φ||2 ≤

1

4
||φ||2. (6.0.1)

Theorem 6.0.1 will be deduced in section 6.1 using results and ideas from [BISG17],

thereby exploiting that the measure µ has high dimension (3.2.8) as well as a Littlewood-

Paley decomposition and a mixing inequality on G. Under the additional assumption

that K is semisimple, one may instead follow Bourgain’s [Bou12] original ideas and

improve (6.0.1).

Theorem 6.0.2. Let G be a non-compact connected simple Lie group with finite

center and maximal compact subgroup K. Assume that K is semisimple. For c1, c2 >

0 there exists ε0 = ε0(c1, c2) > 0 such that the following holds. For any 0 < ε < ε0
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and any symmetric and (c1, c2, ε)-Diophantine probability measure µ there is L =

L(c1, c2) ∈ Z≥1 such that for φ ∈
⊕

ℓ≥L Vℓ,

||S+
0 φ||2 ≤ εOc1,c2 (1)||φ||2. (6.0.2)

The proof of Theorem 6.0.2 was exposed in section 3.2. As in [BISG17] we exploit

that µ has high dimension, yet we work with the Littlewood-Paley decomposition on

K and use that the averages of matrix coefficients of Vℓ are small (Proposition 4.5.1).

From these results, one may easily deduce that S0 and S
+
0 are quasicompact, therefore

also implying Theorem 2.0.7.

Corollary 6.0.3. Let G be a non-compact connected simple Lie group with finite

center. For c1, c2 > 0 there exists ε0 = ε0(c1, c2) > 0 such that the following holds.

For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine probability measure

µ, the operators S0 and S+
0 are quasicompact.

Proof. As ||S0|| = ||S+
0 || (by section D of [Gui80]) and since ρ+0 is a subrepresentation

of ρ0, it suffices to show that S+
0 is quasicompact. By Lemma 4.1.1, the estimate

(6.0.1) implies that ρess(S
+
0 ) ≤ 1

4
. As for ε > 0 small enough, ||

√
α′
g − 1||∞ ≪

|δ| ||g|| ≪ εO(1) for g ∈ Bε, it holds that ||S+
0 || ≥ 1 − εO(1) and hence the claim

follows.

We next explain how to deduce from (6.0.1) that the Furstenberg measure is

absolutely continuous. Given a non-degenerate probability measure, we study the

operator

T0 : L
2(Ω) → L2(Ω), φ 7→ T0φ =

∫
φ ◦ αg dµ(g).

As we discuss in the proof of Corollary 6.0.4, it is shown in [BQ18] that if ρess(T0) < 1,

then the Furstenberg measure of µ is absolutely continuous. The following corollary

is also necessary to establish Theorem 2.0.8.

Corollary 6.0.4. Let G be a non-compact connected simple Lie group with finite

center. For c1, c2 > 0 there exists ε0 = ε0(c1, c2) > 0 such that the following holds.

For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine probability measure

µ there is L = L(c1, c2) ∈ Z≥1 such that

||T0φ||2 ≤
1

2
||φ||2 for φ ∈

(
L2(Ω) ∩

⊕
ℓ≥L

Vℓ

)
. (6.0.3)

Moreover, ρess(T0) < 1 and the Furstenberg measure of µ is absolutely continuous.
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Proof. Using as in the proof of Corollary 6.0.3 that ||
√
α′
g − 1||∞ ≪ |δ| ||g|| ≪ εO(1)

for g ∈ Bε and ε > 0 small enough, it follows that ||S0 − T0|| ≤ εO(1). Therefore

(6.0.3) is implied by (6.0.1). By Lemma 4.1.1 we hence conclude ρess(T0) < 1.

We finally review the argument from [BQ18] to show that the Furstenberg measure

of µ is absolutely continuous under the assumption that ρess(T0) < 1. Indeed as

T01 = 1, it follows that 1 is in the discrete spectrum of T0. If ρess(T0) < 1, one

furthermore concludes (cf. Fact 2.3 of [BQ18]) that 1 is in the discrete spectrum

of the adjoint operator T ∗
0 and therefore there is a function ψF ∈ L2(Ω) satisfying

T ∗
0ψF = ψF. One then readily checks that ψFdmΩ is a µ-stationary measure and thus

by uniqueness of the Furstenberg measure it holds dνF = ψFdmK .

We comment on the organization of this section. Theorem 6.0.1 is proved in

section 6.1. The proof of Theorem 6.0.2 comprises two steps. In section 6.2 we first

establish using the flattening results from Theorem 4.4.2 that S+
0 |Vℓ

has small operator

norm. In section 6.3 we complete the proof of Theorem 6.0.2 by using that S+
0 Vℓ and

Vℓ′ are almost orthogonal. Finally in section 6.4 we show how to deduce that the

Furstenberg measure has a Cm(K) density.

6.1 Proof of Theorem 6.0.1

Write T+
0 φ =

∫
φ ◦ αg dµ(g) for φ ∈ L2(K). Since ||S+

0 − T+
0 || ≤ εO(1), as argued in

the proof of Corollary 6.0.4, in order to prove Theorem 6.0.1 it suffices to show that

||T+
0 φ||2 ≤

1

8
||φ||2 (6.1.1)

for φ ∈
⊕

ℓ≥L Vℓ and L = L(c1, c2).

We proceed similarly to the proof of Corollary C of [BISG17]. Indeed, we reduce

the problem at hand to studying the regular representation on L2(G). One then

uses the following result of [BISG17], which may be considered as their core technical

contribution, which uses that µ has high dimension as well as a novel Littlewood-

Paley decomposition and a mixing inequality on G. We rephrase their result using

the notion of (c1, c2, ε)-Diophantine measures.

To introduce notation, for a measurable subset B ⊂ G we consider the norm

||f ||2L2(B) =

∫
B

|f(g)|2 dmG.

Theorem 6.1.1. (Theorem 6.7 of [BISG17]) Let G be a connected simple Lie group

with finite center and B ⊂ G a measurable set with compact closure. Let c1, c2 > 0.
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Then there is ε0 = ε0(B, c1, c2) > 0 such that the following holds. For any 0 < ε < ε0

and any symmetric and (c1, c2, ε)-Diophantine probability measure µ there is a finite

dimensional subspace VB ⊂ L2(B) such that

||λG(µ)|(VB)⊥||op,L2(B) ≤ εOB,c1,c2
(1).

In order to apply Theorem 6.1.1, we use the following lemma, which is inspired by

the proof of Corollary C of [BISG17]. Denote by πK : G → K = G/P+ the natural

projection.

Lemma 6.1.2. Denote B = {g ∈ G : |κ(g)| ≤ c} for c > 0. For small enough c > 0

there is a constant D > 1 depending on G and c > 0 such for all φ ∈ L2(K),

D−1||φ||L2(K) ≤ ||φ ◦ πK ||L2(B) ≤ D||φ||L2(K). (6.1.2)

Proof. Recall that we denote P+ = AN . By [BdlHV08] Theorem B.1.4 there is a

continuous function ρ : G→ R>0 such that∫
G

f(g)ρ(g) dmG(g) =

∫
K

∫
P+

f(kp) dmP (p)dmK(k) (6.1.3)

for all f ∈ L1(G) with compact support. It moreover holds that α′
g(xP

+) = ρ(gx)
ρ(x)

for

all x, g ∈ G. We then calculate for φ1, φ2 ∈ L2(K) using (6.1.3),

|mG(B)⟨φ1, φ2⟩L2(K) − ⟨φ1 ◦ πK , φ2 ◦ πK⟩L2(B)|

=

∣∣∣∣ ∫
K

∫
P+

φ1(k)φ2(k)1B(p) dmP (p)dmK(k)−
∫

1B(g)φ1(πK(g))φ2(πK(g)) dmG(g)

∣∣∣∣
=

∣∣∣∣ ∫
B

φ1(πK(g))φ2(πK(g))(1− ρ(g)) dmG(g)

∣∣∣∣
≤ ||φ1 ◦ πK ||L2(B)

√∫
B

|φ2(πK(g))|2 |1− ρ(g)|2 dmG(g)

≤ D′||φ1 ◦ πK ||L2(B)||φ2 ◦ πK ||L2(B),

for a suitable constant D′ using that |1− ρ(g)| is bounded on the compact set B. By

a similar argument and possibly enlarging the constant D′, we may also estimate the

latter term by

mG(B)D′||φ1||L2(K)||φ2||L2(K).

Setting φ = φ1 = φ2 the claim is readily implied by choosing D suitably in terms of

D′ and mG(B).
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Throughout the following denote by B = {g ∈ G : |κ(g)| ≤ c} a set from

Lemma 6.1.2 such that (6.1.2) holds. We are now in a suitable position to apply

Theorem 6.1.1. Indeed for φ ∈ L2(K) it holds by (6.1.2) that

||T0φ||L2(K) ≤ D||(T0φ) ◦ πK ||L2(B) = D||λG(µ)(φ ◦ πK)||L2(B). (6.1.4)

Let VB ⊂ L2(B) the finite dimensional subspace of Theorem 6.1.1. We then may

choose L large enough such that if φ ∈
⊕

ℓ≥L Vℓ then

||φ ◦ πK − (φ ◦ πK)(VB)⊥||L2(B) ≤
1

16D2
||φ ◦ πK ||L2(B), (6.1.5)

where (φ ◦ πK)(VB)⊥ is the projection of φ ◦ πK onto (VB)
⊥. Indeed this follows using

(6.1.3) and that VB is finite dimensional.

We conclude using Theorem 6.1.1, (6.1.2),(6.1.4) and (6.1.5),

||T0φ||L2(K) ≤ D||λG(µ)(φ ◦ πK)||L2(B)

≤ D||λG(µ)
(
φ ◦ πK − (φ ◦ πK)(VB)⊥

)
||L2(B) +D||λG(µ)(φ ◦ πK)(VB)⊥||L2(B)

≤ 1

16D
||φ ◦ πK ||L2(B) +DεOc1,c2 (1)||φ ◦ πK ||L2(B)

≤
(

1

16
+D2εOc1,c2 (1)

)
||φ||L2(K),

showing (6.1.1) by choosing ε small enough in terms of c1 and c2. The proof of

Theorem 6.0.1 is complete.

6.2 Operator Norm Estimate for S+
0 on Vℓ

In this section we prove the following proposition.

Proposition 6.2.1. For c1, c2 > 0 there exists ε0 = ε0(G, c1, c2) > 0 such that the

following holds. For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine

probability measure µ, there is L = L(G, c1, c2) ∈ Z≥1 such that ||S+
0 |Vℓ

||op ≤ εOc1,c2 (1)

for ℓ ≥ L.

Recall that as introduced in section 4.4,

Pδ =
1Bδ

mG(Bδ)
,

where Bδ is the open δ-ball around e ∈ G. For the proof of Proposition 6.2.1, one

estimates by the triangle inequality for n ≥ 1 and φ ∈ Vℓ,

||(S+
0 )

nφ||2 ≤ ||(S+
0 )

nφ− ρ+0 (µ
∗n ∗ Pδ)φ||2 + ||ρ+0 (µ∗n ∗ Pδ)φ||2. (6.2.1)
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We aim to show that (6.2.1) is very small for a suitably chosen n and δ. For the

first term of (6.2.1), we use that the Lipschitz constant of φ is ≍ ||γ||O(1). Therefore,

a δ-perturbation of (S+
0 )

nφ = ρ+0 (µ
∗n)φ is small provided we choose δ miniscule in

terms of ℓ.

The second term of (6.2.1) is dealt with by using that µ has high dimension.

Indeed by Lemma 4.4.2 it will follow that µ∗n ∗Pδ has small || · ||∞-norm for n chosen

in terms of δ. This will allow us to compare ||ρ+0 (µ∗n ∗Pδ)φ||2 to the average estimate

of matrix coefficients

1

mG(BR)

∫
BR

|⟨ρ+0 (g)φ, φ⟩| dmG(g) ≪ 2−ℓ/2||φ||2

that was discussed in section 4.5.

We proceed with some preliminary lemmas used in the proof of Proposition 6.2.1.

First, we estimate how much ρ+0 (g)φ differs from φ, given that φ ∈ Vℓ and g ∈ Bδ.

Lemma 6.2.2. Fix ℓ ≥ 0. Then for φ ∈ Vℓ and 0 < δ ≪ 2−ℓ, it holds for g ∈ Bδ,

||ρ+0 (g)φ− φ||2 ≪ eO(1)ℓδO(1)||φ||2.

Proof. We first fix γ ∈ C ∩ I∗ and denote as usual by πγ the associated irreducible

representation and let v1, . . . , vn ∈ πγ be an orthonormal basis of the representation

space of πγ. For k ∈ Bδ in K for δ small enough, it holds by Lemma 3.1 of [dS13] that

||πγ(k)− Idπγ ||op ≪ dK(k, e)||γ||. Indeed, upon conjugation, we can assume that k is

inside the maximal torus T of K and hence we can write k = eX for X ∈ t = Lie(T )

with ||X|| ≪ dK(k, e). With these assumptions, the eigenvalues of πγ(k) − Idπγ can

be calculated as eγ
′(X) − 1 for γ′ the weights of πγ. Choosing δ ≪ 2−ℓ, and therefore

having |γ′(X)| ≪ 1, we can bound maxγ′ |eγ′(X) − 1| ≪ maxγ′ |γ′(X)| ≪ dK(g, e)||γ||,
showing the claim.

Denote by ψ the matrix coefficient k 7→
√
dπ⟨πγ(k)vi, vj⟩, satifying ||ψ||2 = 1. We

first show that ||ρ+0 (g)ψ − ψ||2 ≪ δO(1)||γ||O(1) for g ∈ Bδ. Indeed, using as in the

proof of Corollary 6.0.3 that ||
√
α′
g(k)− 1||∞ ≪ δO(1) and Lemma 4.3.1,

|(ρ+0 (g)ψ)(k)− ψ(k)| ≤
∣∣∣ (√α′

g(k)− 1
)
ψ(g−1.k)

∣∣∣+ ∣∣ψ(g−1.k)− ψ(k)
∣∣

≪ δO(1)|ψ(g−1.k)|+
√
dπ||πγ(g−1.k)− πγ(k)||op

≪ δO(1)|ψ(g−1.k)|+ δO(1)||γ||O(1),

which implies the claim using |ψ(g−1.k)| ≤ |ψ(g−1.k)− ψ(k)|+ |ψ(k)|.
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To prove the lemma, denote by (ψi)i∈I an orthonormal basis of Vℓ with functions

as in the previous paragraph. Then |I| ≪ eO(1)ℓ and for φ ∈ Vℓ we decompose

φ =
∑

i∈I aiψi, implying using Cauchy-Schwarz,

||ρ+0 (g)φ− φ||2 ≤
∑
i∈I

|ai| ||ρ+0 (g)ψ − ψ||2 ≪ eO(1)ℓδO(1)||φ||2.

We next show how to compare π(ν)φ with π(ν ∗ Pδ)φ for a suitable vector φ and

a unitary representation π and probability measure ν.

Lemma 6.2.3. Let (π,H ) be a unitary representation of G and let δ > 0. Fix

φ ∈ H . Assume that ||π(g)φ − φ|| ≤ Cδ||φ|| for all g ∈ Bδ and Cδ > 0 a constant.

Then for any probability measure ν,

||π(ν)φ− π(ν ∗ Pδ)φ|| ≤ Cδ||φ||.

Proof. Using Fubini’s theorem and that 1Bδ(g)(h) = 1Bδ(h)(g),

π(ν)φ =

∫
1

mG(Bδ(e))

(∫
1Bδ(g)(h)π(g)φdmG(h)

)
dν(g)

=

∫
1

mG(Bδ(e))

(∫
Bδ(h)

π(g)φdν(g)

)
dmG(h).

Furthermore, by the assumption and using that Bδ(h) = hBδ(e) (the metric on G is

left invariant),∣∣∣∣∣∣∣∣ ∫
Bδ(h)

π(g)φdν(g)− ν(Bδ(h)) · π(h)φ
∣∣∣∣∣∣∣∣ ≤ ∫

Bδ(h)

||(π(g)− π(h))φ|| dν(g)

≤
∫
Bδ(h)

||π(h)(π(h−1g)− Id)φ|| dν(g)

≤ ν(Bδ(h))Cδ||φ||.

Finally, as (ν ∗ Pδ)(h) =
ν(Bδ(h))

mG(Bδ(e))
,

||π(ν)φ− π(ν ∗ Pδ)φ||

=

∣∣∣∣∣∣∣∣ ∫ 1

mG(Bδ(e))

(∫
Bδ(h)

π(g)φdν(g)

)
dmG(h)−

∫
π(h)φ (ν ∗ Pδ)(h) dmG(h)

∣∣∣∣∣∣∣∣
≤
∫

1

mG(Bδ(e))

∣∣∣∣∣∣∣∣ ∫
Bδ(h)

π(g)φdν(g)− ν(Bδ(h)) · π(h)φ
∣∣∣∣∣∣∣∣dmG(h)

≤ Cδ||φ|| ·
∫

ν(Bδ(h))

mG(Bδ(e))
dmG(h) = Cδ||φ||,

using in the last line that by Fubini’s theorem
∫ ν(Bδ(h))

mG(Bδ(e))
dmG(h) = 1 as ν is a

probability measure.
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Proof. (of Proposition 6.2.1) Let γ > 0 be a fixed constant to be determined later.

Then by Proposition 4.4.2 there is ε0 = ε0(c1, c2) > 0 and C0 = C0(c1, c2) > 0 such

that for δ > 0 small enough it holds that ||(µ∗n)δ||2 ≤ δ−γ for any n ≥ C0
log 1

δ

log 1
ε

and

(µ∗n)δ = µ∗n ∗ Pδ.

Let φ ∈ Vℓ with ||φ||2 = 1. Then by the triangle inequality,

||(S+
0 )

nφ||2 ≤ ||(S+
0 )

nφ− ρ+0 (µ
∗n ∗ Pδ)φ||2 + ||ρ+0 (µ∗n ∗ Pδ)φ||2.

The first term can be estimated using Lemma 6.2.2 and Lemma 6.2.3 as ||(S+
0 )

nφ−
ρ+0 (µ

∗n∗Pδ)φ||2 ≪ eO(1)ℓδO(1) assuming that δ ≪ 2−ℓ. For the second term, first notice

that by applying Cauchy-Schwarz it follows that ||(µ∗n)δ∗(µ∗n)δ||∞ ≤ ||(µ∗n)δ||22. Then
with Theorem 4.4.2 and Proposition 4.5.1,

||ρ+0 (µ∗n ∗ Pδ)φ||22 = ⟨ρ+0 (µ∗n ∗ Pδ ∗ µ∗n ∗ Pδ)φ, φ⟩

≤
∫

|⟨ρ+0 (g)φ, φ⟩| ((µ∗n)δ ∗ (µ∗n)δ)(g) dmG(g)

≤ δ−2γ

∫
B4nε

|⟨ρ+0 (g)φ, φ⟩| dmG(g)

≪ δ−2γmG(B4nε)e
−O(1)ℓ ≤ δ−2γeO(1)nεe−O(1)ℓ.

Let n be a power of 2 satisfying n ≍ C0
log 1

δ

log 1
ε

. Then by using that S+
0 is self-adjoint and

n a power of 2, it follows by induction on k with 2k = n that ||(S+
0 )φ||n2 ≤ ||(S+

0 )
nφ||2.

Therefore it follows for δ ≪ 2−ℓ that

||S+
0 |Vℓ

||op ≤ D
1
n max{e

σ1ℓ
n δ

σ2
n , δ−

γ
n e−

σ3ℓ
n },

for D, σ1, σ2, σ3 > 0 absolute constants. We choose δ = e
−max{1, 2σ1

σ2
}ℓ

so that δ ≪ 2−ℓ

and e
σ1ℓ
n δ

σ2
n ≤ e−

σ1ℓ
n . We furthermore set γ = σ3

2max{1,2σ1
σ2

} and therefore δ−
γ
n e−

σ3ℓ
n =

e−
σ3ℓ
2n . With these choices, ||S+

0 |Vℓ
||op ≤ D

1
n e−O(1) ℓ

n . In addition we make ℓ large

enough in terms of c1 and c2 such that δ becomes small enough for Proposition 4.4.2

to hold. To conclude, it holds by construction that ℓ
n

≍c1,c2 log 1
ε
and therefore

e−O(1) ℓ
n = εOc1,c2 (1) and similarly D

1
n = ε−

Oc1,c2 (1)

ℓ , so choosing ℓ additionally larger

than a further constant depending on c1 and c2, the claim follows.

6.3 Proof of Theorem 6.0.2

Having established that ||S+
0 |Vℓ

||op is small for ℓ ≥ L(c1, c2), we aim to convert this

to an estimate that ||S+
0 |⊕ℓ≥L Vℓ

||op is also small. We use that the spaces S+
0 Vℓ and

Vℓ′ are almost orthogonal for ℓ ̸= ℓ′ as shown in Lemma 6.3.2.

74



The Lie algebra of K is denoted k and we also write λK for the Lie algebra

representation induced by the regular representation λK on K. Indeed, for a smooth

function φ on K the function (λK(X)φ)(k) = limt→0
1
t
(φ(e−tXk)− φ(k)) with X ∈ k

and k ∈ K is the directional derivative of φ in the direction −X.

As in [Bou12], we use an argument based on partial integration to show that

S+
0 Vℓ and Vℓ′ are almost orthogonal. For a general manifold there is no suitable

partial integration formula. However, for compact Lie groups we overcome this issue

by exploiting that the Laplacian acts as a scalar on functions on L2(K) induced by

the representation πγ. Indeed, for a fixed orthonormal basis X1, . . . , XdimK of k recall

that the Casimir element is defined as △ = −
∑

iXi◦Xi. We then use as replacement

to partial integration that

⟨φ1, λK(△)φ2⟩ =
∑
i

⟨λK(−Xi)φ1, λK(Xi)φ2⟩. (6.3.1)

In order to give a suitable estimate for (6.3.1), we first analyse ||λK(X)φ||2 for X ∈ k.

Lemma 6.3.1. Let ℓ ≥ 0 and ε > 0. Then for φ ∈ Vℓ, g ∈ Bε and X ∈ k of unit

norm,

||λK(X)φ||2 ≪ 2ℓ||φ|| and ||λK(X)(ρ+0 (g)φ)||2 ≪ (1 +O(εO(1)))2ℓ||φ||2.

Proof. Without loss of generality we assume that X ∈ t. Fix γ ∈ C ∩ I∗. The

eigenvalues of the operator πγ(e
tX)−Id can be calculated as etγ

′(X)−1 for γ′ the various

weights of the representation πγ. Therefore the operator πγ(X) = limt→0
1
t
(πγ(e

tX)−
Id) has eigenvalues γ′(X). Let v1, . . . , vn be an orthonormal basis of eigenvectors of

πγ(X). Then the functions ψ(k) =
√
dγ⟨πγ(k)vi, vj⟩ for k ∈ K satisfy (λK(X)ψ)(k) =√

dγ⟨πγ(k)vi, πγ(X)vj⟩ = (γ′(X)ψ)(k). The first claim follows as ||γ′(X)|| ≪ ||γ|| ≤
2ℓ and by decomposing the function φ as a sum of functions of the form ψ.

For the second claim recall that ρ+0 (g)φ =
√
α′
g · (φ ◦ αg) and therefore

λK(X)(ρ+0 (g)φ) =
(
λK(X)

√
α′
g

)
· (φ ◦ αg) +

√
α′
g · λK(X)(φ ◦ αg). (6.3.2)

To deal with the first term of (6.3.2), since α′
g is a smooth polynomial perturbation of

the identity, it follows that ||λK(X)
√
α′
g||∞ ≤ (1 + O(εO(1))) and furthermore using

integration by substitution, ||φ ◦ αg||2 ≪ (1 +O(εO(1)))||φ||2. For the second term of

(6.3.2), we use the chain rule and the first step to conclude that ||λK(X)(φ◦αg)||2 ≪
(1 +O(εO(1)))2ℓ||φ||2, concluding the lemma.

We now apply (6.3.1) to prove the following lemma.
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Lemma 6.3.2. For φℓ1 ∈ Vℓ1 and φℓ2 ∈ Vℓ2 with ℓ1 ̸= ℓ2 and g ∈ Bε,

|⟨ρ+0 (g)φℓ1 , φℓ2⟩| ≪ (1 +O(εO(1)))2−|ℓ1−ℓ2|||φℓ1||2||φℓ2||2.

Proof. Without loss of generality we assume that ℓ2 > ℓ1. Denote by ψ ∈ Vℓ2 the

function such that λK(△)ψ = φℓ2 . Then by Lemma 4.3.1, ||ψ||2 ≪ 2−2ℓ2 ||φℓ2||2.
Using then (6.3.1) and Lemma 6.3.1,

|⟨ρ+0 (g)φℓ1 , φℓ2⟩| = |⟨ρ+0 (g)φℓ1 , λK(△)ψ⟩|

=

∣∣∣∣∑
i

⟨λK(−Xi)ρ
+
0 (g)φℓ1 , λK(Xi)ψ⟩

∣∣∣∣
≤
∑
i

||λK(−Xi)(ρ
+
0 (g)φℓ1)|| ||λK(Xi)ψ||

≪ (1 +O(εO(1)))2ℓ1+ℓ2||φℓ1||2||ψ||2
≪ (1 +O(εO(1)))2ℓ1−ℓ2||φℓ1||2||φℓ2||2.

We conclude this section by proving Theorem 6.0.2 by combining Proposition 6.2.1

and Lemma 6.3.2.

Proof. (of Theorem 6.0.2) By Proposition 6.2.1, there is ε0 = ε0(c1, c2) > 0 and

L = L(c1, c2) ∈ Z≥1 such that ||S+
0 |Vℓ

||op ≤ εOc1,c2 (1) for ℓ ≥ L. Let φ ∈
⊕

ℓ≥L Vℓ and

let N ≥ 1 to be determined later. Then

||S+
0 φ||22 ≤

∑
ℓ,ℓ′≥L

|⟨S+
0 πℓφ, S

+
0 πℓ′φ⟩|

=
∑

|ℓ−ℓ′|≤N

|⟨S+
0 πℓφ, S

+
0 πℓ′φ⟩|+

∑
|ℓ−ℓ′|>N

|⟨S+
0 πℓφ, S

+
0 πℓ′φ⟩|,

where both of the sums are with ℓ, ℓ′ ≥ L. For the first of these two terms one uses

the conclusion of Proposition 6.2.1,∑
|ℓ−ℓ′|≤N

||S+
0 πℓφ|| ||S+

0 πℓ′φ|| ≤ N
∑
ℓ≥L

||S+
0 πℓφ||22 ≤ NεOc1,c2 (1)||φ||22.

Lemma 6.3.2 is used to bound the second term:∑
|ℓ−ℓ′|>N

|⟨S+
0 πℓφ, S

+
0 πℓ′φ⟩| ≪

∑
|ℓ−ℓ′|>N

2−|ℓ−ℓ′|||πℓφ|| ||πℓ′φ||

≪
∑

|ℓ−ℓ′|>N

2−|ℓ−ℓ′|||πℓφ||22

≪ 2−N
∑
ℓ≥L

||πℓφ||22 = 2−N ||φ||22.
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Therefore it follows that ||S+
0 φ||2 ≤

√
NεOc1,c2 (1) + 2−N ||φ||2. Setting N = log 1

ε

implies the claim of the theorem.

6.4 Smoothness of the Furstenberg Measure

In this section we prove Theorem 2.0.8, which we restate here for convenience of the

reader.

Theorem 6.4.1. (Theorem 2.0.8) Let G be a non-compact connected simple Lie group

with finite center. Let c1, c2 > 0 and m ∈ Z≥1. Then there is εm = εm(G, c1, c2) > 0

depending on G, c1, c2 and m such that every symmetric and (c1, c2, ε)-Diophantine

probability measure µ with ε ≤ εm has absolutely continuous Furstenberg measure with

density in Cm(Ω).

By Corollary 6.0.4, we know that the Furtstenberg measure is absolutely contin-

uous if we choose εm small enough, i.e. there is ψF ∈ L2(Ω) such that dνF = ψFdmΩ.

In order to prove Theorem 2.0.8, we use the smoothness condition from Lemma 4.3.2

for ψF . Indeed, for πℓ the projection from L2(K) to Vℓ, it suffices to show

||πℓψF ||2 ≤ 2−(s+1)ℓ

for s > m+ 1
2
dimK and ℓ large enough.

By the characterization of the Furstenberg measure, for any n ≥ 1 it holds that

νF = µ∗n ∗ νF and therefore for φ ∈ L2(K),

|⟨ψF, φ⟩| =
∣∣∣∣ ∫ φdνF

∣∣∣∣
=

∣∣∣∣ ∫ ∫ φ(g.k) dµ∗n(g)dνF(k)

∣∣∣∣
≤
∣∣∣∣∣∣∣∣ ∫ φ ◦ αg dµ

∗n(g)

∣∣∣∣∣∣∣∣
∞
. (6.4.1)

We thus study the L∞-norm of the function

Φn = T n
0 φ =

∫
φ ◦ αg dµ

∗n(g).

We will use Corollary 6.0.4 to give L2-estimates of Φn. In order to convert these

estimates to an L∞-bound, we use Agmon’s inequality (cf. [Agm65] chapter 13),

which we introduce for compact Lie groups.

77



Lemma 6.4.2. (Agmon’s Inequality for Compact Lie Groups). Let K be a compact

Lie group. Then there is t ∈ Z≥2 depending on K such that for any φ ∈ C∞(K),

||φ||∞ ≪ ||φ||1/22 ||φ||1/2Ht .

Proof. For M ∈ R>0 to be determined, we group together the contribution of the

representations with ||γ|| ≤M and ||γ|| > 0. Indeed, by (3.1.4), for k ∈ K,

φ(k) =
∑

γ∈C∩I∗

dγ∑
i,j=1

d1/2γ aγijχ
γ
ij(k)

=
∑

||γ||≤M

dγ∑
i,j=1

d1/2γ aγijχ
γ
ij(k) +

∑
||γ||>M

dγ∑
i,j=1

d1/2γ aγijχ
γ
ij(k)

=
∑

||γ||≤M

dγ∑
i,j=1

d1/2γ aγijχ
γ
ij(k) +

∑
||γ||>M

dγ∑
i,j=1

λtγλ
−t
γ d

1/2
γ aγijχ

γ
ij(k),

where in the last line we multiplied the second term by 1 = λtγλ
−t
γ for some t ∈

Z≥0. By Cauchy-Schwarz and using Lemma 4.3.1, the first term can be bounded

by ||φ||2
√∑

||γ||≤M,i,j dγ ≪ MC ||φ||2, where C is a constant depending on K. For

the second term, we choose t large enough such that
√∑

||γ||>M,i,j λ
−2t
γ dγ ≪ M−C .

Again using Cauchy-Schwarz, the second term is bounded by M−C ||φ||Ht . The claim

is implied by setting M = (
||φ||Ht

||φ||2 )1/2C .

Lemma 6.4.3. For φ ∈ Vℓ set Φn = T n
0 φ. Let γ ∈ C ∩ I∗ and r ∈ Z≥1. Then it

holds for Φ̂n(γ) = πγ(Φn),

||Φ̂n(γ)||op ≪r 2
O(1)ℓ−rℓ(1 + ε)O(1)nr||γ||O(1)r||φ||2.

Proof. Let v1, . . . , vdγ be an orthonormal basis of πγ. Then

||Φ̂n(γ)||op ≤ dγ sup
1≤i≤dγ

||Φ̂(γ)vi||

≤ dγ sup
1≤i,j≤dγ

|⟨Φ̂(γ)vi, vj⟩|

= dγ sup
1≤i,j≤dγ

|⟨Φn, χ
γ
ij⟩|

≤ dγ sup
g∈supp(µ∗n)
1≤i,j≤dγ

|⟨φ ◦ αg, χ
γ
ij⟩|. (6.4.2)
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Notice further that for g ∈ Bε and a further γ′ ∈ C ∩ I∗ and 1 ≤ i′, j′ ≤ dγ,

|⟨χγ′

i′j′ ◦ αg, χ
γ
ij⟩| =

λrγ
λrγ

|⟨χγ′

i′j′ ◦ αg, χ
γ
ij⟩|

=
1

λrγ
|⟨χγ′

i′j′ ◦ αg, λK(△)rχγ
ij⟩|

≤ 1

λrγ

∑
i1,...,ir

|⟨λ(−Xi1) · · ·λ(−Xir)χ
γ′

i′j′ ◦ αg, λ(Xi1) · · ·λ(Xir)χ
γ
ij⟩|

≪r λ
−r
γ (1 + ε)O(1)nr||γ′||r ||γ||r

≪r (1 + ε)O(1)nr||γ′||r ||γ||−r

where for the penultimate line one argues as in Lemma 6.3.1 and in the last line we

use Lemma 4.3.1. Similarly, it holds that |⟨χγ′

i′j′ ◦αg, χ
γ
ij⟩| ≪r (1+ε)

O(1)nr||γ′||−r ||γ||r.
Then using the decomposition

φ =
∑

2ℓ−1≤||γ′||<2ℓ

dγ∑
i′,j′=1

d
1/2
γ′ a

γ′

i′j′χ
γ′

i′j′

we conclude

|⟨φ ◦ αg, χ
γ
ij⟩| ≤

∑
γ′,i′,j′

d
1/2
γ′ |aγ

′

i′j′| |⟨χ
γ′

i′j′ ◦ αg, χ
γ
ij⟩|

≤ 2O(1)ℓ||φ||2 sup
γ′,i′,j′

|⟨χγ′

i′j′ ◦ αg, χ
γ
ij⟩|

≪r 2
O(1)ℓ−rℓ(1 + ε)O(1)nr||γ||r||φ||2.

This implies the claim by (6.4.2) and using Lemma 4.3.1.

Proof. (of Theorem 2.0.8) Let φ ∈ Vℓ be of unit norm and write Φn = T n
0 φ. It suffices

to prove for ε < εm and some some n ≥ 1 that

||Φn||∞ ≤ 2−(s+1)ℓ, (6.4.3)

where s is a constant depending on G and m. Indeed, if (6.4.3) holds, then by (6.4.1),

||πℓψF ||2 ≪ 2O(1)ℓ2−(s+1)ℓ,

which satisfies the smoothness condition from Lemma 4.3.2 for s large enough de-

pending on G and m.
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We will use Agmon’s inequality to prove (6.4.3). Notice first that for the fixed

t ∈ Z≥2 from Lemma 6.4.2,

||Φn||Ht = ||λK(△)t/2Φn||2
≤ sup

g∈suppµ∗n
||λK(△)t/2(φ ◦ αg)||∞

≤ ||λK(△)t/2φ||∞(1 + ε)O(1)n ≤ 2Aℓ,

for a constant A depending only on t and where we choose n = 1
10E2ε

ℓ for E2 ≥ 1 a

fixed constant to be determined later.

We next bound ||Φn||2. In order to do so, we decompose Φn into a low and high

frequency part:

Φn = Φ(1)
n + Φ(2)

n where Φ(1)
n =

∑
||γ||≤L(c1,c1)

dγ∑
i,j

d1/2γ (̂Φn)
γ

ijχ
γ
ij.

Then for n ≥ 1, exploiting Corollary 6.0.4

||Φn||2 ≤
∣∣∣∣∣∣∣∣ ∫ Φ

(1)
n−1 ◦ αg dµ(g)

∣∣∣∣∣∣∣∣
∞
+

∣∣∣∣∣∣∣∣ ∫ Φ
(2)
n−1 ◦ αg dµ(g)

∣∣∣∣∣∣∣∣
2

≤ ||Φ(1)
n−1||∞ +

1

2
||Φ(2)

n−1||2 (6.4.4)

Using Lemma 6.4.3, it follows for all m ≤ n and r ≥ 1,

||Φ(1)
m ||∞ ≪r 2

O(1)ℓ−rℓ(1 + ε)O(1)nrL(c1, c2)
O(1)r||φ||2.

Iterating (6.4.4), there are absolute constants E1, E2, E3 ≥ 1 such that

||Φn||2 ≪r (n2
E1ℓ−rℓ(1 + ε)E2nrL(c1, c2)

E3r + 2−n)||φ||2.

By Lemma 6.4.2, it therefore follows that

||Φn||∞ ≪r (n2
(E1+A)ℓ−rℓ(1 + ε)E2nrL(c1, c2)

E3r + 2−n)||φ||2.

Setting the parameters suitably, the proof is concluded. Indeed, choose for in-

stance

r = 2(s+ 1) + E1 + A+ 100

and n = 1
10E2ε

ℓ. For s large enough and choosing ε small enough in terms of r and s

the claim (6.4.3) holds for large ℓ (depending on s and ε).
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Part II

Absolute Continuity of Self-Similar
Measures
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Chapter 7

Introduction to Part II

In the study of self-similar measures it is fundamental to determine their dimension

and to find conditions for absolute continuity. For the former problem progress was

made by Hochman [Hoc14], [Hoc17] (Theorem 1.4.2), relating the dimension of a self-

similar measure to the entropy and Lyapunov exponent provided the generating mea-

sure satisfies a mild separation condition. While it was shown by Saglietti-Shmerkin-

Solomyak [SSS18] that, under suitable assumptions, generic one-dimensional self-

similar measures are absolutely continuous, finding explicit examples remains chal-

lenging. It was shown by Varjú [Var19a] (Theorem 1.4.6) that Bernoulli convolutions

are absolutely continuous if their defining parameter is sufficiently close to 1 in terms

of the Mahler measure. In dimension d ≥ 3, assuming that the rotation part of the

self-similar measure is fixed and has a spectral gap on L2(O(d)), Lindenstrauss-Varjú

[LV16] (Theorem 1.4.8) showed absolute continuity if all of the contraction rates are

sufficiently close to 1. In this thesis we strengthen and vastly generalise these two

results. Moreover, we give the first explicit examples of absolutely continuous self-

similar measures in dimension one and two with non-uniform contraction rates. For

instance consider for x ∈ R the similarities

g1(x) =
n

n+ 1
x and g2(x) =

n

n+ 2
x+ 1. (7.0.1)

We then show that the self-similar measure of 1
2
δg1 +

1
2
δg2 is absolutely continuous

on R for any sufficiently large integer n ≥ 1. Furthermore, our methods allow us

to construct several classes of explicit absolutely continuous examples for gi(x) =

ρiUix + bi for x ∈ Rd in any dimension d ≥ 1 as well as for every collection of

orthogonal matrices Ui acting irreducibly on Rd and distinct vectors bi ∈ Rd, provided

they all have algebraic entries.

Let G = Sim(Rd) be the group of similarities on Rd and let O(d) be the group of

orthogonal d×dmatrices. For each g ∈ G there exists a scalar ρ(g) > 0, an orthogonal
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matrix U(g) ∈ O(d) and a vector b(g) ∈ Rd such that g(x) = ρ(g)U(g)x+ b(g) for all

x ∈ Rd. A similarity is called contracting if ρ(g) < 1 and expanding when ρ(g) > 1.

The Lyapunov exponent of a probability measure µ on G is defined, whenever it

exists, as

χµ = Eg∼µ[log ρ(g)].

Throughout Part II we use the following terminology.

Definition 7.0.1. If χµ < 0, we call µ contracting on average. Moreover, if every

g ∈ supp(µ) is contracting, we say that µ is contracting. When χµ < 0 and there

is g ∈ supp(µ) such that ρ(g) > 1, then we call µ contracting only on average.

It is well-known ([Hut81], [BE88], [BP92]) that when µ is a finitely supported con-

tracting on average probability measure on G, then there exists a unique probability

measure ν on Rd that is µ-stationary (i.e. ν satisfies µ ∗ ν = ν) and referred to as

the self-similar measure of µ. Under these assumptions, it follows from the moment

estimates of [GP16, Proposition 5.1] that ν has a polynomial tail decay in the sense

that there exists some α = α(µ) > 0 such that as R → ∞,

ν(x ∈ Rd : |x| ≥ R) ≪µ R
−α (7.0.2)

for an implied constant depending only on µ. The authors have given in [KK25d] an

independent proof of (7.0.2) for contracting on average measures on arbitrary metric

spaces.

Throughout we denote by ν the self-similar measure associated to µ. If µ is (only)

contracting on average, we say that ν is a (only) contracting on average self-similar

measure. Moreover, µ or respectively ν is called homogeneous if there are r ∈ R>0

and U ∈ O(d) such that r = ρ(g) and U = U(g) for all g ∈ supp(µ). When this is

not the case, we say that µ and ν are inhomogeneous. A particular goal of this thesis

is to give explicit examples of inhomogeneous as well as contracting only on average

self-similar measures which are absolutely continuous.

To state our main result, we first discuss the Hausdorff dimension of ν, which is

defined as

dim ν = inf{dimE : E ⊂ Rd measurable and ν(E) > 0}

where dimE is the Hausdorff dimension of E. In order to state the landmark results

by Hochman [Hoc14], [Hoc17], recall that the random walk entropy of a finitely

supported measure µ is defined as

hµ = lim
n→∞

1

n
H(µ∗n) = inf

n≥1

1

n
H(µ∗n),
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where H(·) is the Shannon entropy. Observe that if supp(µ) has no exact overlaps,

meaning that supp(µ) generates a free semigroup, then hµ = H(µ) = −
∑

i pi log pi.

Moreover, as in [Hoc17], denote by d(·, ·) the metric on G defined for g = ρ1U1+b1

and h = ρ2U2 + b2 as

d(g, h) = | log ρ1 − log ρ2|+ ||U1 − U2||+ |b1 − b2| (7.0.3)

for || · || the operator norm and | · | the euclidean norm.

To distinguish between the results for dimension and absolute continuity, denote

∆n = min{d(g, h) for g, h ∈ supp(µ∗n) with g ̸= h}

and

Mn = min

{
d(g, h) for g, h ∈

n⋃
i=0

supp(µ∗i) with g ̸= h

}
.

Furthermore we set

Sn = − 1

n
logMn and Sµ = lim sup

n→∞
Sn,

where Sµ is referred to as the splitting rate.

We call a subgroup H of O(d) irreducible if H acts irreducibly on Rd, i.e. the

only H-invariant subspaces of Rd are {0} and Rd. Moreover, we say that a mea-

sure µ =
∑n

i=1 piδgi on G or O(d) ⊂ G is irreducible if the group generated by

{U(g1), . . . , U(gn)} is irreducible. When the elements in the support of µ have a com-

mon fixed point x ∈ Rd, then δx is the self-similar measure of µ. To avoid the latter

case, we say that µ has no common fixed point if the similarities in supp(µ) do not.

It follows by Hochman [Hoc17], generalising [Hoc14], that if µ is a finitely sup-

ported, contracting and irreducible probability measure on G without a common

fixed point such that ∆n ≥ e−cn for some c > 0 and infinitely many n ≥ 1, then

dim ν = min{d, hµ

|χµ|}.
In the paper [KK25a] we use the techniques of Part II of this thesis to generalise

Hochman’s result to contracting on average measures. Moreover, we show that a

weaker requirement than exponential separation at all scales is sufficient (see [KK25a]

for a discussion). We work with Mn instead of ∆n for convenience only and in order

to apply the general entropy gap results from [KK25b].

Theorem 7.0.2. ([KK25a, Theorem 1.2 and Theorem 1.3]) Let µ be a finitely sup-

ported, contracting on average and irreducible probability measure on G without a

common fixed point. Assume that either of the following two properties holds:
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(i) For some c > 0, Mn ≥ e−cn for infinitely many n ≥ 1,

(ii) For some ε > 0, logMn ≥ −n exp((log n)1/3−ε) for all sufficiently large n ≥ 1.

Then

dim ν = min

{
d,

hµ
|χµ|

}
.

It is well-established that dim ν ≤ {d, hµ

|χµ|}. Therefore ν can only be absolutely

continuous if hµ ≥ d |χµ|. The following general conjecture is expected to hold.

Conjecture 7.0.3. Let µ be a finitely supported, contracting on average and irre-

ducible probability measure on G without a common fixed point. Then ν is absolutely

continuous if
hµ
|χµ|

> d.

We observe that the latter conjecture is completely open and is not known for

any class of self-similar measures. Our main result establishes a weakening of the

latter conjecture. Indeed, when the O(d)-part of our measure µ is fixed, we show

Conjecture 7.0.3 with the d being replaced by a constant depending on the O(d)-part

as well as the logarithmic separation rate logSµ. Given a measure µ on G we denote

by U(µ) the pushforward of µ under the map g 7→ U(g). We first state a version of

our main theorem for contracting measures.

Theorem 7.0.4. Let d ≥ 1 and ε ∈ (0, 1). Given an irreducible probability measure

µU on O(d) there exist constants C ≥ 1 and ρ̃ ∈ (0, 1) depending on d, ε and µU such

that the following holds. Let µ =
∑k

i=1 piδgi be a contracting probability measure on G

without a common fixed point satisfying U(µ) = µU and pi ≥ ε as well as ρ(gi) ∈ (ρ̃, 1)

for all 1 ≤ i ≤ k. Then the self-similar measure ν is absolutely continuous if

hµ
|χµ|

> C

(
max

{
1, log

Sµ

hµ

})2

.

Theorem 7.0.4 is a special case of the more general Theorem 8.1.4, which requires a

few new definitions we state in Section 8.1. When d = 1 we note that every probability

measure on O(1) is irreducible. We further observe that while Theorem 7.0.4 applies

in the case when the spectral gap of µU is zero, the dependence of C and ρ̃ can be

made more explicit in the presence of a spectral gap. To introduce notation, given a

closed subgroup H ⊂ G and assuming that µU is a probability measure on O(d) with

supp(µU) ⊂ H, we denote by gapH(µU) the L
2-spectral gap of µU in H as defined in

(8.3.4).
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Theorem 7.0.5. Let d, ε, µU and µ be as in Theorem 7.0.4. Assume further that

gapH(µU) ≥ ε > 0 for H the closure of the subgroup generated by the support of µU .

Then there exists C ≥ 1 and ρ̃ ∈ (0, 1) only depending on d and ε such that the

conclusion of Theorem 7.0.4 holds.

We point out that in Theorem 7.0.5 the constants are independent of the subgroup

H and the statement applies when H is a finite irreducible subgroup of O(d) as well

as when H is a positive dimensional irreducible Lie subgroup of O(d). As is shown

in section 14, this observation relies on uniform convergence of µ∗n
U towards the Haar

probability measure mH and on Schur’s lemma implying that Eh∼mH
[|x · hy|2] = d−1

for any unit vectors x, y ∈ Rd and any irreducible subgroup H ⊂ O(d).

To construct explicit examples of absolutely continuous self-similar measures on

Rd, Theorem 7.0.4 requires us to estimate hµ, |χµ| and Sµ. It is straightforward

to deal with |χµ| as it can be explicitly computed. Lower bounds on the random

walk entropy follow in many cases (see Section 15.1) by the ping-pong lemma or

Breuillard’s strong Tits alternative [Bre08]. It also holds that hU(µ) ≤ hµ, so when

hU(µ) > 0, we only need to control |χµ| and Sµ. With current methods we can

usually only bound Sµ if all of the coefficients of the elements in the support of µ are

algebraic. In the latter case, as shown in Section 15.2, when all of the coefficients

of elements in the support of µ lie in a number field K and have logarithmic height

at most L (see (7.0.5)), then Sµ ≪d L · [K : Q]. We observe that logSµ is usually

very small as it is double logarithmic in the arithmetic complexity of the coefficients.

All this information makes it straightforward to find explicit examples of absolutely

continuous self-similar measures. The constants C and ρ̃ in Theorem 7.0.4 can be

computed from the involved terms, yet we do not make the dependence explicit in

this work.

The proof of Theorem 7.0.4 and Theorem 8.1.4 builds on new techniques initiated

by Samuel Kittle in [Kit23] and further developed in this part of the thesis, while

being inspired by ideas from [Hoc14], [Hoc17], [Var19a] and [Kit21]. We give an

outline of our proof in Section 8.2 and note that the main novelties exploited are

strong product bounds for detail at scale r (a notion introduced in [Kit21]) and a

decomposition theory for stopped random walks to capture the amount of variance we

can gain at a given scale, a technique we call the variance summation method. [Kit23]

is concerned with constructing absolutely continuous Furstenberg measures of SL2(R)
on 1-dimensional projective space P1(R) = R2/ ∼ and an analogue of Theorem 8.1.4

is shown. However, we currently can’t deduce a result similar to Theorem 7.0.4

for Furstenberg measures of SL2(R) as the dynamics of the SL2(R) action on P1(R)
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are more difficult to control than the one of the Sim(Rd) action on Rd. Indeed, we

exploit that one can rescale and translate self-similar measures without changing the

Lyapunov exponent, the separation rate, the random walk entropy or the spectral

gap of the generating measure. Moreover, an analogue of Theorem 8.1.4 as well as

Theorem 7.0.2 for Furstenberg measures of arbitrary dimensions is presently out of

reach since the current methods cannot deal with non-conformal measures.

To also treat contracting on average measures, we state the following version

of Theorem 7.0.4. We require some control on the scaling rate of the expanding

similarities.

Theorem 7.0.6. Let d and µU be as in Theorem 7.0.4 and let R > 1 and ε > 0.

Let µ =
∑k

i=1 piδgi be a contracting on average probability measure on G without a

common fixed point satisfying U(µ) = µU and pi ≥ ε as well as ρ(gi) ∈ [R−1, R] for

all 1 ≤ i ≤ k. Then there is some ρ̃ ∈ (0, 1) and C > 1 depending on d,R, ε and µU

such that the conclusion of Theorem 7.0.4 holds provided that for some ρ̂ ∈ (ρ̃, 1) we

have
Eγ∼µ[|ρ̂− ρ(γ)|]
1− Eγ∼µ[ρ(γ)]

< 1− ε.

In the presence of a spectral gap, the analogue of Theorem 7.0.5 also holds for

Theorem 7.0.6. Using Theorem 7.0.4, Theorem 7.0.6 and Theorem 8.1.4 one can

construct a versatile collection of explicit absolutely continuous self-similar measures.

We give a few cases below and encourage the reader to find further examples. Indeed,

as shown in Corollary 7.0.8 and Corollary 7.0.9, for any given irreducible probabil-

ity measure µU on O(d) supported on matrices with algebraic entries and algebraic

vectors b1, . . . , bk with b1 ̸= b2, we can find explicit contracting as well as contracting

only on average measures µ =
∑k

i=1 piδgi on G with U(µ) = µU and b(gi) = bi for

1 ≤ i ≤ k and having absolutely continuous self-similar measure.

Inhomogeneous Self-Similar Measures in Dimension 1

As a first example, we present results for self-similar measures supported on two

similarities in dimension one. Upon conjugating, we can assume without loss of

generality that our generating measure is supported on x 7→ λ1x and x 7→ λ2x+1 for

λ1, λ2 ∈ (0, 1).

We recall the definition of the height of algebraic numbers, which measures the

arithmetic complexity. For a number field K and an algebraic number α ∈ K one
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defines the absolute height as

H(α) =

( ∏
v∈MK

max(1, |α|v)nv

)1/[K:Q]

(7.0.4)

where MK is the set of places of K, nv = [Kv : Qv] is the local degree at v and

| · |v is the absolute value associated with the place v. We refer to [Mas16] for basic

properties of heights and note that the height of α is independent of the number field

K. We will also work with the logarithmic height

h(α) = logH(α). (7.0.5)

Corollary 7.0.7. For every ε > 0 there exists a small constant c = c(ε) > 0 such

that the following holds. Let K be a number field and λ1, λ2 ∈ K ∩ (0, 1) and write

h(λ1, λ2) = max{h(λ1), h(λ2)}. Consider the similarities given for x ∈ R as

g1(x) = λ1x and g2(x) = λ2x+ 1.

Then the self-similar measure of 1
2
δg1 +

1
2
δg2 is absolutely continuous if

h(λ1, λ2) ≥ ε and |χµ|max{1, log([K : Q]h(λ1, λ2))}2 < c.

Concretely, generalising the example discussed in (7.0.1), if λi = 1 − pi/qi is

rational for i ∈ {1, 2} with coprime integers pi, qi ≥ 1 then the self-similar measure

of 1
2
δg1 +

1
2
δg2 is absolutely continuous if for i ∈ {1, 2},

pi
(log log qi)

2

qi
≤ c.

Corollary 7.0.7 can be viewed as an inhomogeneous version of our strengthening

of Varjú’s result for Bernoulli convolutions (Corolarry 7.0.11), yet with an additional

dependence on the number field K and on the lower bound of max{h(λ1), h(λ2)}. We

further note that Lehmer’s conjecture states the existence of an absolute ε0 > 0 such

that max{h(λ1), h(λ2)} ≥ ε0/[K : Q] for all λ1, λ ∈ K for any number field K.

It is straightforward to adapt Corollary 7.0.7 to multiple maps and also to in-

clude contracting on average measures. We next discuss such examples in arbitrary

dimensions.
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Self-similar measures on Rd

With Theorem 7.0.4 and Theorem 7.0.6 numerous explicit classes of absolutely con-

tinuous self-similar measures in Rd can be constructed. In order to apply these results

we need to estimate hµ. In the following examples we have used the ping-pong lemma

(see section 15) in two ways in order to establish lower bounds on hµ. For the first

class of examples we have applied p-adic ping-pong as in Lemma 15.1.4.

Corollary 7.0.8. Let d ≥ 1 and ε > 0, let µU =
∑k

i=1 piδUi
be an irreducible proba-

bility measure on O(d) with pi ≥ ε and let b1, . . . , bk ∈ Rd with b1 ̸= b2. Assume that

U1, . . . , Uk and b1, . . . , bk have algebraic coefficients. Let q be a prime number and for

1 ≤ i ≤ k consider

gi(x) =
q

q + ai,q
Uix+ bi for any integer ai,q ∈ [1, q1−ε].

Assume that g1, . . . , gk do not have a common fixed point and consider µ =
∑k

i=1 piδgi.

Then the self-similar measure of µ is absolutely continuous for q a sufficiently large

prime depending on d, ε, U1, . . . , Uk and b1, . . . , bk.

We point out that any choice of integers ai,q works and that the necessary size

of q to derive absolute continuity does not depend on this choice, leading to a vast

number of examples. Moreover, we can adapt Corollary 7.0.8 to give contracting only

on average examples. In order to satisfy the assumption from Theorem 7.0.6, we

require that µ =
∑k

i=1 piδgi satisfies that pk ≤
1
3
. This nonetheless leads to absolutely

continuous examples with U(µ) = µU for any given irreducible probability measure

µU =
∑k

i=1 piδUi
on O(d) as we do not require that the Ui are distinct.

Corollary 7.0.9. Let d, ε and µU =
∑k

i=1 piδUi
as well as b1, . . . , bk be as in Propo-

sition 7.0.8. Let q be a prime number and consider for 1 ≤ i ≤ k − 1

gi(x) =
q

q + 3
Uix+ bi and gk(x) =

q

q − 1
Ukx+ bk.

Assume that g1, . . . , gk do not have a common fixed point and further that

pk ≤
1

3
.

Then the self-similar measure of µ =
∑k

i=1 piδgi is absolutely continuous for q a

sufficiently large prime depending on d, ε, U1, . . . , Uk and b1, . . . , bk.

We give a second class of examples that rely on Galois ping-pong in as Lemma 15.1.4.

89



Corollary 7.0.10. Let d ≥ 1 and ε ∈ (0, 1) and µU =
∑k

i=1 piδUi
an irreducible

probability measure on O(d) with pi ≥ ε for all 1 ≤ i ≤ k. Assume furthermore that

U1, . . . , Uk have algebraic entries. Let ρ̃ ∈ (0, 1) be sufficiently close to 1 in terms of

d, ε and µU and let C > 1 be sufficiently large depending on the same parameters.

Suppose that gi(x) =
ai+bi

√
q

ci
Uix + di with ai, bi, ci ∈ Z and di ∈ Zd for 1 ≤

i ≤ k and a prime number q do not have a common fixed point. Then the self-

similar measure associated to µ =
∑k

i=1 piδgi is absolutely continuous if the following

properties are satisfied:

(i)
ai+bi

√
q

ci
∈ (ρ̃, 1) for 1 ≤ i ≤ k,

(ii) for j = 1 and for j = 2 we have∣∣∣∣aj − bj
√
q

cj

∣∣∣∣ < 1

3
,

(iii) For L = max(
√
q, |ai|, |bi|, |ci|, |di|∞) we have

C|χµ| ≤
1

(log(logL))2
.

As a particular case of Corollary 7.0.10, we can consider as shown in Lemma 15.4.2

the maps

gi(x) =
⌈√q⌉ −mi,q + 2

√
q

3⌈√q⌉
Uix+ di

for any mi,q ∈ Z and di ∈ Zd satisfying for some ε > 0 that

mi,q ∈ [0, q1/2−ε] and |di|∞ ≤ exp(exp(qε/3)).

Then the self-similar measure of µ =
∑n

i=1 piδgi is absolutely continuous for sufficiently

large primes q depending on d, µU and ε, provided that g1, . . . , gk do not have a

common fixed point. We note that since we have a double exponential range for di,

we get abundantly many examples.

Real and Complex Bernoulli Convolutions

While Theorem 7.0.4 applies to arbitrary self-similar measures, it gives new results

for Bernoulli convolutions. Let λ ∈ (1/2, 1) and denote by νλ the unbiased Bernoulli

convolution of parameter λ, i.e. the law of the random variable
∑∞

n=0 ξnλ
n with

ξ0, ξ1, . . . independent Bernoulli random variables with P[ξi = 1] = P[ξi = −1] = 1/2.

It was shown by Solomyak [Sol95] that for almost all λ ∈ (1/2, 1) the Bernoulli
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convolution νλ has a density in L2(R), while Erdős [Erd39] proved that νλ is singular

whenever λ−1 is a Pisot number.

The Mahler measure of an algebraic number λ is defined as

Mλ = |a|
∏

|zj |>1

|zj|

with a(x − z1) · · · (x − zℓ) the minimal polynomial of λ over Z. We note that as in

Corollary 5.9 of [Kit23] it holds that

Sνλ ≤ logMλ. (7.0.6)

Garsia [Gar62, Theorem 1.8] showed that νλ is absolutely continuous for algebraic λ

withMλ = 2, while Samuel Kittle [Kit21] established that νλ is absolutely continuous

if Mλ ≈ 2. In landmark work, Varjú [Var19a] (Theorem 1.4.6) proved for every ε > 0

there is a constant Cε > 1 such that that νλ is absolutely continuous if

λ > 1− C−1
ε min{logMλ, (logMλ)

−1−ε}. (7.0.7)

When applying Theorem 7.0.4 to Bernoulli convolutions we deduce the following

strengthening of (7.0.7), exploiting the comparison between the entropy and the

Mahler measure for Bernoulli convolution due to [BV20].

Corollary 7.0.11. There is an absolute constant C > 1 such that the following

holds. Let λ ∈ (1/2, 1) be a real algebraic number. Then the Bernoulli convolution νλ

is absolutely continuous on R if

λ > 1− C−1min{logMλ, (log logMλ)
−2}. (7.0.8)

We estimate that a direct application of our method would lead to C ≈ 1010 in

Corollary 7.0.11. It would be an interesting further direction to try to optimise C for

Bernoulli convolutions and in particular for the case λ = 1− 1
n
.

Our most general result, Theorem 8.1.4, also applies to complex Bernoulli con-

volutions, which are defined analogously for λ ∈ D = {λ ∈ C : |λ| < 1}. When

|λ| ∈ (0, 2−1/2), then dim νλ ≤ log 2
| log λ| < 2 and νλ is singular to the Lebesgue mea-

sure on C. It was shown by Shmerkin-Solomyak [SS16a] that the set of λ ∈ C with

|λ| ∈ (2−1/2, 1) and νλ is singular has Hausdorff dimension zero, whereas Solomyak-Xu

[SX03] showed that νλ is absolutely continuous on C for a non-real algebraic λ ∈ D
with Mλ = 2. We extend Corollary 7.0.11 to complex parameters while assuming

(15.6.1) in order to ensure that the rotation part of λ mixes fast enough and so that

our measure is sufficiently non-degenerate (see section 8.1).
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Corollary 7.0.12. For every ε > 0 there is a constant C ≥ 1 such that the following

holds. Let λ ∈ C be a complex algebraic number such that |λ| ∈ (2−1/2, 1) and

|Im(λ)| ≥ ε. (7.0.9)

Then the Bernoulli convolution νλ is absolutely continuous on C if

|λ| > 1− C−1min{logMλ, (log logMλ)
−2}.

Dimension d ≥ 3

Finally we discuss the case when d ≥ 3. Under this assumption, O(d) is a simple

non-abelian Lie group and therefore instead of using the entropy and separation rate

on G we can use the same quantities on O(d).

We recall that Lindenstrauss-Varjú [LV16] (Theorem 1.4.8) proved the following.

Given d ≥ 3, ε ∈ (0, 1) and a finitely supported probability measure µU on SO(d),

whose support generates a dense subgroup of SO(d) and with gapSO(d)(µU) ≥ ε.

Then there exists a constant ρ̃ ∈ (0, 1) depending on d and ε such that every finitely

supported contracting probability measure µ =
∑k

i=1 piδgi on G with U(µ) = µU and

pi ≥ ε as well as ρ(gi) ∈ (ρ̃, 1) for all 1 ≤ i ≤ k (7.0.10)

has absolutely continuous self-similar measure ν. Moreover, [LV16] show that ν has

a Ck-density if the constant ρ̃ is in addition sufficiently close to 1 in terms of k. As

discussed in section 1.2, by current methods ([BG08], [BdS16]) spectral gap of U(µ)

is only known when supp(U(µ)) generates a dense subgroup and all of the entries of

elements in supp(U(µ)) are algebraic.

We note that hU(µ) ≤ hµ yet we do not have in general that SU(µ) ≥ Sµ. In the case

when SU(µ) ≥ Sµ, which for example holds when the support of U(µ) generates a free

group, (7.0.10) follows from Theorem 7.0.4. Moreover, our method can be adapted

to work with SU(µ) instead of Sµ and we establish a generalisation of (7.0.10) (in the

case when supp(µU) consists of matrices with algebraic coefficients) that we state in

Theorem 8.1.5. We note that our method does not require that supp(µU) generates

a dense subgroup of O(d) or SO(d) and we can also treat contracting on average

self-similar measures. Moreover, as shown in Corollary 7.0.8 and Corollary 7.0.10,

we can also give examples when supp(µU) generates a finite irreducible subgroup of

O(d).
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Discussion of other work

In addition to the discussed above [Gar62], [SX03], [LV16], [Var19a] and [Kit21] there

is little known about explicit examples of absolutely continuous self-similar measures.

To the authors knowledge, the only other papers addressing this topic are [DFW07]

and [Str24], which are concerned with homogeneous self-similar measures on R whose

contraction rate λ satisfies that all of its Galois conjugates have absolute value < 1.

As exposed in section 1.4, a related problem is to study the Furstenberg measure

of SL2(R) or of arbitrary simple non-compact Lie groups. The first examples of

explicit absolutely continuous Furstenberg measures arising from finitely supported

generating measures were established by [Bou12] (Theorem 1.4.10), giving an intricate

number theoretic construction and also providing examples with a Ck-density for any

k ≥ 1. Bourgain’s methods were generalised and further used by [BISG17], [Leq22]

and in Part I of this thesis. Moreover, numerous new examples were recently given

by [Kit23] (Theorem 1.4.13).

Returning to self-similar measures, we observe that the behavior of generic self-

similar measures on R or C is better understood. [Shm14] showed, thereby improving

[Sol95], that the set of λ ∈ (1/2, 1) such that the Bernoulli convolution νλ is singular

has Hausdorff dimension zero. In [SSS18] it was shown that when the translation

part (with distinct translations) and the probability vector is fixed, then generic

one-dimensional self-similar measures on R are almost surely absolutely continuous

in the range where the similarity dimension > 1. This was generalised to C by

[SS23]. A further line of research is to show that certain parametrized families of self-

similar measures or other types of invariant function systems are generically absolutely

continuous, see for example [Hoc14], [Hoc17], [SS16b] and [BSSŚ22].

We finally mention that Fourier decay of self-similar measures was studied by

numerous authors recently. The interested reader is referred to [LS20], [Bré21], [LS22],

[Rap22], [Sol22], [VY22] and [BKS24] and as well as [ARHW21] and [BS23] for self-

conformal measures.
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Chapter 8

Main Result and Outline

In this section we first state our main results and give an outline of the proof of the

main theorem in section 8.2. Then we collect for the convenience of the reader some

notation used throughout Part II in section 8.3 and comment on the organisation in

section 8.4.

8.1 Main Result

Let µ be a probability measure on G = Sim(Rd). To state our main results in full

generality we introduce notions that capture how well U(µ) mixes on O(d) and how

degenerate ν is.

Denote by γ1, γ2, . . . independent samples from µ, write qn := γ1γ2 . . . γn and given

κ > 0 let τκ be the stopping time defined by

τκ := inf{n ≥ 1 : ρ(qn) ≤ κ}.

We then have the following definitions.

Definition 8.1.1. Let µ be a probability measure on G generating a self-similar mea-

sure ν.

(i) We say that µ is (α0, θ, A)-non-degenerate for α0 ∈ (0, 1) and θ, A > 0 if for

any proper subspace W ⊂ Rd and y ∈ Rd,

ν({x ∈ Rd : |x− (y +W )| < θ or |x| ≥ A}) ≤ α0.

(ii) We say that µ is (c, T )-well-mixing for c ∈ (0, 1) and T ≥ 0 if there is some

κ0 such that for any κ < κ0 and any unit vectors x, y ∈ Rd we have

E[|x · U(qτκ+F )y|2] ≥ c,

where F is a uniform random variable on [0, T ] which is independent of the γi.
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For d = 1 our measure µ will always be (1, 1)-well-mixing. As we show in sec-

tion 14.1, when U(µ) is fixed and irreducible, there exists (c, T ) depending only on

U(µ) such that µ is (c, T )-well-mixing. This follows as U(qF ) → mH in distribution

as T → ∞, where H is the closure of the subgroup generated by supp(U(µ)) and mH

the Haar probability measure on H. The latter would not be true if we fix F to be a

deterministic random variable and therefore we have introduced the above definition.

Dealing with non-degeneracy is more involved and uniform results for many classes

of self-similar measures do not hold. However, instead of our given measure we can

consider a conjugated measure to establish uniform non-degeneracy results. Indeed,

for µ =
∑k

i=1 piδgi a measure on G and h ∈ G we denote

µh =
k∑

i=1

piδhgih−1 and µ′
h =

1

2
δe +

1

2

k∑
i=1

piδhgih−1 .

Then as we show in Lemma 14.2.1, absolute continuity of any of the self-similar

measures of µ, µh or µ′
h is equivalent and all relevant quantities such as hµ, Sµ and

|χµ| are the same or comparable.

Towards Theorem 7.0.4, Theorem 7.0.5 and Theorem 7.0.6, as we state in Proposi-

tion 8.1.2 and Proposition 8.1.3 we have essentially uniform (c, T )-mixing and uniform

(α0, θ, A)-non-degeneracy as long as we fix U(µ). We first state a uniform mixing re-

sult adapted for Theorem 7.0.4 and Theorem 7.0.5 in the contracting case.

Proposition 8.1.2. Let d ≥ 1, ε ∈ (0, 1) and let µU be an irreducible probability

measure on O(d). Then there exists ρ̃ ∈ (0, 1), (c, T ) and (α0, θ, A) depending on d, ε

and µU such that the following holds. Let µ =
∑k

i=1 piδgi be a contracting probability

measure on G without a common fixed point and with U(µ) = µU and

pi ≥ ε as well as ρ(gi) ∈ (ρ̃, 1) for all 1 ≤ i ≤ k.

Then there is h ∈ G such that µ′
h = 1

2
δe +

1
2

∑k
i=1 piδhgih−1 is (c, T )-well-mixing and

(α0, θ, A)-non-degenerate.

Moreover, if gapH(µU) ≥ ε > 0 for H the closure of the subgroup generated by the

support of µU , then there exist (c, T ) and (α0, θ, A) depending only on d and ε such

that the above conclusion holds.

For Theorem 7.0.6 we state a similar result for contracting on average measures.

Proposition 8.1.3. Let d and µU be as in Theorem 8.1.2 and let ε > 0. Let µ =∑k
i=1 piδgi be a contracting on average probability measure on G without a common
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fixed point satisfying U(µ) = µU and pi ≥ ε for 1 ≤ i ≤ k. Then there is some

ρ̃ ∈ (0, 1) and C > 1 depending on d, ε and µU such that the following holds.

The conclusion of Proposition 8.1.2 holds provided that for some ρ̂ ∈ (ρ̃, 1) we

have ∑k
i=1 |ρ̂− ρ(gi)|

k −
∑k

i=1 ρ(gi)
< 1− ε.

Proposition 8.1.2 and Proposition 8.1.3 are proved in section 14. We are now in

a suitable position to state our main result. Theorem 7.0.4,Theorem 7.0.5 and The-

orem 7.0.6 follow from the main result Theorem 8.1.4 by applying Proposition 8.1.2

and Proposition 8.1.3 as well as Lemma 14.2.1.

Theorem 8.1.4. For every d ∈ Z≥1 and R, c, T, α0, θ, A > 0 with c, α0 ∈ (0, 1) and

T ≥ 0 there is a constant C = C(d,R, c, T, α0, θ, A) depending on d,R, c, T, α0, θ and

A such that the following holds. Let µ be a finitely supported, contracting on average,

exponentially separated, (c, T )-well-mixing and (α0, θ, A)-non-degenerate probability

measure on G with supp(µ) ⊂ {g ∈ G : ρ(g) ∈ [R−1, R]} and satisfying

hµ
|χµ|

> C

(
max

{
1, log

Sµ

hµ

})2

.

Then the associated self-similar measure ν is absolutely continuous.

A similar result for Furstenberg measures of SL2(R) was established by Samuel

Kittle [Kit23]. However in [Kit23] it is necessary to assume that α0 ∈ (0, 1/3) and

we currently can’t prove an analogue of Proposition 8.1.2 for Furstenberg measures.

Therefore Theorem 7.0.4 can be deduced in the case of self-similar measures and we

also note that the examples of absolutely continuous Furstenberg measures in [Kit23]

are more intricate.

We next state a version of our main theorem for d ≥ 3 that implies (7.0.10) by

Proposition 8.1.2, provided that µU is supported on matrices with algebraic coeffi-

cients.

Theorem 8.1.5. Let d ≥ 3 and R, c, T, α0, θ, A > 0 with c, α0 ∈ (0, 1) and T ≥ 1.

Then there is a constant C = C(d,R, c, T, α0, θ, A) such that the following holds. Let

µ be a finitely supported, contracting on average, (c, T )-well-mixing and (α0, θ, A)-

non-degenerate probability measure on G with supp(µ) ⊂ {g ∈ G : ρ(g) ∈ [R−1, R]}.
Moreover assume that all of the coefficients of the matrices in supp(U(µ)) lie in the

number field K and have logarithmic height at most L ≥ 1. Then ν is absolutely

continuous if
hU(µ)

|χµ|
≥ Cmax

{
1, log

(
L[K : Q]

hU(µ)

)}2

.
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As in (7.0.10) we do not assume in Theorem 8.1.5 that all the entries of elements

in supp(µ) are algebraic and only require the latter for U(µ). By Breuillard’s uniform

Tits alternative [Bre08], there is a constant cd > 0 only depending on d such that

hU(µ) > cd as long as the group generated by supp(U(µ)) in not virtually solvable.

The advantage of Theorem 8.1.5 over (7.0.10) is that our result is particularly effective

when U(µ) has high entropy (for example when supp(U(µ)) generates a free semi-

group) and is explicit in terms of the dependence of the heights of the coefficients

of supp(U(µ)). In addition, Theorem 8.1.5 applies to contracting only on average

measures and does not require supp(U(µ)) to generate a dense subgroup of SO(d).

8.2 Outline

We give a sketch for the proof of Theorem 8.1.4. Our proof extends the strategy

of [Kit23] to self-similar measures and generalises it to higher dimensions, which in

turn is inspired by ideas and techniques developed in [Hoc14], [Hoc17], [Var19a] and

[Kit21]. Proposition 8.1.2 will be discussed and proved in section 14. An entropy

theory for random walks on general Lie groups was developed in [KK25b] and will be

used throughout Part II.

Let µ be a measure onG = Sim(Rd) and let γ1, γ2, . . . be independent µ-distributed

random variables. For a stopping time τ write qτ = γ1 · · · γτ . Note that if x is a sample

of ν then so is qτx. The basic idea of our proof is to decompose qτx as a sum

qτx = X1 + · · ·+Xn (8.2.1)

with X1, . . . , Xn independent random variables. We aim to show that for each scale

r > 0 and a suitable stopping time τ that we can find a decomposition (8.2.1) such

that for all i ∈ [n],

|Xi| ≤ C−1r and
n∑

i=1

VarXi ≥ C(log log r−1)r2I (8.2.2)

for a sufficiently large fixed constant C = C(d) > 0 only depending on d, where

VarXj is the covariance matrix of Xj and we denote by ≥ the partial order defined

in (8.3.1). The proof of Theorem 8.1.4 comprises to establish (8.2.2) and to deduce

from (8.2.2) that ν is absolutely continuous. For the former we use adequate entropy

results and for the latter we work with the detail of a measure. The constant C is be

closely related to the one from Theorem 8.1.4.

97



From Decomposition to Absolute Continuity

The notion of detail sr(ν) at scale r > 0 of a measure ν is a tool introduced in [Kit21]

measuring how smooth ν is at scale r. Detail is an analogue of the entropy between

scales 1 − H(ν; r|2r) used by [Var19a], yet with better properties. Our goal is to

deduce from (8.2.2) that our self-similar measure ν satisfies for r sufficiently small,

sr(ν) ≤ (log r−1)−2, (8.2.3)

which implies that ν is absolutely continuous, as shown in [Kit21].

A novelty introduced in [Kit23] is a strong product bound for detail on R, which
we prove for Rd in section 10. Indeed, if λ1, . . . , λk are measures on Rd, a < b and

r > 0 with sr(λi) ≤ α for some α > 0 and all r ∈ [a, b] and 1 ≤ i ≤ k, then, as shown

in Corollary 10.2.4,

sa
√
k(λ1 ∗ · · · ∗ λk) ≤ Q′(d)k−1(αk + k!ka2b−2) (8.2.4)

for some constant Q′(d) depending only on d. To prove (8.2.4), [Kit23] introduced

k order detail, which we generalise to Rd. We note that (8.2.4) is stronger than the

product bounds [Kit21, Theorem 1.17] and [Var19a, Theorem 3] and is required in

our proof.

To convert (8.2.2) into (8.2.3), we first partition [n] as J1⊔. . .⊔Jk for k ≍ log log r−1

such that the random variables Yj =
∑

i∈Jj Xi satisfy VarYj ≫d C. Then we apply a

Berry-Essen type result to deduce that Y is well-approximated by a Gaussian random

variable and therefore that sr(Yj) ≤ α for some constant α depending on C, with α

tending to zero as C tends to ∞. Finally we conclude by (8.2.4) that we roughly

get sr(ν) ≤ Q′(d)kαk = ek(logQ
′(d)+logα). We choose k ≍ log log r−1 and therefore

deduce (8.2.3) provided that α is sufficiently small in terms of d or equivalently C is

sufficiently large. This proves that ν is absolutely continuous.

From Decomposition on Rd to Decomposition on G

It remains to explain how to establish (8.2.2), which we first translate into an analo-

gous question on G. Indeed, we will make a decomposition of qτ into

qτ = g1 exp(U1)g2 exp(U2) · · · gn exp(Un) (8.2.5)

for random variables g1, . . . , gn on G and U1, . . . , Un on the Lie algebra g of G. In

order to express qτv as a sum of random variables using (8.2.5), we apply Taylor’s
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theorem in Proposition 9.1.4 to deduce

qτv ≈ g1 · · · gnv +
n∑

i=1

ζi(Ui), (8.2.6)

where

ζi = Du(g1g2 · · · gi exp(u)gi+1gi+2 · · · gnv)|u=0.

For notational convenience we write in this outline of proofs

g′i = g1 · · · gi and g′′i = gi+1 · · · gn

and denote

ρx = Du(exp(u)x)|u=0.

Then by the chain rule, as shown in Lemma 9.1.3,

Var(ζi(Ui)) = ρ(g′i)
2 U(g′i)Var(ρg′′i x(Ui))U(g

′
i)
T .

We will use the (c, T )-well-mixing and (α0, θ, A)-non-degeneracy condition to en-

sure that

Var(ζi(Ui)) ≥ c1ρ(g
′
i)
2tr(Ui)I = c1tr(ρ(g

′
i)Ui)I (8.2.7)

for some constant c1 > 0 depending on d, c, T, α0, θ and A and where tr(Ui) is the

trace of the covariance matrix of Ui. This will be shown in Proposition 13.2.1 by

ensuring that each of the gi is a product of sufficiently many γj such that we can

apply well-mixing and non-degeneracy as gix is close in distribution to ν. In fact,

we exploit suitable properties of the derivative of ρx and use a principal component

decomposition.

So in order to achieve (8.2.2), we require that

|Ui| ≤ ρ(g′i)
−1r and

n∑
i=1

tr(ρ(g′i)Ui) ≥ C3c−1
1 (log log r−1)r2 (8.2.8)

for the constant C from (8.2.2). Note that to arrive at (8.2.2) we replace Ui by C
−1Ui

and use (8.2.7).

Entropy Gap and Trace Bounds for Stopped Random Walk

We prove (8.2.8) by establishing suitable entropy bounds on G and then translate

them to the necessary trace bounds. We use the following notation. For a random

variable g on G and s > 0, we define tr(g; s) to be the supremum of all t ≥ 0 such
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that we can find some σ-algebra A and some A -measurable random variable h taking

values in G such that

| log(h−1g)| ≤ s and E[tr(log(h−1g)|A )] ≥ ts2,

where log : G→ g is the Lie group logarithm and we assume that h−1g is supported

on a small ball around the identity. The reason we need to work with the conditional

trace is to use (8.2.12).

To establish (8.2.8) we therefore need to find a collection of scales si = ρ(g′i)
−1r

such that
n∑

i=1

tr(qτ ; si) ≥ Cc−1
1 log log r−1 (8.2.9)

for C an absolute constant depending only on d.

To show (8.2.9) one converts entropy estimates for qτ into trace estimates, using

in essence that for an absolutely continuous random variable Z on Rℓ we have

H(Z) ≤ ℓ

2
log

(
2πe

ℓ
· tr(Z)

)
, (8.2.10)

where H is the differential entropy and tr(Z) is the trace of the covariance matrix of

Z. Equality holds in (8.2.10) if and only if Z is a spherical Gaussian.

We will work with entropy between scales on G. Precise definitions are given in

section 11. For the purposes of this outline consider the entropy between scales defined

for a random variable g taking values in G, two scales r1, r2 > 0 and a parameter

a > 0 as

Ha(g; r1|r2) = (H(gsr1,a)−H(sr1,a))− (H(gsr2,a)−H(sr2,a)),

where H(·) is the differential entropy and sr,a is a smoothing function supported on

a ball of radius ar and satisfying for ℓ = dim g that

tr(log(sr,a)) ≍ ℓr2 and H(sr,a) =
ℓ

2
log 2πer2 +Od(e

−a2/4)−Od,a(r). (8.2.11)

The function sr,a is chosen such that H(sr,a) is essentially maximal while being com-

pactly supported, which is necessary towards establishing (8.2.9). The parameter

a > 0 is useful as it gives us a uniform error bound in (8.2.11). By using moreover

(8.2.10), we relate in Theorem 11.5.1 entropy between scales and the trace by

tr(g; 2ar) ≫ a−2(Ha(g; r|2r)−Od(e
−a2/4)−Od,a(r)). (8.2.12)
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For κ > 0 denote by

τκ = inf{n ≥ 1 : ρ(γ1 · · · γn) ≤ κ}.

It is then shown in Proposition 12.1.1 for r1 < r2 and with r1 ≤ κ
Sµ
|χµ| that as κ → 0

the following entropy gap holds:

Ha(qτκ ; r1|r2) ≥
(
hµ
|χµ|

− d

)
log κ−1 + ℓ · log r2 + oµ,d,a(log κ

−1). (8.2.13)

We will give a sketch of the proof of (8.2.13) in the beginning of section 12 and just

note that the main point of (8.2.13) is that most of the elements in the support

of qτκ are separated by κ
Sµ
|χµ| , which by standard properties of entropy implies that

H(qτκsr1,a) ≈ H(qτκ) + H(sr1,a). As we have to use a stopping time in (8.2.13), we

will need to work with qτ instead of a deterministic time throughout our proof.

By (8.2.13) it follows, assuming hµ/|χµ| is sufficiently large and κ is sufficiently

small, that

Ha(qτκ ;κ
Sµ
|χµ| |κ

hµ
2ℓ|χµ| ) ≫d

hµ
|χµ|

log κ−1. (8.2.14)

Using (8.2.14) and (8.2.12), we show in Proposition 12.2.2 with setting S =

2max{Sµ, hµ} that for a collection of scales

si ∈ (κ
S

|χµ| , κ
hµ

2ℓ|χµ| ) with 1 ≤ i ≤ m̂

and m̂ being a fixed constant depending on Sµ and χµ that

m̂∑
i=1

tr(qτκ ; si) ≫d
hµ
|χµ|

max

{
1, log

Sµ

hµ

}−1

. (8.2.15)

As we explain at the beginning of section 12, the error term max
{
1, log Sµ

hµ

}−1

arises

from the error Od(e
−a2/4) in (8.2.12).

Conclusion of Proof

The trace bound (8.2.15) is not sufficient to establish (8.2.9) as we require a lower

bound depending on log log r−1. To achieve such a bound and to conclude the proof,

we concatenate several decompositions arising from (8.2.15) and therefore develop a

suitable theory of such decompositions in section 13.

It therefore remains to find sufficiently many parameters κ1, . . . , κm such that the

resulting intervals

(κ
S

|χµ|
1 , κ

hµ
2ℓ|χµ|
1 ), (κ

S
|χµ|
2 , κ

hµ
2ℓ|χµ|
2 ), . . . (κ

S
|χµ|
m , κ

hµ
2ℓ|χµ|
m )
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are disjoint. As we require that all of the scales are ≥ r, we set κ1 = r
|χµ|
S . On the

other hand, we want all scales to be sufficiently small. We, for example, therefore

require that κ
hµ

2ℓ|χµ|
m < e−10. Thus setting κi+1 = κ

hµ
3ℓS
i , thereby ensuring that the

resulting intervals are disjoint (provided hµ/χµ is sufficiently large), a calculation

shows that the maximal m we can take is

m ≍ max

{
1, log

Sµ

hµ

}−1

log log r−1.

Combining all of the above, it follows that when summing over all the scales

∑
i

tr(qτκ1 ; si) ≫d
hµ
|χµ|

max

{
1, log

Sµ

hµ

}−2

log log r−1.

We therefore require in order to satisfy (8.2.9) that

hµ
|χµ|

max

{
1, log

Sµ

hµ

}−2

≥ C3c−1
1 ,

which leads us to the condition from Theorem 8.1.4 and concludes our sketch of the

proof.

8.3 Notation for Part II

The reader may recall the notation stated in section 1.1. For an integer n ≥ 1 we

abbreviate [n] = {1, 2, . . . , n}. On Rd the euclidean norm is denoted | · |.
Given two positive semi-definite symmetric real d × d matrices M1 and M2 we

write

M1 ≥M2 if and only if xTM1x ≥ xTM2x for all x ∈ Rd. (8.3.1)

For a random variable X on Rd we denote by Var(X) the covariance matrix of X

and by tr(X) = trVar(X) the trace of the covariance matrix.

Given a metric space (M,d), p ∈ [1,∞) and two probability measures λ1 and λ2

on M , we define the Lp-Wasserstein metric as

Wp(λ1, λ2) = inf
γ∈Γ(λ1,λ2)

(∫
M×M

d(x, y)p dγ(x, y)

) 1
p

, (8.3.2)

where Γ(λ1, λ2) is the set of couplings of λ1 and λ2, i.e. of probability measures γ on

M ×M whose projections to the first coordinate is λ1 and to the second is λ2.
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Throughout Part II we fix d ≥ 1 and write G = Sim(Rd), except for section 11,

where G will be an arbitrary Lie group. The Lie algebra of G will be denoted g and

ℓ = dim g. We usually consider a fixed probability measure µ on G and independent

samples γ1, γ2, . . . of µ. We write for κ > 0

qn = γ1 · · · γn and τκ = inf{n ≥ 1 ; ρ(γn) ≤ κ}.

When µ is a probability measure on G = Sim(Rd) and ν is a probability measure

Rd we denote by µ ∗ ν the probability measure uniquely characterized by

(µ ∗ ν)(f) =
∫ ∫

f(gx) dµ(g)dν(x)

for f ∈ Cc(Rd). When µ =
∑

i piδgi is finitely supported, then

µ ∗ ν =
∑
i

pigiν, (8.3.3)

where giν is the pushforward of ν by gi defined by (giν)(B) = ν(g−1
i B) for all Borel

sets B ⊂ Rd.

The various notions of entropy between scales as well as tr(g, r) will be given in

section 11.

We will denote by mG a normalised Haar measure on Sim(Rd). Moreover if H ⊂
O(d) is a closed subgroup, we will denote by mH the Haar probability measure on H.

For a probability measure µU on H, the L2-spectral gap of µU in H is defined as

gapH(µU) = 1− ||TµU
|L2

0(G)||, (8.3.4)

where (TµU
f)(k) =

∫
f(hk) dµU(h) for f ∈ L2(H) and L2

0(H) = {f ∈ L2(H) :

mH(f) = 0} for || ◦ || the operator norm.

8.4 Organisation

In section 9 the Taylor expansion bound (8.2.6) is proved and we establish several

probabilistic preliminaries. We discuss order k detail in section 10, establish (10.0.2)

as well as show how to convert (8.2.2) into suitable detail bounds. Entropy results

for general Lie groups are discussed in section 11. In section 12 we prove (8.2.13) and

(8.2.15). Finally, we deduce Theorem 8.1.4 as well as Theorem 8.1.5 in section 13

by developing a decomposition theory for stopped random walks. We study (c, T )-

well-mixing and (α0, θ, A)-non-degeneracy in section 14 and prove Proposition 8.1.2

and Proposition 8.1.3. In section 15 we establish explicit examples and in particu-

lar we prove Corollary 7.0.11, Corollary 7.0.12, Corollary 7.0.8, Corollary 7.0.9 and

Corollary 7.0.10.
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Chapter 9

Preliminaries

In this section we first study the derivatives of the G action on Rd in section 9.1,

then regular conditional distributions in section 9.2 and finally versions of the large

deviation principle in section 9.3.

9.1 Derivative Bounds

9.1.1 Basic Properties

Let G = Sim(Rd) with Lie algebra g = Lie(G). For x ∈ Rd consider the map

wx : g → Rd, u 7→ exp(u)x.

Denote by ψx = D0wx : g → Rd the differential at zero of wx.

Note that we can embed G = Sim(Rd) into GLd+1(R) via the map

g 7→
(
r(g)U(g) b(g)

0 1

)
.

We can therefore identify g as a matrix Lie algebra and so can write

g =

{(
α β
0 0

)
: α ∈ RI + sod(R), β ∈ Rd

}
⊂ gln+1(R)

Thus for u = ( α β
0 0 ) it follows that ψx(u) = u( x

1 ) = αx + β. With this viewpoint we

also use the following convenient notation

ux = ψx(u) = αx+ β (9.1.1)

We fix an inner product on g and denote by |◦| the associated norm. Moreover, we

choose an ordered orthonormal basis of g, endowing g with a coordinate system. So

every element u ∈ g can be written as a sum u =
∑ℓ

i=1 ui, where ui is the projection
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of u to the i-th basis vector. On numerous occasions we will consider derivatives with

respect to ui

In the following lemma, some properties about the derivatives of wx, ψx and the

map g are collected. For notational convenience, we denote throughout this subsection

by ∂f
∂x

the derivative Dxf of a function f : Rd1 → Rd2 at a vector x ∈ Rd1 . We

furthermore write ℓ = dim g.

Lemma 9.1.1. The following properties hold:

(i) Let g = ρU + b ∈ G. Then for all x ∈ Rd, it holds that ∂g
∂x

= ρU and all of the

second derivatives of g are zero.

(ii) Whenever x ∈ Rd and |u| ≤ 1 and 1 ≤ i, j ≤ ℓ,∣∣∣∣∂wx

∂ui

∣∣∣∣≪d max(|x|, 1) and

∣∣∣∣ ∂wx

∂ui∂uj

∣∣∣∣≪d max(|x|, 1).

(iii) For any x1, x2 ∈ Rd we have that

||ψx1 − ψx2 || ≪d |x1 − x2|.

(iv) Let u ∈ g\{0}. Then there is a proper subspace Wu ⊂ Rd and a vector u0 ∈ Rd

such that if ψx(u) = 0 then x ∈ u0 +Wu for x ∈ Rd.

(v) For all θ, A > 0 there is δ > 0 such that the following is true. Let v ∈ g be a

unit vector. Then there is a proper subspace Wv ⊂ Rd and a vector v0 ∈ Rd

such that if

x ∈ Rd\Bθ(v0 +Wv) and |x| ≤ A

for Bθ(v0 +Wv) the θ-ball around v0 +Wv then

|ψx(v)| ≥ δ.

Proof. (i) follows by definition and (ii) by compactness of {u ∈ g : |u| ≤ 1} and using

that a pure translation by a small vector has norm Od(1). For (iii) using notation

(9.1.1) it holds for u = ( α β
0 0 ) ∈ g with |u| ≤ 1 that

|ψx1(u)− ψx2(u)| = |αx1 − αx2| ≤ ||α|| · |x1 − x2|

≪d |α| · |x1 − x2| ≤ |u| · |x1 − x2|

using that the operator norm || ◦ || is equivalent to the inner product norm on g. To

show (iv), we may assume that β ∈ Im(α) as otherwise there is nothing to show.

Then set Wu = ker(α) and u0 ∈ Rd such that αu0 = −β, implying the claim. (v)

follows from (iv) by continuity.
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For u ∈ g\{0} we define

Eθ(u) = Rd\Bθ(u0 +Wu).

Given a random variable U taking values in g, we say that u ∈ g is a first principal

component if it is an eigenvector of its covariance matrix with maximal eigenvalue.

Set

Eθ(U) =
⋃
v∈P

Eθ(v),

where P is the set of first principal components of U . Similarly if µ is a probability

measure which is the law of a random variable U then we define Eθ(µ) = Eθ(U).

Recall that given a random variable U in Rℓ, we denote by tr(U) the trace of the

covariance matrix of U .

Proposition 9.1.2. For all θ, A > 0 there is some δ = δ(d, θ, A) > 0 such that the

following is true. Suppose that U is a random variable taking values in g and that

x ∈ Rd with |x| ≤ A. Suppose that x ∈ Eθ(U). Then

tr(Ux) ≥ δ · tr(U).

Proof. We applied here the notation (9.1.1) that ψx(U) = Ux. Indeed, we do not

identify g as a column vector here, but simply use the latter convenient notation.

Write ℓ = dim g and let w1, . . . , wℓ be an orthonormal basis of eigenvectors of

the covariance matrix Var(U). We may assume that U has mean zero. Denote by

Ui = ⟨U,wi⟩ = UTwi for 1 ≤ i ≤ ℓ and assume without loss of generality that

Var(U1) ≥ . . . ≥ Var(Uℓ) so that w1 is a principal component. Then the (Ui)1≤i≤ℓ are

uncorrelated since for i ̸= j

cov(Ui, Uj) = E[UiUj] = E[⟨UTwi, U
Twj⟩]

= E[⟨UUTwi, wj⟩] = ⟨Var(U)wi, wj⟩ = 0

and it holds that U =
∑ℓ

i=1 Uiwi and that Var(U1) ≥ 1
ℓ
tr(U). Also by Proposi-

tion 9.1.1 (v) it holds that |ψx(w1)| ≥ δ. We then compute

tr(ρx(U)) = E[|ρx(U)|2] = E

[
ℓ∑

i=1

U2
i |ρx(wi)|2

]
≥ E[U2

1 |ρx(w1)|2] ≥
δ

ℓ
tr(U).
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Lemma 9.1.3. Let U be a random variable on g and let g ∈ G and x ∈ Rd. Denote

ζ = Dug exp(u)x|u=0.

Then

Var(ζ(U)) = ρ(g)2 · U(g)ψx ◦ Var(U) ◦ ψT
xU(g)

T .

Proof. Note that by the chain rule ζ(U) = ρ(g)U(g)ψx(U) and therefore

Var ζ(U) = ρ(g)2U(g)Var(ψx(U))U(g)
T

Viewing ψx : g → Rd as a matrix with our choice of coordinate system we write

ψx(U) = ψx ◦ U and the claim follows.

9.1.2 Taylor Expansion Bound

The aim of this subsection is to prove the following proposition, which crucially relies

on the G action on Rd having vanishing second derivatives.

Proposition 9.1.4. For every A > 0 there exists C = C(d,A) > 1 such that the

following holds. Let n ≥ 1, r ∈ (0, 1) and let u(1), . . . , u(n) ∈ g. Let g1, . . . , gn ∈ G

with

ρ(gi) < 1, |b(gi)| ≤ A and |u(i)| ≤ ρ(g1 · · · gi)−1r < 1.

Let v ∈ Rd with |v| ≤ A and write

x = g1 exp(u
(1)) · · · gn exp(u(n))v

and

ζi = D0(g1g2 · · · gi exp(u)gi+1 · · · gn−1gnv)

and let

S = g1 · · · gnv +
n∑

i=1

ζi(u
(i)).

Then it holds that

|x− S| ≤ Cnρ(g1 · · · gn)−1r2.

To prove Proposition 9.1.4 we use the following version of Taylor’s theorem.

Theorem 9.1.5. Let f : Rn → R be a C2-function, let R1, . . . , Rn > 0 and write

B = [−R1, R1]× . . .× [−Rn, Rn]. For integers i, j ∈ [1, n] let Kij = supB | ∂2f
∂xi∂xj

| and
let x ∈ B. Then we have that∣∣∣∣f(x)− f(0)−

n∑
i=1

xi
∂f

∂xi

∣∣∣∣
x=0

∣∣∣∣ ≤ 1

2

n∑
i,j=1

Ki,j |xi| |xj|.
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Lemma 9.1.6. Let

w : g× g −→ Rd, (x, y) 7−→ exp(x)g exp(y)v

for fixed g, v. Then if |x|, |y| ≤ 1 it holds that∣∣∣∣∂w(x, y)∂xi∂yi

∣∣∣∣≪d ρ(g)max(|v|, 1).

Proof. Let v̂ = exp(y)v and by Lemma 9.1.1 (ii), | ∂v̂
∂yi

| ≪d max(|v|, 1). Now let ṽ = gv̂.

Therefore, by Lemma 9.1.1 (i), ||∂ṽ
∂v̂
|| ≤ ρ(g) and moreover, since w = exp(x)ṽ and

|x| ≤ 1, it is readily shown that || ∂2w
∂xi∂ṽ

|| ≪d 1. We conclude therefore by the chain

rule ∣∣∣∣ ∂w

∂xi∂yi

∣∣∣∣ = ∣∣∣∣∣∣∣∣ ∂w

∂xi∂ṽ

∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∂ṽ∂v̂
∣∣∣∣∣∣∣∣ · ∣∣∣∣ ∂v̂∂yi

∣∣∣∣≪d ρ(g)max(|v|, 1).

Proposition 9.1.7. There exists a constants C = C(d) > 1 such that the following

holds. Suppose that n ∈ Z>0, g1, g2, . . . , gn ∈ G and let u(1), . . . , u(n) ∈ g be such that

|u(i)| ≤ 1.

Let v ∈ Rd and

x = g1 exp(u
(1))g2 exp(u

(2)) · · · gn exp(u(n))v.

Then for any 1 ≤ i, j ≤ ℓ and any integers k,m ∈ [1, n] with k ≤ m we have∣∣∣∣ ∂2x

∂u
(k)
i ∂u

(m)
j

∣∣∣∣ ≤ Cnρ(g1 · · · gm)max(|gm+1 exp(u
(m+1)) · · · gn exp(u(n))v|, 1).

Proof. First, we deal with the case k = m. Let

a = g1 exp(u
(1))g2 exp(u

(2)) · · · gk−1 exp(u
(k−1))gk

and

b = gk+1 exp(u
(k+1))gk+2 exp(u

(k+2)) · · · gn exp(u(n))v

and let b̃ = exp(u(k))b. We have

∂x

∂u
(k)
i

=
∂x

∂b̃

∂b̃

∂u
(k)
i

.

Note that by Lemma 9.1.1 (i) all of the second derivatives of x with respect to b̃ are

zero and therefore ∣∣∣∣ ∂2x

∂u
(k)
i ∂u

(k)
j

∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∂x∂b̃
∣∣∣∣∣∣∣∣ · ∣∣∣∣ ∂2b̃

∂u
(k)
i ∂u

(k)
j

∣∣∣∣. (9.1.2)
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Thus by Lemma 9.1.1 (i) and (ii) we conclude that∣∣∣∣ ∂2x

∂u
(k)
i ∂u

(k)
j

∣∣∣∣≪d ρ(a)max(|b|, 1) ≤ Cnρ(g1 · · · gℓ)max(|b|, 1)

for a suitable constant C > 1 using that ρ(exp(u(i))) is bounded.

For the case k < m we consider

a1 = g1 exp(u
(1))g2 exp(u

(2)) · · · gk−1 exp(u
(k−1))gk

a2 = gk+1 exp(u
(k+1))gk+2 exp(u

(k+2)) · · · gm
b = gm+1 exp(u

(m+1))gm+2 exp(u
(m+2)) · · · gn exp(u(n))v.

Then we consider b̃ = exp(u(k))a2 exp(u
(m))b and as before we conclude

∂2x

∂u
(k)
i ∂u

(m)
j

=
∂x

∂b̃

∂2b̃

∂u
(k)
i ∂u

(m)
j

.

We again arrive at (9.1.2) and deduce the claim as in the case k = m using Lemma 9.1.6

instead of Lemma 9.1.1 (i).

Proof. (of Proposition 9.1.4) We first show that there is a constant C1 = C1(A, d)

depending on A such that for all 1 ≤ i ≤ n we have that

|gi exp(u(i)) · · · gn exp(u(n))v| ≤ Cn−i+1
1 . (9.1.3)

Indeed, we note that for any u ∈ g with |u| ≤ 1 and v0 ∈ Rd it holds that | exp(u)v0−
v0| ≤ C2(|v0| + 1) for an absolute constant C2 = C2(d). Without loss of generality

we assume that C2(d) > 1. Therefore | exp(u(n))v| ≤ C2(2|v|+ 1). Next note that as

ρ(gn) < 1,

|gn exp(u(n))v| ≤ |gn exp(u(n))v − gn(0)|+ |gn(0)|

≤ ρ(gn)| exp(u(n))v|+ |b(gn)|

≤ C2(2|v|+ |b(gn)|+ 1) ≤ 4C2(A+ 1),

using that ρ(gn) < 1 and that |v| ≤ A and |b(gn)| ≤ A. Continuing this argument

inductively, we may conclude that

|gi exp(u(i)) · · · gn exp(u(n))v| ≤ 4n−i+1Cn−i+1
2 (A+ (n− i) + 1),

which implies (9.1.3).
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Note that by the assumptions

ρ(g1 · · · gℓ)|u(ℓ)|2 ≤ ρ(g1 · · · gℓ)−1r2 ≤ ρ(g1 · · · gn)−1r2.

Therefore, by applying Theorem 9.1.5 together with Proposition 9.1.7 and (9.1.3) for

a sufficiently large constant C depending on A and d in each of the coordinates of Rd,

|x− S| ≤ dn2Cnρ(g1 · · · gn)−1r2,

which implies the claim upon enlarging the constant C.

9.2 Regular Conditional Distributions

In this section we review the definition of regular conditional distributions that will

be used in section 11. On a probability space (Ω,F ,P), we denote the conditional

expectation by E[f |A ] for f ∈ L1(Ω,F ,P) and a σ-algebra A ⊂ F . Given two

measurable spaces (Ω1,A1) and (Ω2,A2), recall that a Markov kernel on (Ω1,A1)

and (Ω2,A2) is a map κ : Ω1 × A2 → [0, 1] if for any A2 ∈ A2, the map κ(·, A2) is

A1-measurable and for any ω1 the map A2 → κ(ω1, A2) is a probability measure.

Definition 9.2.1. Let (Ω,F ,P) be a probability space and let A ⊂ F be a σ-algebra.

Let (E, ξ) be a measurable space and let Y : (Ω,F ) → (E, ξ) be a random variable.

Then we say that a Markov kernel

(Y |A ) : Ω× ξ → [0, 1]

on (Ω,A ) and (E, ξ) is a regular conditional distribution if for all B ∈ ξ,

(Y |A )(ω,B) = P[Y ∈ B |A ](ω) = E[1Y −1(B) |A ](ω).

In other words,

E[(Y |A )(·, B)1A] = P[A ∩ {Y ∈ B}]

for all A ∈ A .

Regular conditional distributions exists whenever (Ω,F ,P) is a standard proba-

bility space. To give a construction, recall (c.f. section 3 of [EW11]) that there exist

conditional measures PA
ω uniquely characterized by

E[f |A ](ω) =

∫
f dPA

ω .
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Then

(Y |A )(ω, ·) = Y∗PA
ω

Indeed, for B ∈ ξ,

(Y |A )(ω,B) = E[1Y −1(B)|A ](ω) =

∫
1Y −1(B) dPA

ω = PA
ω (Y −1(B)) = Y∗PA

ω (B).

We denote by [Y |A ] a random variable defined on a separate probability space with

law (Y |A ).

We recall that given two further σ-algebras G1,G2 ⊂ F , we say that they are

independent given A if for all U ∈ G1 and V ∈ G2

P[U ∩ V |A ] = P[U |A ]P[V |A ]

almost surely. Similarly, two random variables Y1 and Y2 are independent given

A if the σ-algebra they generate are. Note that if Y1 is A -measurable, then it is

independent given A to every random variable Y2.

Given a topological group G and two measures µ1 and µ2 we recall that the

convolution µ1 ∗ µ2 is defined as

(µ1 ∗ µ2)(B) =

∫ ∫
1B(gh) dµ1(g)dµ2(g)

for any measurable set B ⊂ G.

Lemma 9.2.2. Let (Ω,F ,P) be a probability space, G be a topological group and g, h

be G-valued random variables. Let A ⊂ F be a σ-algebra and assume that g and h

are independent given A . Then the following properties hold:

(i) (gh|A ) = (g|A ) ∗ (h|A ) almost surely.

(ii) [gh|A ] = [g|A ] · [h|A ] almost surely.

Proof. To show (i) we note that by assumption g and h are independent with respect

to PA
ω for almost all ω ∈ Ω. This implies that

EPA
ω
[f(gh)] = EPA

ω
[EPA

ω
[f(gh)|h]] = E(z1,z2)∼PA

ω ×PA
ω
[f(g(z1)h(z1))],

proving (i). (ii) follows from (i) on a suitable separate probability space.
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9.3 Large Deviation Principle

In this subsection we review various versions of the large deviation principle. Through-

out this section we denote by µ a measure on G and by γ1, γ2, . . . independent samples

from µ. Applying the classical large deviation principle to ρ, we can state the follow-

ing.

Lemma 9.3.1. Let µ be a compactly supported, contracting on average probability

measure on G. Then for every ε > 0 there is δ = δ(µ, ε) > 0 such that for all

sufficiently large n,

P
[
|nχµ − log ρ(γ1) · · · ρ(γn)| > εn

]
≤ e−δn.

We generalise Lemma 9.3.1 to stopping times.

Lemma 9.3.2. Let µ be a compactly supported contracting on average probability

measure on G and let κ > 0 and denote

τκ = inf{n ≥ 1 : ρ(γ1 . . . γn) ≤ κ}.

Then for every ε > 0 there is δ > 0 such that for sufficiently small κ

P
[∣∣∣τκ − log κ−1

|χµ|

∣∣∣ > ε log κ−1
]
≤ e−δ log κ−1

Proof. If τκ >
log κ−1

|χµ| + ε log κ−1 then

ρ(γ1 · · · γ⌊ log κ−1

|χµ| +ε log κ−1⌋) ≥ κ,

which by Lemma 9.3.1 has probability at most e−δ log κ−1
for some δ > 0 and sufficiently

small κ.

Write R = inf{ρ(g) : g ∈ supp(µ)} ∈ (0, 1), which is non-zero since µ is compactly

supported. Therefore when τκ <
log κ−1

|χµ| −ε log κ−1 happens there must be some integer

k ∈
[
log κ−1

| logR|
,
log κ−1

|χµ|
− ε log κ−1

]
such that

log ρ(γ1 · · · γk) ≤ log κ.

Note that for sufficiently small κ we have k|χµ| ≤ log κ−1−ε|χµ| | logR| and therefore

log ρ(γ1 · · · γk) ≤ log κ ≤ k(χµ + ε| logR|χµ). (9.3.1)

By Lemma 9.3.1 the probability that (9.3.1) happens is ≤ e−δ′k = e−δ′Oµ(log κ−1) for

some δ′ > 0. Since there are at most Oµ(log κ
−1) many possibilities for k, the claim

follows by the union bound.
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From Lemma 9.3.1 and (7.0.2) we can deduce the following corollary.

Corollary 9.3.3. Let µ be a contracting on average probability measure on G. Then

for every ε > 0 there is δ = δ(µ, ε) > 0 such that for all sufficiently large N

P
[
∃n ≥ N : ρ(γ1 · · · γn) ≥ exp((χµ + ε)n)

]
≤ e−δN (9.3.2)

and

P
[
∃n,m ≥ N : |b(γ1 · · · γn)− b(γ1 · · · γm)| ≥ exp((χµ + ε)min(m,n))

]
≤ e−δN .

Proof. Equation (9.3.2) follows from Lemma 9.3.1 and Borel-Cantelli. For (9.3.3)

note that when m ≥ n+ 1,

|b(γ1 · · · γn)− b(γ1 · · · γm)| ≤ ρ(γ1 · · · γn)|b(γn+1 · · · γm)|.

Therefore by (9.3.2) it suffices to show that for sufficiently large N we have that

P[∃k ≥ 1 : |b(γ1 · · · γk)| ≥ eεN ] ≤ e−δN ,

which readily follows from (7.0.2) and Borel-Cantelli as b(γ1 · · · γk) converges expo-

nentially fast in distribution to ν.

The next lemma was proved in [Kit23].

Lemma 9.3.4. (Corollary 7.9 of [Kit23]) There is a constant c > 0 such that the

following is true for all a ∈ [0, 1) and n ≥ 1. Let X1, . . . , Xn be random variables

taking values in [0, 1] and let m1, . . . ,mn ≥ 0 be such that we have almost surely

E[Xi|X1, . . . , Xi−1] ≥ mi for 1 ≤ i ≤ n. Suppose that
∑n

i=1mi = an. Then

logP
[
X1 + . . .+Xn ≤ 1

2
na

]
≤ −cna.

We generalise Lemma 9.3.4 to higher dimensions.

Lemma 9.3.5. There is some absolute constant c > 0 such that the following is true.

Suppose that X1, . . . , Xn are random d× d symmetric positive semi-definite matrices

such that Xi ≤ bI for some b > 0 and

E[Xi|X1, . . . , Xi−1] ≥ miI.

Suppose that
∑n

i=1mi = an. Then there is some constant C = C(a/b, d) depending

only on a/b and d such that

P
[
X1 + · · ·+Xn >

na

4
I
]
≥ 1− Ce−can
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Here we are using the partial ordering (8.3.1).

Proof. For convenience write Yn = X1+ . . .+Xn and choose a set S of unit vectors in

Rd such that if y is any unit vector in Rd then there exists x ∈ S with ∥x− y∥ ≤ a
8b
.

Note that the size of S depends only on d and a/b.

By Lemma 9.3.4 we know that for any x ∈ S,

logP
[
xTYnx ≤ na

2

]
≤ −can.

Let A be the event that there exists some x ∈ S with xTYnx ≤ na
2
. We have that

logP[A] is at most −can + log |S|. It suffices therefore to show that on AC we have

Yn >
na
4
I.

Indeed let y ∈ Rd be a unit vector. Choose some x ∈ Rd with ∥x − y∥ ≤ a/8b.

Suppose that AC occurs. Note that we must have Yn ≤ bnI and therefore ||Yn|| ≤ bn.

This means

yTYny = xTYnx+ xTYn(y − x) + (y − x)TYny

>
an

2
− 2bn · a

8b
=
an

4
.

and result follows.
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Chapter 10

Order k Detail

The goal of this section is to prove the product bound (8.2.4) and to show how to

convert (8.2.2) into suitable estimates for detail. We first recall in section 10.1 the

definition of the detail sr(λ) of a measure λ on Rd at scale r > 0 that was first

introduced by [Kit21]. We then expand the definition and results of order k detail

s
(k)
r (λ) of a measure from [Kit23] to measures on Rd.

As mentioned in the outline of proofs, the advantage of using k-order detail over de-

tail is that it leads to stronger product bounds. Indeed, we will show in Lemma 10.2.1

that

s(k)r (λ1 ∗ · · · ∗ λk) ≤ sr(λ1) · · · sr(λk) (10.0.1)

for measures λ1, . . . , λk on Rd and r > 0. Moreover, if s
(k)
r (λ) ≤ α for all r ∈ [a, b]

and some k ≥ 1 then we show in Proposition 10.2.3 for a constant Q′(d) depending

only on d that

sa
√
k(λ) ≤ Q′(d)k−1(α + k!ka2b−2). (10.0.2)

Combining (10.0.1) and (10.0.2), we deduce the strong product bound (Corollary 10.2.4)

mentioned at (8.2.4) in the outline of proofs.

In section 10.3, we show that the difference in the detail of two measures is bounded

in term of their Wasserstein distance. Finally, in section 10.4 we show how to convert

the conditions from (8.2.2) into good estimates for detail. The latter requires Berry-

Essen type results, the Wasserstein distance bounds from section 10.3, (10.0.1) and

a suitable partition of
∑

iXi.

All of these results will be used in section 13.
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10.1 Definitions

Denote by ηy the standard Gaussian density on Rd with covariance matrix y · Id, i.e.

ηy(x) =
1

(2πy)d/2
exp

(
−||x||2

2y

)
.

Moreover, we write

η(1)y =
∂

∂y
ηy.

Given a probability measure λ on Rd the detail of λ at scale r > 0 is defined as

sr(λ) = r2Q(d) ||λ ∗ η(1)r2 ||1,

where Q(d) = ||η(1)1 ||−1 = 1
2
Γ(d

2
)( d

2e
)−d/2 and note that by Stirling’s approximation

d−1/2 ≤ Q(d) ≤ ed−1/2 for all d ≥ 1. Moreover, r2Q(d) = ||η(1)r2 ||
−1 and therefore

sr(λ) ≤ 1 for every probability measure λ.

Proposition 10.1.1. [Kit21, section 2] Let λ and µ be probability measures on Rd.

Then the following properties hold:

(i) Suppose that there is β > 1 such that sr(λ) < (log r−1)−β for sufficiently small

r. Then λ is absolutely continuous.

(ii) sr(λ ∗ µ) ≤ sr(λ).

Definition 10.1.2. Given a probability measure λ on Rd and some k ≥ 1 we define

the order k detail of λ at scale r as

s(k)r (λ) = r2kQ(d)k ||λ ∗ η(k)kr2||1,

where η
(k)
y = ∂k

∂yk
ηy.

10.2 Bounding Detail

We have the following properties:

Lemma 10.2.1. Let k ≥ 1 and let λ1, λ2, . . . , λk be probability measures on Rd. Then

s(k)r (λ1 ∗ λ2 ∗ . . . ∗ λk) ≤ sr(λ1)s2(λ2) · · · sr(λk). (10.2.1)

In particular, for any probability measure λ on Rd and k ≥ 1,

s(k)r (λ) ≤ 1. (10.2.2)
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Proof. Recall that by the Heat equation ∂
∂y
ηy(x) =

1
2

∑d
i=1

∂2

∂x2
i
ηy(x) and therefore by

standard properties of convolution

η
(k)

kr2 =
1

2k

d∑
i1,...,ik=1

∂2

∂x2i1
· · · ∂2

∂x2ik
ηkr2

=

(
1

2

d∑
i=1

∂2

∂x2i
ηr2

)
∗

(
1

2

d∑
i=1

∂2

∂x2i
ηr2

)
∗ · · · ∗

(
1

2

d∑
i=1

∂2

∂x2i
ηr2

)
︸ ︷︷ ︸

k times

= η
(1)

r2 ∗ η(1)r2 ∗ · · · ∗ η(1)r2︸ ︷︷ ︸
k times

.

This concludes the proof of (10.2.1) as

||λ1 ∗ . . . ∗ λk ∗ η(k)kr2||1 = ||λ1 ∗ η(1)r2 ∗ λ2 ∗ η(1)r2 ∗ · · · ∗ λk ∗ η(1)r2 ||1
≤ ||λ1 ∗ η(1)r2 ||1 · ||λ2 ∗ η

(1)

r2 ||1 · · · ||λk ∗ η
(1)

r2 ||1.

To show (10.2.2) we set λ1 = λ and λ2 = . . . = λk = δe and use that sr(λi) ≤ 1.

Lemma 10.2.2. Let k be an integer greater than 1 and suppose that λ is a probability

measure on Rd. Suppose that a, b, c > 0 and α ∈ (0, 1). Assume that a < b and that

for all r ∈ [a, b] it holds that

s(k)r (λ) ≤ α + cr2k.

Then for all r ∈
[
a
√

k
k−1

, b
√

k
k−1

]
we have

s(k−1)
r (λ) ≤ 2eQ(d)−1

(
α + (b−2(k−1) + ckb2)r2(k−1)

)
.

Proof. By the assumption and the definition of detail for y ∈ [ka2, kb2] and writing

y = kr2,

||λ ∗ η(k)y ||1 ≤ r−2kQ(d)−k(α + cr2k) = αy−kkkQ(d)−k + cQ(d)−k.

Therefore with y ∈ [ka2, kb2],

||λ ∗ η(k−1)
y ||1 ≤ ||λ ∗ η(k−1)

kb2 ||1 +
∫ kb2

y

||λ ∗ η(k)u ||1 du

≤ ||η(k−1)

kb2 ||1 +
∫ kb2

y

αu−kkkQ(d)−k + cQ(d)−k du

≤ ( kb2

k−1
)−(k−1)Q(d)−(k−1) + αkkQ(d)−k y−(k−1)

k−1
+Q(d)−kckb2,
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where we bounded in the last inequality ||η(k−1)

kb2 ||1 by using that order (k−1)-detail is

at most one,
∫ kb2

y
αu−kkkQ(d)−k du by

∫∞
y
αu−kkkQ(d)−k du and

∫ kb2

y
cQ(d)−k du by∫ kb2

0
cQ(d)−k du. Using that ( k

k−1
)−(k−1) < 1 we therefore get

||λ ∗ η(k−1)
y ||1 ≤ αkkQ(d)−k y

−(k−1)

k − 1
+ (b−(2k−2) +Q(d)−1ckb2)Q(d)−(k−1).

Substituting the definition of order k detail gives for y = (k − 1)r2 ∈ [ka2, kb2] or

equivalently r ∈
[
a
√

k
k−1

, b
√

k
k−1

]
,

s(k−1)
r (λ) = r2(k−1)Q(d)k−1||λ ∗ η(k−1)

(k−1)r2||1

≤ αr2(k−1)kkQ(d)−1 ((k − 1)r2)−(k−1)

k − 1
+ r2(k−1)(b−2(k−1) +Q(d)−1ckb2)

≤ αQ(d)−1

(
1 +

1

k − 1

)k

+ (b−2(k−1) +Q(d)−1ckb2)r2(k−1).

Finally using that
(
1 + 1

k−1

)k ≤ 2e and that 2eQ(d)−1 ≥ 1 the proof is concluded.

Proposition 10.2.3. Let k be an integer greater than 1 and suppose that λ is a

probability measure on Rd. Suppose that a, b > 0 and α ∈ (0, 1). Assume that a < b

and that for all r ∈ [a, b] we have

s(k)r (λ) ≤ α.

Then we have that

sa
√
k(λ) ≤ Q′(d)k−1(α + k! · ka2b−2)

for Q′(d) = 4eQ(d)−1 ≥ 1.

Proof. We will show by induction for j = k, k− 1, . . . , 1 that for all r ∈
[
a
√

k
j
, b
√

k
j

]
we have

s(j)r (λ) ≤ Q′(d)k−j

(
α +

k!

j!
b−2jr2j

)
, (10.2.3)

which implies the claim by setting j = 1 and r = a
√
k. The case j = k follows

from the conditions of the lemma. For the inductive step assume now that for all

r ∈
[
a
√

k
j
, b
√

k
j

]
we have that (10.2.3) holds. Then by Lemma 10.2.2 we have for all

r ∈
[
a
√

k
j−1

, b
√

k
j−1

]
s(j−1)
r (λ) ≤ Q′(d)k−j2eQ(d)−1

(
α +

(
b−2(j−1) +

k!

j!
b−2jjb2

)
r2(j−1)

)
≤ Q′(d)k−j2eQ(d)−1

(
α +

(
1 +

k!

(j − 1)!

)
b−2(j−1)r2(j−1)

)
≤ Q′(d)k−(j−1)

(
α +

k!

(j − 1)!
b−2(j−1)r2(j−1)

)
.
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Combining Lemma 10.2.1 and Proposition 10.2.3, we arrive at the following corol-

lary.

Corollary 10.2.4. Let k ≥ 1 and let λ1, λ2, . . . , λk be probability measures on Rd.

Suppose that a, b > 0 and α ∈ (0, 1). Assume that a < b and that for all r ∈ [a, b] and

i ∈ [k] we have

sr(λi) ≤ α.

Then it holds that

sa
√
k(λ) ≤ Q′(d)k−1(αk + k! · ka2b−2).

10.3 Wasserstein Distance

Recall as in (8.3.2) that the Wasserstein 1-distance on Rd between λ1 and λ2 is defined

as

W1(λ1, λ2) = inf
γ∈Γ(λ1,λ2)

∫
Rd×Rd

|x− y| dγ(x, y),

where Γ(λ1, λ2) is the set of couplings between λ1 and λ2. We show that detail is

bounded up to a constant by the Wasserstein distance.

Lemma 10.3.1. Let λ1 and λ2 be probability measures on Rd. Then for k ≥ 1 and

r > 0,

|s(k)r (λ1)− s(k)r (λ2)| ≤ edr−1W1(λ1, λ2),

where e is Euler’s number.

Proof. Let X and Y be random variables with laws λ1 and λ2 respectively. Then

(λ1 − λ2) ∗ η(k)kr (v) = E
[
η
(k)
kr (v −X)− η

(k)
kr (v − Y )

]
and therefore ∣∣(λ1 − λ2) ∗ η(k)kr (v)

∣∣ ≤ E
[∣∣η(k)kr (v −X)− η

(k)
kr (v − Y )

∣∣] .
Note that ∣∣η(k)kr (v −X)− η

(k)
kr (v − Y )

∣∣ ≤ ∫ Y

X

∣∣∇η(k)kr (v − u)
∣∣ |du|,
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where
∫ y

x
·|du| is understood to be the integral along the shortest path between x and

y and ∇ is the gradient. Thus

||(λ1 − λ2) ∗ η(k)kr ||1 ≤
∫
Rd

E
[∫ Y

X

∣∣∇η(k)kr (v − u)
∣∣ |du|] dv

= E
[∫ Y

X

∫
Rd

∣∣∇η(k)kr (v − u)
∣∣ dv |du|]

= ||∇η(k)kr ||1E[|X − Y |]

≤

(
d∑

i=1

∣∣∣∣∣∣∣∣ ∂∂xiη(k)kr

∣∣∣∣∣∣∣∣
1

)
E[|X − Y |]

We next bound || ∂
∂xi
η
(k)
kr ||1. As in the proof of Lemma 10.2.1, it follows that

∂

∂xi
η
(k)

kr2 =

(
∂

∂xi
η k

k+1
r2

)
∗ η(1)k

k+1
r2
∗ . . . ∗ η(1)k

k+1
r2︸ ︷︷ ︸

k times

.

Using standard properties of Gaussian integrals,∣∣∣∣∣∣∣∣ ∂∂xiη k
k+1

r2

∣∣∣∣∣∣∣∣
1

=

√
2(k + 1)

kπ
r−1 ≤

√
k + 1

k
r−1

and therefore ∣∣∣∣∣∣∣∣ ∂∂xiη(k)kr

∣∣∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣∣∣ ∂∂xiη k

k+1
r2

∣∣∣∣∣∣∣∣
1

·
∣∣∣∣η(1)k

k+1
r2

∣∣∣∣k
1

≤
(
k + 1

k

)(k+1)/2

Q(d)−kr−2k−1.

Using that
(
k+1
k

)(k+1)/2 ≤ e, we conclude

|s(k)r (λ1)− s(k)r (λ2)| ≤ r2kQ(d)k||(λ1 − λ2) ∗ η(k)kr ||1
≤ der−1E[|X − Y |].

Choosing a coupling for X and Y which minimizes E[|X − Y |] gives the required

result.

10.4 Small Random Variables Bound in Rd

The aim of this subsection is to show that the sum of independent random variables

in Rd have small detail whenever they are supported close to 0 and have a sufficiently

large variance. To state our result, we use the partial order (8.3.1) for positive semi-

definite symmetric matrices.
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Proposition 10.4.1. For every positive integer d ≥ 1 and every α > 0 there exists

some C = C(α, d) > 0 such that the following is true for all r > 0 and positive

integers k. Let X1, X2, . . . , Xn be independent random variables taking values in Rd

such that almost surely

|Xi| ≤ C−1r and
n∑

i=1

VarXi ≥ Ckr2I.

Then

s(k)r (X1 + . . .+Xn) ≤ αk.

Proposition 10.4.1 relies on a higher dimensional Berry-Essen type result, which

implies Proposition 10.4.1 for k = 1, as deduced in Lemma 10.4.4. To prove the

higher dimensional Berry-Essen type result we first need the following.

Theorem 10.4.2. Let X1, X2, . . . , Xn be independent random variables taking values

in R with mean 0 and for each i ∈ [n] let E[X2
i ] = ω2

i and E[|Xi|3] = γ3i < ∞. Let

ω2 =
∑n

i=1 ω
2
i and let S = X1 + · · ·+Xn. Let N be a normal distribution with mean

0 and variance ω2. Then for an absolute implied constant

W1(S,N) ≪
∑n

i=1 γ
3
i∑n

i=1 ω
2
i

.

Proof. A proof of this result may be found in [Eri73].

From this we may deduce the following higher dimensional Berry-Essen type result

by using projections onto one-dimensional subspaces.

Lemma 10.4.3. Let X1, X2, . . . , Xn be independent random variables taking values

in Rd with mean 0 and for each i ∈ [n] write

Σi = VarXi.

Suppose that δ > 0 is such that for each i ∈ [n] we have |Xi| ≤ δ almost surely. Let

Σ =
∑n

i=1Σi and S = X1 + . . . + Xn. Let N be a multivariate normal distribution

with mean 0 and covariance matrix Σ. Then

W1(S,N) ≪d δ.

Proof. First, we will deduce this from Theorem 10.4.2 when d = 1. In this case simply

note that
n∑

i=1

γ3i =
n∑

i=1

E[|Xi|3] ≤
n∑

i=1

E[δ|Xi|2] = δ

n∑
i=1

ω2
i ,
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showing the claim.

Now in the case d ≥ 1 the lemma follows by using, as shown in [BG21, Theorem

2.1], that

W1(S,N) ≪d sup
p

W1(pS, pN),

where the supremum is taken over all one dimensional projections p. The result is

therefore deduced as in the one dimensional case by using that E[|pXi|3] ≤ δE[|pXi|2].

Lemma 10.4.4. For every positive integer d ≥ 1 and every α > 0 there exists some

C = C(α, d) > 0 such that the following is true. Let r > 0 and let X1, X2, . . . , Xn be

independent random variables taking values in Rd such that

|Xi| ≤ C−1r and
n∑

i=1

VarXi ≥ Cr2I.

Then

sr(X1 + . . .+Xn) ≤ α.

Proof. Denote for 1 ≤ i ≤ n by X ′
i = Xi − E[Xi] and let S ′ =

∑n
i=1X

′
i. Note

that sr(
∑n

i=1Xi) = sr(S
′). Write Σi = VarXi and let Σ =

∑n
i=1Σi. Let N be a

multivariate normal distribution with mean 0 and covariance matrix Σ. Note that

|X ′
i| ≤ 2C−1r almost surely. Therefore by Lemma 10.4.3,

W1(S
′, N) ≪d C

−1r.

Also

sr(N) ≤ sr(ηC2r2) =
∥η(1)C2r2+r2∥
∥η(1)r2 ∥

=
1

C2 + 1
.

Thus by Lemma 10.3.1,

sr(X1 + . . .+Xn) = sr(S
′) ≪d C

−1 +
1

1 + C2
,

implying the claim.

The proof of Proposition 10.4.1 in the case k ≥ 2 is more involved than the proof

in the case k = 1. In order to prove this proposition we also need the following lemma

and a corollary of it.

122



Lemma 10.4.5. Let V be a Euclidean vector space, let v1, . . . , vn ∈ V and write

S = v1 + · · ·+ vn. Let c1, c2 > 0 be such that for all i ∈ [n] we have

|vi| ≤ c1 and vi · S ≥ c2|vi||S|.

Let k be a positive integer. Then we can partition [n] as J1 ⊔ J2 ⊔ · · · ⊔ Jk such that

for each j ∈ [k] we have

|Sj − 1
k
S| < c−1

2

√
2c1
k
|S|+ 2c−2

2 c1

where Sj =
∑

i∈Jj vi.

Proof. Choose the Jj such that
k∑

j=1

|Sj|2 (10.4.1)

is minimized. For each i ∈ [n] let j(i) denote the unique j ∈ [k] such that i ∈ Jj. For

each i ∈ [n] and j′ ∈ [k] we know that moving i from Jj(i) to Jj′ cannot decrease the

sum in (10.4.1). Therefore

|Sj(i) − vi|2 + |Sj′ + vi|2 ≥ |Sj(i)|2 + |Sj′ |2.

Expanding this out and cancelling gives

Sj(i) · vi − |vi|2 ≤ Sj′ · vi

and summing over all i ∈ Jj, we get

Sj · Sj ≤ Sj · Sj′ +
∑
i∈Jj

|vi|2.

Let Aj denote
∑

i∈Jj |vi|
2. Note that the above equation gives |Sj − Sj′ |2 ≤ Aj + Aj′

and so

|Sj − 1
k
S| ≤ max

j′∈[k]
|Sj − Sj′| ≤

√
2max
j′∈[k]

Aj′ . (10.4.2)

Now let Λ2 = maxj′∈[k]Aj′ . We compute∑
i∈Jj

|vi|2 ≤ c−2
2 |S|−2

∑
i∈Jj

(vi · S)2

≤ c−2
2 |S|−2

∑
i∈Jj

(vi · S)c1|S|

= c−2
2 c1|S|−1S · Sj ≤ c−2

2 c1|Sj| ≤ c−2
2 c1(

1
k
|S|+

√
2Λ).
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Therefore Λ2 ≤ c−2
2 c1(|S|/k +

√
2Λ), which gives(

Λ− c−2
2 c1/

√
2
)2

≤ c−2
2 c1|S|/k + c−4

2 c21/2

and so

Λ ≤
√
c−2
2 c1|S|
k

+
c−4
2 c21
2

+
c−2
2 c1√
2

≤ c−1
2

√
c1
k
|S|+ c−2

2 c1
√
2,

showing the required result by (10.4.2).

Corollary 10.4.6. Let A1, . . . , An be symmetric positive semi-definite d×d matrices.

Suppose that
∑n

i=1Ai ≥ CkI and that for each i ∈ [n] we have ∥Ai∥ ≤ c. Then we

can partition [n] as J1 ⊔ J2 ⊔ · · · ⊔ Jk such that for each j ∈ [k] we have∑
i∈Jj

Ai ≥
(
C − d

√
2cC − 2d3/2c

)
I.

Proof. LetM =
∑n

i=1Ai. We know thatM is symmetric positive semi-definite and so

it may be diagonalised as M = P−1DP for some orthogonal matrix P and a diagonal

matrix D with non-zero real entries. Since M ≥ CkI all of the diagonal entries of

D are at least Ck. Let D′ =
√
CkD−1 be a diagonal matrix and for each i ∈ [n] let

A′
i = QAiQ where Q = P−1D′P . Note that A′

i is symmetric positive semi-definite,

∥A′
i∥ ≤ c as ∥Q∥ ≤ 1 and that

∑n
i=1A

′
i = CkI since

QMQ = (P−1D′P )(P−1DP )(P−1D′P ) = P−1D′DD′P = CkI.

We now apply Lemma 10.4.5 with V being the space of symmetric d× d matrices

with inner product given by A ·B =
∑n

x=1

∑n
y=1AxyBxy = trAB and with v1, . . . , vn

being A′
1, . . . , A

′
n. We will denote the norm induced by this inner product by | · |.

Note that given a symmetric matrix A we have that |A|2 is equal to the sum of the

squares of the eigenvalues of A and so in particular ∥ · ∥ ≤ | · | ≤
√
d∥ · ∥. This means

that we can take c1 =
√
dc so that |A′

1| ≤ c1.

All that we need to do is find some lower bound on A′
i ·CkI in terms of |A′

i| · |CkI|.
Note that trA′

i is equal to the sum of the eigenvalues of A′
i and that |A′

i|2 is equal to

the sum of the squares of these eigenvalues. In particular since the eigenvalues are

non-negative trA′
i ≥ |A′

i| and so

A′
i · CkI = Ck trA′

i ≥ Ck|A′
i| = |A′

i| · |CkI|/
√
d.
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This means that we can take c2 = 1/
√
d.

We now apply Lemma 10.4.5 with S =
∑n

i=1A
′
i = CkI to construct our partition

[n] = J1 ⊔ J2 ⊔ · · · ⊔ Jk such that for all j ∈ [k],∥∥∥∥∥∥
∑
i∈Jj

A′
i − CI

∥∥∥∥∥∥ ≤

∣∣∣∣∣∣
∑
i∈Jj

A′
i − CI

∣∣∣∣∣∣ ≤ d
√
2cC + 2d3/2c.

Therefore ∥∥∥∥∥∥
∑
i∈Jj

Ai − CQ−2

∥∥∥∥∥∥ ≤ (d
√
2cC + 2d3/2c)||Q−2||

and hence, ∑
i∈Jj

Ai ≥ CQ−2 −
(
d
√
2cC + 2d3/2c

)
||Q−2||I

≥ CI −
(
d
√
2cC − 2d3/2c

)
||Q−2||I

≥
(
C − d

√
2cC − 2d3/2c

)
I

using in the penultimate line thatQ−2 = P−1(D′)−2P is symmetric and all eigenvalues

are ≥ 1 and in the last line that ||Q−1|| ≥ 1.

Finally we can prove Proposition 10.4.1.

Proof of Proposition 10.4.1. Note that since |Xi| ≤ C−1r almost surely we have

∥VarXi∥ ≤ C−2r2. By Corollary 10.4.6 we can partition [n] as J1 ⊔ J2 ⊔ · · · ⊔ Jk

such that for each j ∈ [k] we have∑
i∈Jj

VarXi ≥
(
C − d

√
2C−1 − 2d3/2C−2

)
r2I.

This means that by Lemma 10.4.4, provided that C is sufficiently large in terms

of d, we know that

sr

∑
i∈Jj

Xi

 ≤ α.

The result now follows from Proposition 10.2.1.
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Chapter 11

Entropy and Variance on General
Lie groups

Throughout this section let G be an arbitrary Lie group of dimension ℓ with a fixed

choice of Haar measure mG and let g be the Lie algebra of G. We fix an inner product

on g, inducing an associated norm | ◦ |. Also denote by

log : G→ g

the logarithm on G, which is defined in a small neighbourhood around the identity.

We study entropy on arbitrary Lie groups. As exposed in the outline of proofs, we

shall convert entropy estimates of a random variable Z to estimates of the variance

of Z. Indeed, recall that if Z is an absolutely continuous random variable on R with

variance σ2 then

H(Z) ≤ 1

2
log(2πeσ2), (11.0.1)

where H(Z) is the differential entropy of Z and equality holds in (11.0.1) if and only

if Z is distributed like a Gaussian with variance σ2. We will prove an analogue of this

fact on Lie groups. To do so, for random variables g that are supported within small

balls of a given point g0 we consider the covariance matrix of the Lie group logarithm

applied to g−1
0 g. This viewpoint allows us to apply a higher dimensional analogue of

(11.0.1) to deduce an analogous result on G.

Indeed, we recall that for an ℓ-dimensional random variable X we denote by tr(X)

the trace of the covariance matrix of X. In particular, we use the following definition.

Given g0 ∈ G and a random variable g on G we define

trg0(g) = tr(log(g−1
0 g)),
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whenever log(g−1
0 g) is defined. The analogue of (11.0.1), which will be proved in

Proposition 11.3.1, then amounts to

H(g) ≤ ℓ

2
log

(
2πe

ℓ
· trg0(g)

)
+OG(ε) (11.0.2)

for random variables supported on Bε(g0) and ε > 0 sufficiently small.

A further goal of this section is to study entropy between scales on G. Indeed,

we will define in section 11.5 an explicit family of smoothing distributions sr,a on G,

which satisfy

tre(sr,a) ≈ ℓr2 and H(sr,a) =
ℓ

2
log 2πer2 +Oℓ(e

−a2/4) +OG,a(r), (11.0.3)

while being supported on Bar(e). The error Oℓ(e
−a2/4) arises since sr,a is compactly

supported while equality holds in (11.0.1) for Gaussians, which are non-compactly

supported.

We then define the entropy at a scale r > 0 of a random variable as

Ha(g; r) = H(gsr,a)−H(sr,a)

and the entropy between scales between two scales r1, r2 > 0 as

Ha(g; r1|r2) = Ha(g; r1)−Ha(g; r2).

Roughly speaking, Ha(g; r1|r2) measures how much more information g has on scale

ar1 than it has on scale ar2. We work with the parameter a as the uniform bounds

(11.0.3) are useful for our purposes.

We next aim to relate the entropy between scales to the trace of a random variable.

To do so we introduce the trace tr(g; r) for a random variable g at scale r, which we

define as the supremum of all t ≥ 0 such that we can find some σ-algebra A and

some A -measurable random variable h taking values in G such that

| log(h−1g)| ≤ r and E[trh(g|A )] ≥ tr2.

Then we show in Proposition 11.5.1 that

tr(g; 2ar) ≫ a−2(Ha(g; r|2r)−Oℓ(e
−a2/4)−OG,a(r)). (11.0.4)

In section 11.1 we give definitions and discuss basic properties of entropy on G,

after which we discuss the Kullback-Leibler divergence on G in section 11.2. In sec-

tion 11.3 we prove (11.0.2), after which we study conditional entropy in section 11.4.

Finally we prove (11.0.4) in section 11.5.
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11.1 Entropy and Basic Properties

For notational convenience, we denote

h(x) = −x log(x)

for x ∈ (0,∞) and recall that h is concave. If λ =
∑

i piδgi is a discrete probability

measure on G, we define the Shannon entropy of λ as

H(λ) =
∑
i

h(pi).

On the other hand, given an absolutely continuous probability measure λ on G with

density fλ we define

H(λ) =

∫
h(fλ) dmG.

We extend the definition to finite positive measures λ that are either absolutely

continuous or discrete by setting

H(λ) = ||λ||1H(λ/||λ||1).

In this subsection we collect some useful basic properties of entropy.

Lemma 11.1.1. Let λ1, . . . , λn be absolutely continuous finite measures on G. Then

H(λ1 + . . .+ λn) ≥ H(λ1) + . . .+H(λn).

Proof. It suffices to prove the claim for n = 2. Let f1 and f2 be the densities of λ1

and λ2. Then since h is concave

H(λ1 + λ2) = (||λ1||1 + ||λ2||1)
∫
h

(
f1 + f2

||λ1||1 + ||λ2||1

)
dmG

≥ (||λ1||1 + ||λ2||1)
∫

||λ1||1
||λ1||1 + ||λ2||1

h

(
f1

||λ1||1

)
dmG

+ (||λ1||1 + ||λ2||1)
∫

||λ2||1
||λ1||1 + ||λ2||1

h

(
f2

||λ2||1

)
dmG

= H(λ1) +H(λ2).

Lemma 11.1.2. Let p = (p1, p2, . . .) be a probability vector and let λ1, λ2, . . . be

probability measures on G either all absolutely continuous measures or all discrete

measures with finite entropy such that ||λi|| = pi. Then

H

(
∞∑
i=1

λi

)
≤ H(p) +

∞∑
i=1

H(λi).
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In particular, if pi = 0 for all i > k for some integer k ≥ 1 then

H

(
k∑

i=1

λi

)
≤ log k +

k∑
i=1

H(λi).

Proof. Upon taking limits it suffices to prove the claim for n-dimensional probability

vectors p = (p1, . . . , pn) and we only consider the case of absolutely continuous mea-

sures as the proof is analogous in the discrete case. We prove the first line in the case

when the λi are absolutely continuous and denote their densities by fi. Note that

h(
∑n

i=1 ai) ≤
∑n

i=1 h(ai) for any a1, . . . , an ≥ 0. Therefore

H(λ1 + . . .+ λn) =

∫
h

(
n∑

i=1

fi

)
dmG

≤
n∑

i=1

∫
h(fi) dmG

=
n∑

i=1

∫
(−fi(x) log(p−1

i fi)− fi(x) log(pi)) dmG

=
n∑

i=1

∫
pih(p

−1
i fi)dmG + h(pi)

=
n∑

i=1

H(λi) +H(p).

Lemma 11.1.3. Let λ1 be a discrete and and λ2 be continuous probability measures

on G. Then

H(λ1 ∗ λ2) ≤ H(λ1) +H(λ2)

Suppose further that λ1 is supported on finitely many points with separation at least

2r and that the support of λ2 is contained in a ball of radius r. Then

H(λ1 ∗ λ2) = H(λ1) +H(λ2).

Proof. Write λ1 =
∑n

i=1 piδgi and let f be the density of λ2. Then the density of
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λ1 ∗λ2 is given by
∑n

i=1 pi f ◦g
−1
i . As h(

∑n
i=1 ai) ≤

∑n
i=1 h(ai) for any a1, . . . , an ≥ 0,

H(λ1 ∗ λ2) =
∫
h

(
n∑

i=1

pi f ◦ g−1
i

)
dmG

≤
n∑

i=1

∫
h(pi f ◦ g−1

i ) dmG

=
n∑

i=1

∫
(pi f ◦ g−1

i )(log(pi) + log(f ◦ g−1
i )) dmG

= H(λ1) +H(λ2).

If λ1 is supported on finitely many points with separation at least 2r and that the

support of λ2 is contained in a ball of radius r, then the support of the functions

f ◦ g−1
i is disjoint and the inequality in the second line is an equality.

11.2 Kullback-Leibler Divergence

If ν ≪ µ are measures on G, then we define the Kullback-Leibler divergence as

DKL(ν ||µ) = −
∫

log
dν

dµ
dν.

Observe that if ν is absolutely continuous, then H(ν) = DKL(ν ||mG). We collect

some basic results on the Kullback-Leibler divergence on G.

Lemma 11.2.1. Let ν ≪ µ be measures on G and assume that ν is a probability

measure supported on a set A of positive µ measure. Then

DKL(ν ||µ) ≤ log(µ(A)).

Proof. For convenience write ν = fν dµ. Then by Jensen’s inequality,

DKL(ν ||µ) =
∫
A

h

(
fν
µ(A)

µ(A)

)
dµ =

∫
h(fνµ(A))

1A
µ(A)

dµ+ log(µ(A)) ≤ log(µ(A)).

Lemma 11.2.2. Assume that we can write X = X1 × . . . × Xm as a product of

sub-manifolds Xi ⊂ X and assume that mX = mX1 × . . . ×mXm for a measure mX

on X and measures mXi
on Xi. Let µ be a probability measure on X with µ ≪ mG.

Denote by πi the projection from X to Xi and by πiµ the pushforward of µ under πi.

Then

DKL(µ ||mX) ≤ DKL(π1µ ||mX1) + . . .+DKL(πmµ ||mXm).
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Proof. It suffices to prove the claim for m = 2. Denote by fµ the density of µ with

respect to mG and write

f 1
µ(x2) =

∫
fµ(x1, x2) dmX1(x1) and f 2

µ(x1) =

∫
fµ(x1, x2) dmX2(x2).

Therefore,

DKL(µ ||mG) =

∫ ∫
h(fµ(x1, x2)) dmX1(x1)dmX2(x2)

=

∫ ∫
h

(
fµ(x1, x2)

f 2
µ(x1)

f 2
µ(x1)

)
dmX1(x1)dmX2(x2)

=

∫ ∫
h

(
fµ(x1, x2)

f 2
µ(x1)

)
f 2
µ(x1) dmX1(x1)dmX2(x2)

+

∫ ∫
− log(f 2

µ(x1))fµ(x1, x2) dmX1(x1)dmX2(x2)

≤
∫
h(f 1

µ(x2)) dmX2(x2) +

∫
h(f 2

µ(x1)) dmX1(x1)

= DKL(π1µ ||mX1) +DKL(π2µ ||mX2),

having used that h is concave and Jensen’s inequality in the penultimate line.

Lemma 11.2.3. Let (X,mX) and (Y,mY ) be manifolds endowed with Radon mea-

sures of full support, and let Φ : X → Y be a diffeomorphism with Φ∗mX = mY .

Then for a measure ν ≪ mX on X it holds that

DKL(Φ∗ν||mY ) = DKL(ν||mX).

Proof. Let f : Y → R be a continuous compactly supported function. Then∫
f dΦ∗ν =

∫
(f ◦ Φ) dν =

∫
(f ◦ Φ) dν

dmX

dmX

as well as∫
f dΦ∗ν =

∫
f
dΦ∗ν

dmY

(y)dmY

=

∫
f
dΦ∗ν

dmY

(y)dΦ∗mX =

∫
(f ◦ Φ)

(
dΦ∗ν

dmY

◦ Φ
)
dmX .

Therefore, as Φ is a diffeomorphism and since mX has full support,

dΦ∗ν

dmY

◦ Φ =
dν

dmX
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and thus

DKL(Φ∗ν||mY ) = −
∫

log
dΦ∗ν

dmY

dΦ∗ν

= −
∫

log

(
dΦ∗ν

dmY

◦ Φ
)
dν

= −
∫

log

(
dν

dmX

)
dν = DKL(ν||mX).

Lemma 11.2.4. Let λ1 be a probability measure on G and let λ2 and λ3 be measures

on G such that λ1 ≪ λ2, λ1 ≪ λ3 and λ2 ≪ λ3. Let U ⊂ E and suppose that the

support of λ1 is contained in U . Then

|DKL(λ1 ||λ2)−DKL(λ1 ||λ3)| ≤ sup
x∈U

∣∣∣∣ log dλ2dλ3

∣∣∣∣.
Proof. We calculate

|DKL(λ1 ||λ2)−DKL(λ1 ||λ3)| =
∣∣∣∣ ∫

U

log
dλ1
dλ2

dλ1 −
∫
U

log
dλ1
dλ3

dλ1

∣∣∣∣
≤
∫
U

∣∣∣∣ log dλ1dλ2
− log

dλ1
dλ3

∣∣∣∣ dλ1
=

∫
U

∣∣∣∣ log dλ2dλ3

∣∣∣∣ dλ1
≤ sup

x∈U

∣∣∣∣ log dλ2dλ3

∣∣∣∣.

11.3 Entropy and Trace

In this subsection we prove (11.0.2). Recall that given g0 ∈ G and a random variable

g on G we define

trg0(g) = tr(log(g−1
0 g)),

whenever log(g−1
0 g) is defined.

Proposition 11.3.1. Let G be a Lie group of dimension ℓ. Let ε > 0 and suppose

that g is a continuous random variable taking values in Bε(g0) for some g0 ∈ G. If ε

is sufficiently small depending on G,

H(g) ≤ ℓ

2
log

(
2πe

ℓ
· trg0(g)

)
+OG(ε).
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Proof. We first note that if X is an ℓ-dimensional random vector, then

H(X) ≤ ℓ

2
log

(
2πe

ℓ
· tr(X)

)
(11.3.1)

Indeed, it follows from the 1-dimensional case (11.0.1) that H(X) ≤ 1
2
log((2πe)ℓ ·

|Var(X)|), where |Var(X)| is the determinant of the covariance matrix. Note that by

the AM-GM inequality |Var(X)| ≤ tr(X)ℓℓ−ℓ, which implies (11.3.1).

Since H(g−1
0 g) = H(g) and trg0(g) = tre(g

−1
0 g), we may assume without loss of

generality that g0 = e. The density dmG

d(mg◦log) is smooth and for ε > 0 sufficiently

small is 1 + OG(ε) on Bε(e) and therefore supBε(e)

∣∣ log dmG

d(mg◦log)

∣∣ ≪G ε. Thus by

Lemma 11.2.4,

|DKL(g ||mG)−DKL(g ||mg ◦ log)| ≪G ε.

The claim follows since by (11.3.1)

DKL(g ||mg ◦ log) = DKL(log(g) ||mg) = H(log(g)) ≤ ℓ

2
log

(
2πe

ℓ
tre(g)

)
.

11.4 Conditional Entropy and Conditional Trace

The aim of this subsection is to prove an abstract result relating entropy between

scales and the trace. To do so, we first discuss conditional entropy and conditional

trace. Let Y be a random variable on a probability space (Ω,F ,P) and A ⊂ F

be a σ-algebra. Denote by (Y |A ) the regular conditional distribution as defined in

section 9.2. Assuming that (Y |A ) is almost surely absolutely continuous, we define

H((Y |A ))(ω) = H((Y |A )(ω)).

Recall that if X1 and X2 are two random variables then entropy of X1 given X2

is H(X1|X2) = H(X1, X2)−H(X2). If X1 and X2 have finite entropy and finite joint

entropy, then by [Vig21],

H(X1|X2) = E[H((X1|X2))]. (11.4.1)

We next give an abstract definition of the entropy at a scale and for a smoothing

functions s. Indeed, let g and s be random variables on G and assume that s is

absolutely continuous. Then the entropy at scale s is defined as

H(g; s1) = H(gs1)−H(s1)
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Moreover, if s1 and s2 are absolutely continuous smoothing functions we define the

entropy between scales s1 and s2 as

H(g; s1|s2) = H(g; s1)−H(g; s2).

The following basic result on the growth of conditional entropy holds.

Lemma 11.4.1. Let g, s1, s2 be independent random variables taking values in G.

Assume that s1 and s2 are absolutely continuous with finite differential entropy and

assume that gs1 and gs2 also have finite differential entropy. Then

H(gs1|gs2) ≥ H(g; s1|s2) +H(s1).

Proof. Note that

H(gs2|gs1) ≥ H(gs2|g, s1) = H(gs2|g) = H(s2)

and so

H(gs2, gs1) = H(gs2|gs1) +H(gs1) ≥ H(gs1) +H(s2).

Therefore

H(gs1|gs2) = H(gs2, gs1)−H(gs2)

≥ H(gs1)−H(gs2) +H(s2)

≥ H(g; s1|s2) +H(s1).

We next define the conditional trace of a random variable on G and relate it to

the entropy between scales.

Definition 11.4.2. Let g be a random variable defined on a probability space (Ω,F ,P)
and taking values in G. Let A ⊂ F be a σ-algebra let g0 be a A -measurable ran-

dom variable taking values on G. Then we denote by trg0(g |A ) the A -measurable

function given for ω ∈ Ω by

trg0(g |A )(ω) = trg0(ω)((g |A )(ω)).

We note here that the variance of a measure µ is defined as the variance of a

random variable with law µ. It follows from Proposition 11.3.1 that

H((g|A )) ≤ ℓ

2
log

(
2πe

ℓ
· trg0(g|A )

)
+OG(ε). (11.4.2)
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Theorem 11.4.3. Let g, s1 and s2 be independent absolutely continuous random

variables taking values in G and suppose that that s1 and s2 are supported on Bε

for some sufficiently small ε > 0 and have finite differential entropy. Write c =
ℓ
2
log 2πe

ℓ
tre(s1)−H(s1) and suppose that tre(s1) ≥ Aε2 for some positive constant A.

Then

E[trgs2(g|gs2)] ≥
2

ℓ
(H(g; s1|s2)− c− Cε)tre(s1),

where C is some positive constant depending only on A and ℓ.

We first prove some basic result on the trace of the product of two random vari-

ables.

Lemma 11.4.4. Let ε > 0 be sufficiently small and let a, b be random variables and

A a σ-algebra. Suppose that b is independent from a and A and let g0 be an A -

measurable random variable. Suppose that g−1
0 a and b are almost surely contained in

Bε. Then

trg0(ab|A ) = trg0(a|A ) + tre(b) +O(ε3).

Note that under the assumptions of Lemma 11.4.4 it holds by Lemma 9.2.2 that

[ab|A ] = [a|A ][b|A ] = [a|A ]b.

Therefore the claim follows from the following unconditional version.

Lemma 11.4.5. Let ε > 0 be sufficiently small and let g and h be independent random

variables taking values in G. Suppose that the image of g is contained in Bε and the

image of h is contained in Bε(h0) for some h0 ∈ G. Then

trh0(hg) = trh0(h) + tre(g) +O(ε3).

Proof. Let X = log(h−1
0 h) and let Y = log(g). Then |X|, |Y | ≤ ε almost surely and

by Taylor’s theorem there is a random variable E with |E| ≪ ε2 almost surely such

that

log(exp(X) exp(Y )) = X + Y + E.

Therefore

trh0(hg) = E[|X + Y + E|2]− |E[X + Y + E]|2

= E[|X + Y |2]− |E[X + Y ]|2

+ 2E[(X + Y ) · E] + E[|E|2]− 2E[X + Y ]E[E]− |E[E]|2

= Var[X + Y ] +O(ε3) = Var[X] + Var[Y ] +O(ε3).
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Proof. (of Theorem 11.4.3) We note that by 11.4.1 and Lemma 11.4.1, it holds that

E[H((gs1|gs2))] ≥ H(g; s1|s2) +H(s1)

and so by (11.4.2),

E
[
ℓ

2
log

2πe

ℓ
trgs2(gs1|gs2)

]
+O(ε) ≥ H(g; s1|s2) +H(s1).

Note that (gs2)
−1g = s−1

2 , which is contained inBε(e). Therefore by Lemma 11.4.4,

trgs2(gs1|gs2) ≤ trgs2(g|gs2) + tre(s1) +O(ε3)

and so

H(g; s1|s2) +H(s1) ≤ E
[
ℓ

2
log

2πe

ℓ

(
trgs2(g|gs2) + tre(s1) +O(ε3)

)]
+O(ε).

Thus
2

ℓ
(H(g; s1|s2)− c) ≤ E

[
log

(
1 +

trgs2(g|gs2)
tre(s1)

+OA(ε)

)]
.

Using that log(1 + x) ≤ x for x ≥ 0, we conclude the claim.

11.5 Entropy Between Scales

In this subsection we prove an explicit result relating the entropy between scales and

tr(g). To do so, we construct a suitable family of smoothing functions. Indeed for

given r > 0 and a ≥ 1, denote by ηr,a a random variable on g with density function

fr,a : g → R given by

fr,a(x) =

{
Cr,ae

− |x|2

2r2 if |x| ≤ ar,

0 otherwise,

where Cr,a is a normalizing constant to ensure that fr,a integrates to 1. We further-

more define

sr,a = exp(ηr,a).

We then define the entropy at scale r as

Ha(g; r) = H(g; sr,a) = H(gsr,a)−H(sr,a)

and the entropy between scales r1, r2 > 0 as

Ha(g; r1|r2) = H(g; sr1,a|sr2,a) = Ha(g; r1)−Ha(g; r2)

= (H(gsr1,a)−H(sr1,a))− (H(gsr2,a)−H(sr2,a)).
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Recall that tr(g; r) is defined to be the supremum of all t ≥ 0 such that we can

find some σ-algebra A and some A -measurable random variable h taking values in

G such that

| log(h−1g)| ≤ r and E[trh(g|A )] ≥ tr2.

Proposition 11.5.1. Let g be a random variable taking values in G, let a ≥ 1 and

r > 0 be such that ar is sufficiently small in terms of G and assume that g, sr,a and

s2r,a are independent random variables. Then

tr(g; 2ar) ≫ a−2(Ha(g; r|2r)−Oℓ(e
−a2/4)−OG,a(r)),

for the implied constants depending on G.

Proposition 11.5.1 relies on the following lemma.

Lemma 11.5.2. The following properties hold for r > 0 and a ≥ 1:

(i) ℓr2 ≪ tr(ηr,a) ≤ ℓr2 and

H(ηr,a) =
ℓ

2
log 2πer2 +Oℓ(e

−a2/4).

(ii) If ar is sufficiently small, ℓr2 ≪ tre(sr,a) ≤ ℓr2 and

H(sr,a) =
ℓ

2
log 2πer2 +Oℓ(e

−a2/4) +OG,a(r).

Proof. We note that (ii) follows from (i) and the claim ℓr2 ≪ tr(ηr,a) ≤ ℓr2 is obvious.

To complete the proof of (i), we deal with r = 1 case first. Note first that∫
x∈Rℓ,|x|≤a

e−|x|2/2 dx ≤
∫
x∈Rℓ

e−|x|2/2 dx =
ℓ∏

i=1

∫
R
e−x2

i /2 dxi = (2π)ℓ/2

and by using spherical coordinates∫
x∈Rℓ,|x|≥a

e−|x|2/2 dx = cℓ

∫ ∞

a

uℓ−1e−u2/2 du

≪ℓ

∫ ∞

a

e−u2/3 du ≤
∫ ∞

a

e−au/3 du =
3

a
e−a2/3 ≪ℓ e

−a2/4.

Thus we conclude∫
x∈Rℓ,|x|≤a

e−|x|2/2 dx = (2π)ℓ/2 −
∫
x∈Rℓ,|x|≥a

e−||x||2/2 dx ≥ (2π)ℓ/2 −Oℓ(e
−a2/4)
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and therefore C1,a = (2π)−ℓ/2 + Oℓ(e
−a2/4). We are now in a suitable position to

calculate H(η1,a). Indeed,

H(η1,a) =

∫
|x|≤a

−C1,ae
−|x|2/2 log

(
C1,ae

−|x|2/2
)
dx

=

∫
|x|≤a

C1,a

(
|x|2

2
− logC1,a

)
e−|x|2/2 dx

We calculate ∫
x∈Rℓ

C1,a

(
|x|2

2
− logC1,a

)
e−|x|2/2 dx

= (2π)ℓ/2C1,a

(
ℓ

2
− logC1,a

)
=
(
1 +Oℓ(e

−a2/4)
)( ℓ

2
log e+

ℓ

2
log 2π +Oℓ(e

−a2/4)

)
=
ℓ

2
log 2πe+Oℓ(e

−a2/4).

and again using spherical coordinates,∫
|x|≥a

C1,a

(
|x|2

2
− logC1,a

)
e−|x|2/2 dx

= cℓ

∫ ∞

a

C1,a

(
u2

2
− logC1,a

)
uℓ−1e−u2/2 dx

≪ℓ Oℓ(e
−a2/4).

Thus the claimed bound on H(η1,a) follows. Since fr,a(x) = rℓC1,af1,a(x/r) it follows

that H(ηr,a) = log(rℓ) +H(η1,a) and hence the proof is complete.

Proof. (of Proposition 11.5.1) We apply Theorem 11.4.3 to s1 = sr,a and s2 = s2r,a

and we set ε = ℓar. By Lemma 11.5.2 (ii) we have that tre(s1) ≫ ℓr2 ≫a,ℓ ε
2 and

c = ℓ
2
log 2πe

ℓ
tre(s1)−H(s1) ≤ Oℓ(e

−a2/4) +Oa,ℓ(r). Applying Theorem 11.4.3,

E[trgs2(g|gs2)] ≥ cr2(H(g; r|2r)−Oℓ(e
−a2/4)−OG,a(r))

for some absolute constant c depending on G. On the other hand, we have that

| log((gs2)−1g)| = | log s2| ≤ 2ar and therefore

tr(g; 2ar) ≥ (2ar)−2E[trgs2(g|gs2)] ≫ a−2(H(g; r|2r)−Oℓ(e
−a2/4)−OG,a(r)).
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Chapter 12

Entropy Gap and Variance Growth
on Sim(Rd)

In this section we return to G = Sim(Rd) with dimension ℓ = d(d+1)
2

+ 1. For µ a

probability measure on G we denote by γ1, γ2, . . . independent µ-distributed samples

of µ and write

qn = γ1 · · · γn.

For κ > 0 be denote by τκ the stopping time

τκ = inf{n : ρ(qn) ≤ κ}.

The goal of this section is to give bounds for
∑N

i=1 tr(qτκ , si) for suitable scales si.

Towards the proof of our main theorem as discussed in section 8.2, it would be ideal

to give a bound roughly of the form

N∑
i=1

tr(qτκ , 2
iar) ≫ hµ

|χµ|
log κ−1 with r ≈ κ

Sµ
|χµ| and 2Nr ≈ κ

hµ
2ℓ|χµ|

(12.0.1)

for sufficiently small κ. As we explain below, we can’t quite achieve (12.0.1) and the

bound we arrive at will also depend on the separation rate Sµ. To estimate the left

hand side of (12.0.1) we apply Proposition 11.5.1 to each of the terms tr(qτκ , 2
iar)

which gives

N∑
i=1

tr(qτκ , 2
iar) ≫ a−2(Ha(qτκ ; r|2Nr) +Od(Ne

−a2/4) +Od(r)) (12.0.2)

having used that by a telescoping sum

Ha(qτκ ; r|2Nr) =
N∑
i=1

Ha(qτκ ; 2
i−1r|2ir).
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The main contribution from (12.0.1) comes from suitable estimates for Ha(qτ ; r|2Nr).
Indeed, we will show in Proposition 12.1.1 that, up to negligible error terms,

Ha(qτκ ; r|2Nr) ≫
hµ
|χµ|

log κ−1. (12.0.3)

To show this, we recall that

Ha(qτκ ; r|2Nr) = Ha(qτκ ; r)−Ha(qτκ ; 2
Nr)

and therefore we need to estimate the termsHa(qτκ ; r) andHa(qτκ ; 2
Nr). To bound the

first term, as we explain after the statement of Lemma 12.1.2, we use that with high

probability τκ ≈ log(κ−1)/|χµ| and so the points in the support of qτκ are separated

by distance r ≈ κ
Sµ
|χµ| ≈ exp(−Sµτκ). For the second term we use the large deviation

principle and the polynomial decay of our self-similar measure.

Combining (12.0.2) with (12.0.3) would lead to (12.0.1) would it not be for the

error term Od(Ne
−a2/ℓ). Indeed, to not cancel out the lower bound from (12.0.3) we

require that

Ne−a2/ℓ ≤ c
hµ
|χµ|

log κ−1

for a sufficiently small constant c. By our choice of N it holds that N ≈ Sµ

|χµ| log κ
−1

and therefore

e−a2/ℓ ≤ c
hµ
Sµ

.

So we have to set

a2 = cmax

{
1, log

Sµ

hµ

}
.

Applying then (12.0.2), since the error term Od(r) is negligible, we conclude that

N∑
i=1

tr(qτκ , 2
iar) ≫ hµ

|χµ|
log κ−1max

{
1, log

Sµ

hµ

}−1

. (12.0.4)

We will give a precise proof of the latter bound in Proposition 12.2.2.

12.1 Entropy Gap of Stopped Random Walk

In this subsection we show that the entropy between scales is large for a suitable

stopped random walk on G = Sim(Rd). Indeed, we establish the following more

precise version of (12.0.3).
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Proposition 12.1.1. Let µ be a finitely supported, contracting on average proba-

bility measure on G. Suppose that Sµ < ∞ and that hµ/|χµ| is sufficiently large.

Let S > Sµ, κ > 0 and a ≥ 1 and suppose that 0 < r1 < r2 < a−1 with r1 <

exp(−S log(κ−1)/|χµ|). Then as κ→ 0,

Ha(qτκ ; r1|r2) ≥
(
hµ
|χµ|

− d

)
log κ−1 +H(sr2,a) + oµ,d,S,a(log κ

−1).

Proposition 12.1.1 directly follows from Lemma 12.1.2 and Lemma 12.1.3.

Lemma 12.1.2. Under the assumptions of Proposition 12.1.1, as κ→ 0,

Ha(qτκ ; r1) ≥
hµ
|χµ|

log κ−1 + oµ,d,S,a(log κ
−1).

Recall that Ha(qτκ ; r1) = H(qτκsr1,a) − H(sr1,a). To give the proof idea, note

that with high probability τκ ≈ log(κ−1)/|χµ|. Also, by definition of hµ, we have

that H(qlog(κ−1)/|χµ|) ≥ hµ log(κ
−1)/|χµ|. On the other hand, sr1,a is mostly contained

in a ball around the identity with radius O(exp(−S log(κ−1)/|χµ|)), and therefore

by Lemma 11.1.3 we have H(qlog(κ−1)/|χµ| · sr1,a) = H(qlog(κ−1)/|χµ|) + H(sr1,a), which

implies the claim. We proceed with a more rigorous proof.

Proof. For ease of notation we write in this proof τ = τκ. Fix some ε > 0 which is

sufficiently small in terms of S and µ. Let m = ⌊log(κ−1)/|χµ|⌋ and define τ ′ as

τ ′ =


⌈(1 + ε)m⌉ if τ > ⌈(1 + ε)m⌉,
⌊(1− ε)m⌋ if τ < ⌊(1− ε)m⌋,
τ otherwise.

For a random variable X denote by L(X) its law. Furthermore, given an event A, we

will denote by L(X)|A the measure given by the push forward of the restriction of P
to A under the random variable X. Note that ||L(X)|A || = P[A].

By applying Lemma 11.1.1,

H(qτsr1,a) = H(L(qτ ) ∗ L(sr1,a))

≥ H(L(qτ )|τ=τ ′ ∗ L(sr1,a)) +H(L(qτ )|τ ̸=τ ′ ∗ L(sr1,a))

≥ H(L(qτ )|τ=τ ′ ∗ L(sr1,a)) + P[τ ̸= τ ′]H(L(sr1,a)), (12.1.1)

having used that

H(L(qτ )|τ ̸=τ ′ ∗ L(sr1,a)) ≥ H(L(qτ )|τ ̸=τ ′ ∗ L(sr1,a)|qτ )

≥ P[τ ̸= τ ′]H(L(sr1,a)).
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We next apply that sr1,a has small support. Set δ = 1
4
(S − Sµ). Write Dm =⋃m

n=1 supp(µ
∗i) for all m ≥ 1. Then for every N sufficiently large, exp(−(Sµ+δ)N) <

d(x, y) for all x, y ∈ DN . Therefore for ε and κ sufficiently small, exp(−(Sµ+2δ)m) <

d(x, y) for all x, y ∈ D⌈(1+ε)m⌉. As d(sr1,a, e) ≪G r1a it follows that if κ is sufficiently

small in terms of µ, a and S,

d(sr1,a, Id) < O(a exp(−Sm)) <
1

2
min

x,y∈supp(qτ ′ ),x ̸=y
d(x, y).

In particular, by Lemma 11.1.3,

H(L(qτ )|τ=τ ′ ∗ L(sr1,a)) = H(L(qτ )|τ=τ ′) + P[τ = τ ′]H(L(sr1,a)). (12.1.2)

Combining (12.1.2) with (12.1.1),

H(qτsr1,a) ≥ H(L(qτ )|τ=τ ) +H(sr1,a).

It remains to estimate H(L(qτ )|τ=τ ′). Consider the random variable

X ′ = (q⌊(1−ε)m⌋, γ⌊(1−ε)m⌋+1, γ⌊(1−ε)m⌋+2, . . . , γ⌈(1+ε)m⌉+1).

As qτ ′ is completely determined by X ′, we have H(X ′|qτ ′) = H(X ′)−H(qτ ′).

Let K be the number of points in the support of µ. Note that if

γ⌊(1−ε)m⌋+1, γ⌊(1−ε)m⌋+2, . . . , γ⌈(1+ε)m⌉

and τ ′ are fixed, then for any possible value of qτ ′ there is at most one choice of

q⌊(1−ε)m⌋ which would lead to this value of qτ ′ . Therefore for each y in the image

of qτ ′ there are at most (2εm + 2)K2εm+2 elements x in the image of X ′ such that

P[X ′ = x ∩ qτ ′ = y] > 0. Therefore (X ′|qτ ′) is almost surely supported on less than

(2εm+ 2)K2εm+2 points and hence by (11.4.1),

H(X ′|qτ ′) ≤ log
(
(2εm+ 2)K2εm+2

)
≤ 2ε logK

|χµ|
log κ−1 + oµ,ε(log κ

−1).

On the other hand,

H(X ′) ≥ H(qm) ≥ hRW ·m ≥ hRW

|χµ|
log κ−1 − oµ(log κ

−1) (12.1.3)

and therefore

H(qτ ′) ≥
hRW − 2ε logK

|χµ|
log κ−1 − oµ,ε(log κ

−1).
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To continue, we note that by Lemma 11.1.2,

H(qτ ′) ≤ H(L(qτ ′)|τ=τ ′) +H(L(qτ ′)|τ ̸=τ ′) + log 2. (12.1.4)

We wish to bound H(L(qτ ′)|τ=τ ′) from below. By the large deviation principle, P[τ ̸=
τ ′] ≤ αm for α ∈ (0, 1) only depending on ε and µ. We also know that conditional on

τ ̸= τ ′, there are at most 2K⌈(1+ε)m⌉ possible values for qτ ′ and therefore

H(L(qτ ′)|τ ̸=τ ′) ≤ αm log
(
2K⌈(1+ε)m⌉) = oµ,ε(log κ

−1).

This implies

H(L(qτ ′)|τ=τ ′) ≥
hRW − 2ε logK

|χµ|
log κ−1 − oµ,ε(log κ

−1).

Since ε can be made arbitrarily small, the claim follows.

Lemma 12.1.3. Under the assumptions of Proposition 12.1.1, as κ→ 0,

H(qτκsr2,a) ≤ d log κ−1 + oµ,d,a(log κ
−1).

Proof. As in the proof of Lemma 12.1.2, write τ = τκ and K = |supp(µ)|. We use

the product structure on G combined with Lemma 11.2.2. Indeed, note that a choice

of Haar measure on G is given as∫
f dmG =

∫
f(ρU + b) ρ−(d+1)dρdUdb,

for dr, db the Lebesgue measure and dU the Haar probability measure on O(d). There-

fore by Lemma 11.2.2, H(qτsr2,a) ≤

DKL(ρ(qτsr2,a) || ρ−(d+1)dρ) +DKL(U(qτsr2,a) || dU) +DKL(b(qτsr2,a) || db).

We give suitable bounds for each these terms. As dU is a probability measure

DKL(U(qτsr2,a) || dU) ≤ 0 by Lemma 11.2.1.

We next deal with DKL(b(qτsr2,a) || db). Denote by ντ the distribution of b(qτsr2,a).

We claim that there is α = α(µ, d, a) such that

ντ (B
c
R) ≤ R−α (12.1.5)

for all sufficiently small κ and sufficiently large R. Note that

|b(qτsr2,a)| = |ρ(qτ )U(qτ )b(sr2,a) + b(qτ )| ≤ κ|b(sr2,a)|+ |b(qτ )|
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and therefore it suffices to show (12.1.5) for the distribution of b(qτ ), which we denote

by ν ′τ . For x ∈ Rd,

|b(qτ )− qτ (x)| ≤ |qτ (0)− qτ (x)| ≤ ρ(qτ )|x| ≤ κ|x|

and so |b(qτ )| ≤ |qτ (x)| + κ|x|. Therefore if R ≤ |b(qτ )| then either R/2 ≤ |qτ (x)| or
R/2 ≤ κ|x|. Also note that if x is sampled from ν independently from γ1, γ2, . . ., so

is qτ (x). By (7.0.2) this implies that

ν ′τ (B
c
R) ≤ ν(Bc

R/2) + ν(Bc
R/2κ) ≤ R−α22α2(1 + κ−1)−α2 ,

showing (12.1.5).

To conclude we deduce from (12.1.5) that DKL(ντ || db) is bounded by a constant

depending on µ, d and a and therefore is ≤ oµ,d,a(log κ
−1). Indeed denote by fτ the

density of ντ such that

DKL(ντ || db) =
∫

−fτ log fτ dmRd .

Also let L > 1 be a constant and for i = 0, 1, 2, . . . write pi = ντ (BLi+1\BLi) such

that pi ≤ ντ (B
c
Li) ≤ L−iα. Thus it holds by Jensen’s inequality for h(x) = −x log x,

DKL(ντ || db) =
∑
i≥0

∫
BLi+1\BLi

−fτ log fτ dmRd

=
∑
i≥0

∫
BLi+1\BLi

−fτ log
(
fτpi
pi

)
dmRd

=
∑
i≥0

(∫
h(fτpi)

1BLi+1\BLi

pi
dmRd + pi log(pi)

)
≤
∑
i≥0

h(pi) ≤
∑
0≤i≤I

h(pi) +
∑
i≥I

h(L−iα) <∞,

having used in the last line that log(pi) ≤ 0 and that h(x) is monotonically decreasing

for small x and therefore h(pi) ≤ h(L−iα) for i ≥ I with I sufficiently large.

Finally, we estimate DKL(ρ(qτκsr2,a) || ρ−(d+1)dρ). Fix ε > 0 and let A be the event

that ρ(qτ ) ≥ κ(1+ε). By Lemma 9.3.2 there is δ > 0 only depending on µ and ε such

that P[Ac] ≤ κδ. By Lemma 11.2.1,

DKL(L(ρ(qτκsr2,a))|A || ρ−(d+1)dρ) ≤ log

(∫ ∞

κ1+ε

ρ−(d+1) dρ

)
= log

(
d−1κ−d(1+ε)

)
≤ d(1 + ε) log κ−1.
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To bound H(L(qτsr2,a)|Ac), we note that as in Lemma 11.1.3 it suffices to bound the

Shannon entropy of H(L(qτ )|Ac). If τ ≤ 2 log κ−1

|χµ| , the contribution can be bounded

by κδ 2 log κ
−1

|χµ| logK. By the large deviation principle, when n ≥ 2 log κ−1

|χµ| it holds

that P[τ = n] ≤ αn for some α ∈ (0, 1). Therefore the contribution in this case is

≤ αnn logK where α ∈ (0, 1) is some constant depending on µ. Summing over all

n ≥ 2 log κ−1

|χµ| and using Lemma 11.1.2, we conclude that H(L(qτsr2,a)|Ac) is bounded

and therefore oµ,ε(log κ
−1). As ε > 0 was arbitrary the claim follows.

12.2 Trace Bounds for Stopped Random Walk

In this subsection we give a precise proof of (12.0.4) following the sketch given at the

beginning of this section. We first convert Proposition 12.1.1 into an integral bound.

Proposition 12.2.1. Let µ be a finitely supported, contracting on average probability

measure on G = Sim(Rd) and write ℓ = dimG = d(d+1)
2

+1. Suppose that Sµ <∞ and

that hµ/|χµ| is sufficiently large. Let S > Sµ and suppose that S is chosen sufficiently

large such that hµ ≤ S. Then for sufficiently small κ,

∫ κ

hµ
2ℓ|χµ|

κ
S

|χµ|

1

u
tr(qτκ ;u) du≫

(
hµ
|χµ|

)
max

{
1, log

S

|χµ|

}−1

log κ−1.

Proof. Let τ = τκ and let a ≥ 1 to be determined. Let

r1 = a−1κ
S

|χµ| = a−1 exp

(
− S

|χµ|
log κ−1

)
and

N =

⌊(
S

|χµ|
− hµ

2ℓ|χµ|

)
log κ−1

log 2

⌋
− 1.

Note that

1

4

κ
hµ

2ℓ|χµ|

ar1
=

1

4

κ
− S

|χµ|

κ
− hµ

2ℓ|χµ|

≤ 2N ≤ 1

2

κ
− S

|χµ|

κ
− hµ

2ℓ|χµ|

=
1

2

κ
hµ

2ℓ|χµ|

ar1
.

Given u ∈ [1, 2) and an integer 0 ≤ i ≤ N − 1 let

ki(u) = Ha(qτ ; 2
i−1ur1|2iur1).

Then by Proposition 11.5.1, there is some constant c = c(d) > 0 depending only on

d such that

tr(qτ ; a2
iur1) ≥ ca−2(ki(u)−Od(e

−a2

4 )−Od,a(2
ir1)). (12.2.1)
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Thus

N∑
i=1

tr(qτ ; a2
iur1) ≥ ca−2

N∑
i=1

ki(u)−Od(Ne
−a2

4 a−2)−Od,a(N2Nr1).

Note that for u ∈ [1, 2) we have a2Nur1 ≤ κ
hµ

2ℓ|χµ| and aur1 ≥ κ
S

|χµ| . Therefore,

∫ κ

hµ
2ℓ|χµ|

κ
S

|χµ|

1

u
tr(qτ ;u) du

≥
N∑
i=1

∫ a2i+1ur1

a2iur1

1

u
tr(qτ ;u) du

≥
N∑
i=1

∫ 2

1

1

u
tr(qτ ; a2

iur1) du

≥ca−2

∫ 2

1

1

u

(
N∑
i=1

ki(u)−Od(Ne
−a2

4 a−2)−Od,a(N2Nr1)

)
du. (12.2.2)

Observe that
∑N

i=1 ki(u) = Ha(qτκ ;ur1|2Nur1) and therefore by Proposition 12.1.1

and Lemma 11.5.2,

N∑
i=1

ki(u) ≥
(
hµ
|χµ|

− d

)
log κ−1 + ℓ · log 2Nur1 + oµ,d,S,a(log κ

−1)

≥
(
hµ
|χµ|

− d− hµ
2|χµ|

)
log κ−1 + oµ,d,S,a(log κ

−1). (12.2.3)

Let C = C(d) be chosen such that the error term O(Ne−
a2

4 a−2) in (12.2.2) can be

bounded above by CNe−
a2

4 a−2. Note that this is at most C S
|χµ| log 2e

−a2

4 a−2 log κ−1.

Let c be as in (12.2.1). We take our value of a to be

a = 2

√
log

(
4C

c log 2

S

hµ

)
.

Then

CNe−
a2

4 a−2 ≤ ca−2 hµ
4|χµ|

log κ−1.

We also note thatN2Nr1 ≤ oµ,d,S(log κ
−1). Therefore combining (12.2.2) and (12.2.3),

∫ κ

hµ
2ℓ|χµ|

κ
S

|χµ|

1

u
tr(qτ ;u) du ≥ ca−2

(
hµ
|χµ|

− d− hµ
2|χµ|

− hµ
4|χµ|

)
log κ−1 + oµ,d,S(log κ

−1).
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Note further that a2 ≪d max{1, log S
hµ
}. Thus we have for all sufficiently small κ

(depending on µ and M),

∫ κ

hµ
2ℓ|χµ|

κ
S

|χµ|

1

u
tr(qτ ;u) du≫d

(
hµ
|χµ|

)
max

{
1, log

S

hµ

}−1

log κ−1.

Finally we prove the following more precise version of (12.2.2). We show fur-

ther that si+1 ≥ κ−3si in order to apply Proposition 11.5.2 to concatenate proper

decompositions as defined and discussed in section 13.

Proposition 12.2.2. Let µ be a finitely supported, contracting on average probability

measure on G = Sim(Rd) and write ℓ = dimG = d(d+1)
2

+ 1. Suppose that Sµ < ∞
and that hµ/|χµ| is sufficiently large. Let S > Sµ be chosen large enough that S ≥ hµ.

Suppose that κ is sufficiently small (depending on µ and S) and let m̂ = ⌊ S
100|χµ|⌋.

Then there exist s1, s2, . . . , sm̂ > 0 such that for each i ∈ [m̂],

si ∈ (κ
S

|χµ| , κ
hµ

2ℓ|χµ| )

and for each i ∈ [m̂− 1] si+1 ≥ κ−3si and

m̂∑
i=1

tr(qτκ ; si) ≫d

(
hµ
|χµ|

)
max

{
1, log

S

hµ

}−1

.

Proof. Let A = κ
hµ

4m̂ℓ|χµ|−
S

2m̂|χµ| . Define a1, a2, . . . , a2m̂+1 by ai = κ
S

|χµ|Ai−1. Therefore

a1 = κ
S

|χµ| and a2m̂+1 = κ
hµ

2ℓ|χµ| . Furthermore, provided hµ/|χµ| is sufficiently large,

we have κ−3 ≤ A ≤ κ−50. In particular ai+1 ≥ κ−3ai.

Let U and V be defined by

U =
m̂⋃
i=1

[a2i−1, a2i) and V =
m̂⋃
i=1

[a2i, a2i+1).

Without loss of generality, upon replacing U with V , by Proposition 12.2.1∫
U

1

u
tr(qτκ ;u) du≫d

(
hµ
|χµ|

)
max

{
1, log

S

|χµ|

}−1

log κ−1.

For i ∈ [m̂] let si ∈ (a2i−1, a2i) be chosen such that

tr(qτκ ; si) ≥
1

2
sup

u∈(a2i−1,a2i)

tr(qτκ ;u).
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In particular,

tr(qτκ ; si) ≥
1

2 logA

∫ a2i

a2i−1

1

u
tr(qτκ ;u) du.

Summing over i gives

m̂∑
i=1

tr(qτκ ; si) ≥
1

2 logA

∫
U

1

u
tr(qτκ ;u) du

≥ c

2 logA

(
hµ
|χµ|

)
max

{
1, log

S

|χµ|

}−1

log κ−1.

As logA ≍ log κ−1 it follows that, provided that κ is sufficiently small depending on

µ, d, S,
m̂∑
i=1

tr(qτκ ; si) ≫d

(
hµ
|χµ|

)
max

{
1, log

S

|χµ|

}−1

.

Finally we note that as A ≥ κ−3 we have that si+1 ≥ κ−3si.
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Chapter 13

Decomposition of Stopped
Random Walk

In this section Theorem 8.1.4 is proved. We construct samples from ν in a suitable

way in order to bound the order k detail of ν. Given a probability measure µ on

G = Sim(Rd) we denote by γ1, γ2, . . . independent µ-distributed random variables

and write qn = γ1 · · · γn. Recall that if x is distributed like ν and τ is a stopping time,

then by Lemma 2.24 from [Kit23] the random variable qτx is distributed like ν.

As discussed in the outline of proofs, one uses Proposition 12.2.2 to make a de-

composition

qτκx = g1 exp(U1)g2 exp(U2) · · · gn exp(Un)x (13.0.1)

with a suitable κ > 0 and integer n ≥ 1 that satisfies for 1 ≤ i ≤ n,

|Ui| ≤ ρ(g1 · · · gi)−1r and
n∑

i=1

tr(ρ(g1 · · · gi)Ui) ≥ Cr2 (13.0.2)

for a sufficiently large constant C and a given scale r > 0. The definition of tr(qτκ , si)

requires us to work with a σ-algebra A and with the conditional trace in (13.0.2).

As stated in (8.2.9), we need to have (13.0.2) at O(log log r−1) many suitable times

κi.

Indeed, in order to deduce (13.0.2) from Proposition 12.2.2 we need to combine all

the information at the scales s1, . . . , sm̂. One also needs to ensure that the assump-

tions from the Taylor-approximation result Proposition 9.1.4 are satisfied for each

scale si and that we can apply our (c, T )-well-mixing and (α0, θ, A)-non-degeneracy

conditions to deduce that

Var(ζi(Ui)) ≥ c1tr(ρ(g1 · · · gi)Ui)I
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for c1 a constant depending on d, c, T, α0, θ and A. We will achieve the latter by

ensuring that each gi is a product of sufficiently many γi so that gix is in distribution

sufficiently close to ν.

To combine the trace bounds at the various scales while ensuring that the above

conditions are satisfied, a theory of decompositions of the form (13.0.1) will be devel-

oped. We call decompositions (13.0.1) satisfying suitable properties proper decompo-

sitions. It is important for our purposes to track the amount of variance we can gain

from a given proper decomposition, which is a quantity we will call the variance sum

and denote by V (µ, n,K, κ,A; r) (see definition 13.1.2 for the various parameters).

In section 13.2 we will show that there exist proper decompositions that allow us

to compare the variance sum V and tr. Proper decompositions can be concatenated

in such a way that the variance sum is additive, as is shown in section 13.3. We

establish how to convert an estimate on the variance sum V into an estimate for detail

in section 13.4. The proof of Theorem 8.1.4 culminates in section 13.5 combining the

previous results. Finally, we establish Theorem 8.1.5 in section 13.6.

13.1 Proper Decompositions

Definition 13.1.1. Let µ be a probability measure on G, let n,K ∈ Z≥0 and let

A, r > 0 and r ∈ (0, 1). Then a proper decomposition of (µ, n,K,A) at scale r

consists of the following data

(i) f = (fi)
n
i=1 and h = (hi)

n
i=1 random variables taking values in G,

(ii) U = (Ui)
n
i=1 random variables taking values in g,

(iii) A0 ⊂ A1 ⊂ . . . ⊂ An a nested sequence of σ-algebras,

(iv) γ = (γi)
∞
i=1 be i.i.d. samples from µ and let F = (Fi)

∞
i=1 be a filtration for γ

with γi+1 being independent from Fi for i ≥ 1,

(v) stopping times S = (Si)
n
i=1 and T = (Ti)

n
i=1 for the filtration F ,

(vi) m = (mi)
n
i=1 non-negative real numbers,

satisfying the following properties:

A1 The stopping times satisfy

S1 ≤ T1 ≤ S2 ≤ T2 ≤ . . . ≤ Sn ≤ Tn,

S1 ≥ K as well as Si ≥ Ti−1 +K and Ti ≥ Si +K for i ∈ [n],
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A2 We have f1 exp(U1) = γ1 . . . γS1 and for 2 ≤ i ≤ n we have fi exp(Ui) =

γTi−1+1 · · · γSi
. Furthermore for each i we have that fi is Ai-measurable,

A3 hi = γSi+1 · · · γTi
and hi is Ai-measurable,

A4 ρ(fi) < 1 for all 1 ≤ i ≤ n,

A5 Whenever |b(hi)| > A, we have Ui = 0,

A6 For each 1 ≤ i ≤ n we have

|Ui| ≤ ρ(f1h1f2h2 · · ·hi−1fi)
−1r,

A7 For each 1 ≤ i ≤ n, we have that Ui is conditionally independent of An given

Ai,

A8 The Ui are conditionally independent given An,

A9 For each 1 ≤ i ≤ n, it holds

E
[
Var(ρ(fi)U(fi)Uib(hi)|Ai)

ρ(f1h1f2h2 · · · fi−1hi−1)−2r2
|Ai−1

]
≥ miI.

Note that in A9 by Var we mean the covariance matrix and we are using the

ordering given by positive semi-definiteness (8.3.1) and we denote, as in section 9.1,

by Uib(hi) = ψb(hi)(Ui).

A proper decomposition as above gives us

γ1 · · · γTn = f1 exp(U1)h1f2 exp(U2)h2 · · ·hn−1fn exp(Un)hn (13.1.1)

We briefly comment on the various properties of proper decompositions. We

use parameter K and A1 to ensure that each of the fix and hix for x ∈ Rd are

close in distribution to ν. Properties A4, A5 and A6 are needed in order to apply

Proposition 9.1.4. We require A7 so that we have Var(Ui|An) = Var(Ui|Ai) and

in particular the latter is a Ai-measurable random variable. A8 is needed so that

[U1|An], . . . , [Un|An] are independent random variables and therefore we can apply

Proposition 10.4.1.
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One works with two sequences of random variables f and h instead of one in order

to be able to concatenate proper decompositions as in Proposition 13.3.1. Indeed, if

we had proper decompositions of the form

γ1 · · · γTn = g1 exp(U1)g2 exp(U2)g3 · · · gn exp(Un)gn+1

we could show a variant of (13.3.1) and all other results on proper decompositions.

However we could not prove anything like Proposition 13.3.1, whose flexible choice of

the parameter M is necessary to apply Proposition 12.2.2.

We next define the V function mentioned above. The additional parameter κ > 0

is introduced in order to be able to concatenate the decompositions in a suitable way

(Proposition 13.3.1).

Definition 13.1.2. Given (µ, n,K,A) and κ, r > 0 we denote by

V (µ, n,K, κ,A; r)

the variance sum defined as the supremum for k = 0, 1, 2, . . . , n of all possible values

of
k∑

i=1

mi

for a proper decomposition of (µ, k,K,A) at scale r with ρ(f1h1 · · · fkhk) ≥ κ almost

surely.

It is clear that for any κ′ > 0 with κ′ ≤ κ we have

V (µ, n,K, κ′, A; r) ≥ V (µ, n,K, κ,A; r). (13.1.2)

13.2 Existence of Proper Decompositions

We show that for a suitable dependence of the involved parameters, we can construct

proper decompositions comparing the variance sum and the trace.

Proposition 13.2.1. Let d ∈ Z≥1 and c, T, α0, θ, A,R > 0 with c, α0 ∈ (0, 1) and

T ≥ 1. Then there exists c1 = c1(d,R, c, T, α0, θ, A) > 0 such that the following

is true. Let µ be a contracting on average, (c, T )-well-mixing and (α0, θ, A)-non-

degenerate probability measure on G such that ρ(g) ∈ [R−1, R] for all g ∈ supp(µ).

Let κ, s > 0 with κ and s sufficiently small (in terms of µ and R). Let K be

sufficiently large in terms of µ, R, and T . Then

V (µ, 1, K,R−3Kκ,A;R−Kκs) ≥ c1tr(qτκ ; s).
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Proof. We construct a proper decomposition with n = 1. Let F be uniform on

[0, T ] ∩ Z and independent of γ. Let S be defined as

S = inf{n : ρ(qn) ≤ R−K−1}+ F

and let

S1 := inf{n ≥ S : ρ(γS+1 · · · γn) ≤ κ}.

Denote

f = γ1 · · · γS and g = γS+1γS+2 · · · γS1 .

By the definition of tr(qτκ , s) there is some σ-algebra A , some random variable

V taking values in g, some A -measurable random variable f taking values in G such

that g = f exp(V ) with |V | ≤ s and

E[tr(V |A )] ≥ 1

2
s2tr(qτκ , s). (13.2.1)

We define T1 = S1 +K and set

h1 = γS1+1γS1+2 · · · γT1 .

Denote

U1 =

{
V if |b(h1)| ≤ A,

0 otherwise
and f1 =

{
ff if |b(h1)| ≤ A,

fg otherwise.

Furthermore we set A1 = σ(f, f1, h1,A ).

We have

R−K−3R−Tκ ≤ ρ(fg) ≤ R−K−1RTκ.

In particular, we note that |U1| ≤ s and so providing κ and s are sufficiently small

in terms of R, we have R−K−4R−Tκ ≤ ρ(f1) ≤ RT−Kκ < 1 for K sufficiently large in

terms of T . This means that |U1| ≤ s ≤ ρ(f1)
−1RT−Kκs.

Now let x ∈ Rd be a unit vector. We wish to show that

E [Var(x · ρ(f1)U(f1)U1b(h1)|A1)] ≥ c1tr(qτκ ; s)R
−2Kκ2s2.

Let f ′ = f−1f1 and let P1, . . . , Pd be orthogonal eigenvectors of the covariance

matrix of (U1b(h1)|A ) with eigenvalues λ1 ≥ · · · ≥ λd. We have

Var(x · ρ(f1)U(f1)U1b(h1)|A1)

≥R−2K−8R−2Tκ2Var(x · U(f)U(f ′)U1b(h1)|A1)

=R−2K−8R−2Tκ2
d∑

i=1

∣∣x · U(f)U(f ′)Pi

∣∣2 λi
≥R−2K−8R−2Tκ2

∣∣x · U(f)U(f ′)P1

∣∣2 tr(U1b(h1)|A1)/d. (13.2.2)
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By Proposition 9.1.2 we know that when b(h1) ∈ Eθ(V ) and |b(h1)| ≤ A we have

tr(U1b(h1)|A1) ≥ δ · tr(U1|A1).

By our (α0, θ, A)-non-degeneracy condition and since µ∗n ∗ δx converges to ν expo-

nentially fast (see for example [KK25d, Lemma 2.2]) we know that providing K is

sufficiently large this happens, conditional on A , with probability at least 1
2
(1− α).

Therefore by (13.2.1)

E[tr(U1b(h1)|A1)] ≥
1

4
(1− α)δtr(qτκ ; s)s

2.

By our (c, T )-well-mixing condition we have that providing K is sufficiently large

in terms of µ,

E
[∣∣x · U(f)U(f ′)P1

∣∣2 |σ(h1,A )
]
≥ c.

Clearly Var(U1b(h1)|A1) is σ(h1,A )-measurable. Therefore, by (13.2.2) and condi-

tioning by σ(h1,A ),

E [Var(x · ρ(f1)U(f1)U1b(h1)|A1)]

≥R−2K−8R−2Tκ2d−1E
[∣∣x · U(f)U(f ′)P1

∣∣2 tr(U1b(h1)|A1)
]

≥R−2K−8R−2Tκ2d−1E
[
E
[∣∣x · U(f)U(f ′)P1

∣∣2 tr(U1b(h1)|A1)
∣∣∣σ(h1,A )

]]

≥R−2K−8R−2Tκ2d−1E
[
E
[∣∣x · U(f)U(f ′)P1

∣∣2 ∣∣∣σ(h1,A )
]
tr(U1b(h1)|A1)

]
≥R−2K−8R−2Tκ2d−1c · E [tr(U1b(h1)|A1)]

≥R−2K−8R−2Td−1c · 1
4
(1− α)δtr(qτκ ; s)κ

2s2

=c1tr(qτκ ; s)R
−2Kκ2s2

where c1 = R−8R−2Td−1(1− α)δc/4. Since this is true for any unit vector x ∈ Rd we

have

E
[
Var(ρ(f1)U(f1)U1b(h1)|A1)

R−2Kκ2s2

]
≥ c1tr(qτκ ; s)I

as required. Finally note that

ρ(f1h1) ≥ R−1ρ(fgh1) ≥ R−1R−K−3R−Tκ ·R−K = κR−2K−4−T ≥ R−3Kκ

providing K is sufficiently large in terms of T and R.

154



13.3 Concatenating Decompositions

We note that it is straightforward to show that for any measure µ and any admissible

choice of coefficients, the variance sum is additive

V (µ, n1 + n2, K, κ1κ2, A; r)

≥ V (µ, n1, K, κ1, A; r) + V (µ, n2, K, κ2, A;κ
−1
1 r). (13.3.1)

However, in order to use Proposition 12.2.2 it is necessary to work with different

scales r1 and r2 and therefore we show the following proposition.

Proposition 13.3.1. Let µ be a probability measure on G. Let R > 1 be such that

ρ(g) ∈ [R−1, R] for every g ∈ supp(µ). Let n1, n2, K ∈ Z≥0 with n2, K > 0 and let

κ1, κ2, r ∈ (0, 1). Let A > 0 and let M ≥ R. Then

V (µ, n1 + n2, K,R
−1M−1κ1κ2, A; r)

≥ V (µ, n1, K, κ1, A; r) + V (µ, n2, K, κ2, A;Mκ−1
1 r).

Proof. For j ∈ {1, 2} let γ
(j)
1 , γ

(j)
2 , . . . be a sequence of i.i.d. samples from µ defined on

the probability space
(
Ω(j),F(j),P(j)

)
. Let γ̂1, γ̂2, . . . be a sequence of i.i.d. samples

from µ defined on the probability space
(
Ω̂, F̂ , P̂

)
. Consider the product probability

space

(Ω,F ,P) =
(
Ω1 × Ω̂× Ω2,F1 × F̂ × F2,P1 × P̂× P2

)
.

Let
(
γ
(1)
i , S

(1)
i , T

(1)
i , f

(1)
i , U

(1)
i , h

(1)
i ,A (1)

i ,m
(1)
i

)
be a proper decomposition for (µ, k1, K, κ1, A)

at scale r defined on the probability space
(
Ω(1),F (1),P(1)

)
such that

∑k1
i=1m

(1)
i ap-

proaches V (µ, n1, K, κ1, A; r) and

ρ(f
(1)
1 h

(1)
1 · · · f (1)

k1
h
(1)
k1
) ≥ κ1.

Given ω1 ∈ Ω1 and ω̂ ∈ Ω̂, let τ = τ(ω1, ω̂) be given by

τ = min{k ∈ Z≥0 : ρ(f
(1)
1 h

(1)
1 f

(1)
2 h

(1)
2 . . . f

(1)
k1
h
(1)
k1
γ̂1γ̂2 . . . γ̂k) < M−1κ1}

and let ρ̂ = ρ(f
(1)
1 h

(1)
1 f

(1)
2 h

(1)
2 . . . f

(1)
k1
h
(1)
k1
γ̂1γ̂2 . . . γ̂τ ) such that

ρ̂ ∈ [M−1R−1κ1,M
−1κ1].

Now given ω1 ∈ Ω1 and ω̂ ∈ Ω̂, let
(
γ
(2)
i , S

(2)
i , T

(2)
i , f

(2)
i , U

(2)
i , h

(2)
i ,A (2)

i ,m
(2)
i

)
be a

proper decomposition for (µ, k2, K, κ2, A) at scale Mκ−1
1 r defined on the probability

space
(
Ω(2),F (2),P(2)

)
such that

∑k2
i=1m

(2)
i approaches V (µ, n2, K, κ2, A;Mκ−1

1 r) and

ρ(f
(1)
1 h

(1)
1 · · · f (1)

k2
h
(1)
k2
) ≥ κ2.
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We now concatenate the two decompositions as follows. Let γ1, γ2, . . . be the

sequence of random variables on the probability space (Ω,F ,P) defined by

γi =


γ
(1)
i if i ≤ T

(1)
k1

γ̂
i−T

(1)
k1

if i > T
(1)
k1

and i ≤ T
(1)
k1

+ τ

γ
i−T

(1)
k1

−τ
if i > T

(1)
k1

+ τ.

Clearly these are i.i.d. samples from µ. For i = 1, 2, . . . , k1 + k2 we define Si by

Si =

{
S
(1)
i if i ≤ k1

S
(2)
i−k1

+ T
(1)
k1

+ τ if i > k1

and we define Ti analogously. We define fi by

fi =


f
(1)
i if i ≤ k1

γ̂1 . . . γ̂τf
(2)
1 if i = k1 + 1

f
(2)
i−k1

if i > k1 + 1.

We define Ui by

Ui =

{
U

(1)
i if i ≤ k1

U
(2)
i−k1

if i > k1.

and define hi and mi analogously. Finally we define Ai by

Ai =

{
A (1)

i × Ω̂× Ω(2) if i ≤ k1

A (1)
k1

× F̂ × A (2)
i−k1

if i > k1.

It is easy to check that (γi, Si, Ti, fi, Ui, hi,Ai,mi) is a proper decomposition for

(µ,R, k1 + k2, K,R
−1M−1κ1κ2, A) at scale r and it holds that

k1+k2∑
i=1

mi =

k1∑
i=1

m
(1)
i +

k2∑
i=1

m
(2)
i .

Indeed, we note that for i > k2 we have that since Mκ−1
1 ≤ ρ̂−1,

|Ui| = |U (2)
i−k1

| ≤ ρ(f
(2)
1 h

(2)
1 f

(2)
2 h

(2)
2 · · ·h(2)i−k1−1f

(2)
i−k1

)−1Mκ−1
1 r

≤ ρ̂−1ρ(f
(2)
1 h

(2)
1 f

(2)
2 h

(2)
2 · · ·h(2)i−k1−1f

(2)
i−k1

)−1r

= ρ(f1h1f2h2 · · ·hi−1fi)
−1r.
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Similarly, for i > k2 + 1 and using that ρ̂2M2κ−2
1 ≤ 1,

E
[
Var(ρ(fi)U(fi)Uib(hi)|Ai)

ρ(f1h1f2h2 · · · fi−1hi−1)−2r2
|Ai−1

]
= E

[
Var(ρ(f

(2)
i−k1

)U(f
(2)
i−k1

)U
(2)
i−k1

b(h
(2)
i−k1

)|Ai)

ρ̂−2ρ(f
(2)
1 h

(2)
1 f

(2)
2 h

(2)
2 · · ·h(2)i−k1

)−2r2
|Ai−1

]

≥ E

[
Var(ρ(f

(2)
i−k1

)U(f
(2)
i−k1

)U
(2)
i−k1

b(h
(2)
i−k1

)|Ai)

ρ̂−2ρ(f
(2)
1 h

(2)
1 f

(2)
2 h

(2)
2 · · ·h(2)i−k1

)−2ρ̂2M2κ−2
1 r2

|Ai−1

]
≥ m

(2)
i−k1

I.

The remainder of the properties are straightforward to check.

Corollary 13.3.2. Let µ be a probability measure on G. Let R > 1 be such that

ρ(g) ∈ [R−1, R] for every g ∈ supp(µ). Let n,K ∈ Z>0 and let κ, r ∈ (0, 1). Let

C,A > 0 and let M ≥ R. Then

V (µ, n,K,R−1M−1κ,A;M−1r) ≥ V (µ, n,K, κ,A; r)

Proof. By Proposition 13.3.1 we have

V (µ, n,K,R−1M−1κ,A;M−1r)

≥ V (µ, 0, K, 1, A;M−1r) + V (µ, n,K, κ,A; r).

and simply note that V (µ, 0, K, 1, A;M−1r) = 0.

13.4 From Variance Sum to Bounding Detail

Proposition 13.4.1. For every d ≥ 1 and A,α > 0 there is a constants C =

C(d,A, α) > 0 such that the following is true. Suppose that µ is a contracting on

average probability measure on G. Then there is some c = c(µ) > 0 such that when-

ever κ ≤ 1 and k,K, n ∈ Z>0 with K and n sufficiently large (in terms of A,α and

µ) and r > 0 is sufficiently small (in terms of A,α and µ) and

V (µ, n,K, κ,A; r) > Ck

we have

s(k)r (ν) < αk + n exp(−cK) + Cnκ−1r.
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Proof. Suppose that (f, h, U,A , γ,F , S, T,m) is a proper decomposition of (µ, n,K,A)

at scale r such that
∑n

i=1mi ≥ Ck/2 and let v be an independent sample from ν. Let

I = {i ∈ [1, n] ∩ Z : |b(hi)| ≤ A}

and let m = |I|. Enumerate I as i1 < i2 < · · · < im and define g1, . . . , gm by g1 =

f1h1 . . . fi1 and gj = hij−1
fij−1+1 . . . fij for 2 ≤ j ≤ m. Define v by v = himfim+1 . . . hnv

and let Vj = Uij . Let x be defined by

x = g1 exp(V1) . . . gm exp(Vm)v.

Note that x is a sample from ν. Let Â be the σ-algebra generated by An and v.

Note that the gj and v are Â -measurable.

We will bound the order k detail of x by showing that with high probability we

can apply Proposition 9.1.4 to g1, . . . , gm, V1, . . . , Vm, and v and then bound the order

k detail of this using Proposition 10.4.1.

Let E be the event that |v| ≤ 2A and that for each j = 1, . . . ,m we have |b(gj)| ≤
2A, ρ(gj) < 1 and |Vj| ≤ ρ(g1 . . . gj)

−1r. By Corollary 9.3.3 we know that P[EC ] ≤
exp(−c1K) for some c1 = c1(µ,A) > 0.

For j = 1, . . . ,m define ζj by

ζj = Du(g1 · · · gj exp(u)gj+1 · · · gmv)|u=0.

By Proposition 9.1.4 on E we have∣∣∣∣∣x− g1 . . . gmv −
m∑
j=1

ζj(Vj)

∣∣∣∣∣ ≤ Cm
1 ρ(g1 . . . gm)

−1r2

for some C1 = C1(A) > 0. Clearly the right hand side is at most Cn
1 κ

−1r2. By Lemma

10.3.1 this means that on E we have

s(k)r (x|Â ) ≤ s(k)r

(
m∑
j=1

ζj(Vj)|Â

)
+ Cn

1 edκ
−1r

where e is Euler’s number.

Let C3 = C3(α, d) be the constant C from Proposition 10.4.1 with the same values

of α and d and let F be the event that

m∑
j=1

Var ζj(Vj|Â ) ≥ kC3I.
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By Proposition 10.4.1, using that by A8 the [V1|Â ], . . . , [Vm|Â ] are independent

almost surely, we have that on F

s(k)r

(
m∑
j=1

ζj(Vj)|Â

)
≤ αk.

Therefore

s(k)r (x|Â ) ≤ αk + Cn
1 edκ

−1r + IEC∪FC

and so by the convexity of order k detail we have

s(k)r (x) ≤ αk + Cn
1 edκ

−1r2 + P[EC ] + P[FC ].

We already have that P[EC ] ≤ exp(−c1K) so it only remains to bound P[FC ].

For i = 1, . . . , n define

ζ̂i = Du(f1h1 · · ·hi−1fi exp(u)b(hi))|u=0

and let F be the event that∥∥∥∥∥
n∑

i=1

Var ζ̂i(Ui|Â )−
m∑
j=1

Var ζj(Vj|Â )

∥∥∥∥∥ < 1.

Recall that C3 = C3(α, d) is the constant C from Proposition 10.4.1 with the same

values of α and d and let F be the Â -measurable event that
∑n

i=1Var(ζ̂i(Ui)|Â ) ≥
(C3 + 1)kIr2. Clearly F ∪ F ⊂ F so it suffices to bound P[FC ] and P[FC

].

Since g1, . . . , gm and v are Â measurable, by Lemma 9.1.3 we have for j = 1, . . . ,m

that Var(ζj(Vj)|Â ) is equal to

ρ(g1 . . . gj)
2 · U(g1 . . . gj)ψgj+1...gmv ◦ Var(Vj|Â ) ◦ ψT

gj+1...gm
U(g1 . . . gj)

T

and that

Var(ζ̂ij(Uij)|Â ) = ρ(g1 · · · gj)2 · U(g1 . . . gj)ψb(hij
) ◦ Var(Vj|Â ) ◦ ψT

b(hij
)U(g1 . . . gj)

T .

We also have that |Vj| ≤ ρ(g1 · · · gj)−1r almost surely and so consequently ∥VarVj∥ ≤
ρ(g1 · · · gj)−2r2. Therefore by Lemma 9.1.1 (iii),

∥Var ζj(Vi|Â )− Var ζ̂ij(Uij |Â )∥ ≪d |b(hj)− gj+1 . . . gmv|2r2.

Furthermore we have that whenever i /∈ I that Var(ζ̂i(Ui)|Â ) = 0. We may assume

without loss of generality that n exp(−Kχµ/10) < 1. This means that, providing K
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is sufficiently large (in terms of d), in order for F to occur it is sufficient that for each

j = 1, . . . ,m we have

|b(hj)− gj+1 . . . gmv| < exp(−Kχµ/10) < 1/n.

By Corollary 9.3.3 this occurs with probability at least 1 − m exp(−c2K) for some

c2 = c2(µ) > 0 and therefore P[FC ] ≤ m exp(−c2K) ≤ n exp(−c2K).

Finally we wish to bound P[FC
]. Let

Σi = r−2Var(ζ̂i(Ui)|Â ) = r−2Var(ζ̂i(Ui)|Ai)

= r−2Var(ρ(f1h1 · · ·hi−1fi)U(f1h1 · · ·hi−1fi)Uib(hi)|Ai))

By construction we know that

E[Σi|Σ1, . . . ,Σi−1] ≥ miI.

We also know that ∥Σi∥ ≤ A2 since ||ψb(hi)|| ≤ |b(hi)| ≤ A. This means that we can

apply Lemma 9.3.5. By Lemma 9.3.5 we know that providing C is sufficiently large

we have

P

[
n∑

i=1

Σi ≥ (C3 + 1)kI

]
≥ 1− exp

(
−c3k

n∑
i=1

mi

)
for some absolute c3 > 0. Providing we choose C to be sufficiently large, we therefore

have P[FC
] ≤ exp(−c3kC) ≤ αk this is less than αk.

Putting everything together we have

s(k)r (x) ≤ 2αk + n exp(−c3K) + edCn
1 κ

−1r.

Replacing α be a slightly smaller value gives the required result.

13.5 Conclusion of Proof of Theorem 8.1.4

We finally show a decay in detail under the assumption of Theorem 8.1.4. What

follows is a rather intricate calculation and we refer the reader to the outline of proofs

in section 8.2 for intuition and a sketch of the argument.

Proposition 13.5.1. Let d ∈ Z≥1 and c, T, α0, θ, A,R > 0 with c, α ∈ (0, 1) and

T ≥ 1. Then there exists C = C(d,R, c, T, α0, θ, A) > 0 such that the following

is true. Let µ be a contracting on average, (c, T )-well-mixing and (α0, θ, A)-non-

degenerate probability measure on G with ρ(g) ∈ [R−1, R] for all g ∈ supp(µ) and

assume that
hµ
|χµ|

> Cmax

{
1,

(
log

Sµ

hµ

)2
}
.
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Then for all sufficiently small r > 0 and all integers k ∈ [log log r−1, 2 log log r−1] we

have that

s(k)r (ν) < (log r−1)−10d.

Proof. We prove this by repeatedly applying Proposition 13.2.1 and Proposition 13.3.1

and then applying Proposition 13.4.1. First let C be as in Proposition 13.4.1 with

α = exp(−20d).

Now let r > 0 be sufficiently small and letK = exp(
√

log log r−1). This value ofK

is chosen so that K grows more slowly than (log r−1)ε but faster than any polynomial

in log log r−1 as r → 0. Let S = 2max{hµ, Sµ}.
Note that hµ

2ℓS
< 1 and for i = 1, 2, . . . let

κi = exp

(
−|χµ| log r−1

2S

(
hµ
3ℓS

)i−1
)

= r
|χµ|
2S

(
hµ
3ℓS

)i−1

with ℓ = dimG. Then

κ1 = r
|χµ|
2S and κi+1 = κ

hµ
3ℓS
i

and let m be chosen as large as possible such that

κm < min{R−10K , 2−10K}.

We require κm < R−10K later in the proof and assume κm < 2−10K so that κm is surely

sufficiently small when r is small enough so that we can apply Proposition 12.2.2. Note

that this gives

log logR +
√

log log r−1 ≪ log log r−1 +m log
hµ
2ℓS

+ log
χµ

2S

which is equivalent to

m log

(
4ℓmax

{
1,
Sµ

hµ

})
= m log

2ℓS

hµ
≪d log log r

−1

and therefore we have

m ≍
(
max

{
1, log

Sµ

hµ

})−1

log log r−1.

Now as in Proposition 12.2.2 let m̂ = ⌊ S
100|χµ|⌋. For each i = 1, 2, . . . ,m let

s
(i)
1 , s

(i)
2 , . . . , s

(i)
m̂ > 0 be the si from Proposition 12.2.2 with κi in the role of κ. So

s
(i)
j ∈ (κ

S
|χµ|
i , κ

hµ
2ℓ|χµ|
i ). By Proposition 13.2.1 we have for each j ∈ [m̂],

V (µ, 1, K,R−3Kκi, A;R
−Kκis

(i)
j ) ≥ c1tr(qτκi ; s

(i)
j )
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for some constant c1 = c1(c, T, α0, θ, A,R, d) > 0. Therefore by Proposition 13.3.1

with M = R−1{≥2}(j)R−3Kκis
(i)
j+1/s

(i)
j , where we denote 1{≥2}(j) = 1 whenever j ≥ 2,

we can prove inductively for j = 2, 3, . . . , m̂ that

V (µ, j,K,R−1R−3Kκis
(i)
1 /s

(i)
j , A;R

−Kκis
(i)
1 ) ≥ c1

j∑
a=1

tr(qτκi ; s
(i)
j ).

We have used here that s
(i)
j+1/s

(i)
j ≥ κ−3

i and so M ≥ R−6Kκ−2
i ≥ R10K ≥ R since

κi < R−10K . By Proposition 12.2.2 and (13.1.2) we conclude that

V (µ, m̂,K,R−4Kκis
(i)
1 /s

(i)
m̂ , A;R

−Kκis
(i)
1 ) ≥ c2

hµ
|χµ|

max

{
1, log

Sµ

hµ

}−1

for some constant c2 > 0 depending on all of the parameters.

Note that for i = 1, 2, . . . ,m− 1 when hµ/|χµ| is sufficiently large we have

R−4Kκi+1s
(i+1)
1 /s

(i)
m̂ ≥ R−4Kκ

S
|χµ|+1

i+1 κ
− hµ

2ℓ|χµ|
i

≥ R−4Kκ
hµ

3ℓ|χµ|−
hµ

2ℓ|χµ|+
hµ
3ℓS

i

≥ R−4Kκ−1
i ≥ R6K ≥ R.

as κi+1 = κ
hµ
3ℓS
i and κi < R−10K and so we may repeatedly apply Proposition 13.3.1

with

M = R−1{≥2}(i)R−4Kκi+1s
(i+1)
1 /s

(i)
m̂ ,

where we denote 1{≥2}(i) = 1 whenever i ≥ 2, to inductively show for i = 2, 3, . . . ,m

that

V (µ, im̂,K,R−1R−4Kκ1s
(1)
1 /s

(i)
m̂ , A;R

−Kκ1s
(1)
1 )

≥ c2i
hµ
|χµ|

max

{
1, log

Sµ

hµ

}−1

.

This means using (13.1.2)

V (µ,mm̂,K,R−5Kκ1s
(1)
1 /s

(m)
m̂ , A;R−Kκ1s

(1)
1 )

≥c3
hµ
|χµ|

max

{
1, log

Sµ

hµ

}−2

log log r−1

for some constant c3 > 0 depending on all of the parameters. Since

R−Kκ1s
(1)
1 ≥ R−Kκ

S
|χµ|+1

1 = R−Kr
1
2
+

|χµ|
2S ≥ R−Kr

1
2
+ 1

4d ≥ r
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for r sufficiently small by Corollary 13.3.2 with M = R−Kκ1s
(1)
1 r−1 ≥ R

V (µ,mm̂,K,R−5Kr/s
(m)
m̂ , A; r) ≥ c3

hµ
|χµ|

max

{
1, log

Sµ

hµ

}−2

log log r−1.

Note that 1/s
(m)
m̂ ≥ κ

− hµ
2ℓ|χµ|

m and so in particular providing hµ/|χµ| is sufficiently

large we have R−5Kr/s
(m)
m̂ ≥ RKr. By Proposition 13.4.1 provided

hµ
|χµ|

max

{
1, log

Sµ

hµ

}−2

≥ 2c−1
3 C

we deduce

s(k)r (ν) ≤ exp(−20dk) +mm̂ exp(−c4K) +R−KCmm̂

for some constant c4 = c4(µ) > 0 and k ∈ [log log r−1, 2 log log r−1]. Since mm̂ ≪µ

log log r−1 it is easy to see that

mm̂ exp(−c4K) +R−KCmm̂ <
(
log r−1

)−20d

whenever r > 0 is sufficiently small (in terms of µ). Since k ≥ log log r−1 we have that

exp(−20dk) ≤ (log r−1)
−20d

. Overall this means that provided r > 0 is sufficiently

small (in terms of µ) we have

s(k)r (ν) <
(
log r−1

)−10d
.

We deduce the main theorem from Proposition 13.5.1.

Proof. (of Theorem 8.1.4) We combine Proposition 13.5.1 with Lemma 10.2.3. Given

r > 0 sufficiently small, let k = 3
2
log log r−1, a = r/

√
k and b = rkk.

Suppose that s ∈ [a, b] and note that then k ∈ [log log s−1, 2 log log s−1] and
1
2
log r−1 < log s−1 for r sufficiently small and therefore by Proposition 13.5.1

s(k)s (ν) < (log s−1)−10d < 210d(log r−1)−10d.

By Lemma 10.2.3 it follows that

sr(ν) ≤ Q′(d)k−1(210d(log r−1)−10d + k−k),

which is easily shown to be ≤ (log r−1)−2 for r sufficiently small. Indeed, recall that

Q′(d) ≤ ed−1/2 ≤ e for all d ≥ 1 and therefore Q′(d)k ≤ (log(r−1))e.

This concludes the proof of the main theorem of Part II of this thesis.
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13.6 Proof of Theorem 8.1.5

In this section we show how to work with the entropy and separation rate on O(d)

instead of the one on G. Recall that for a measure µ on G the measure U(µ) on

O(d) is the pushforward of µ under the map g 7→ U(g). We then denote for a

finitely supported µ by hU(µ) and SU(µ) the analogously defined Shannon entropy and

separation rate of U(µ). As we show in section 15.2, when all of the coefficients of

the matrices in supp(U(µ)) lie in the number field K and have logarithmic height at

most L ≥ 1, then

SU(µ) ≪d L[K : Q].

Therefore Theorem 8.1.5 follows from Theorem 13.6.1.

Theorem 13.6.1. Let d ≥ 3 and R, c, T, α0, θ, A > 0 with c, α0 ∈ (0, 1) and T ≥ 1.

Then there is a constant C = C(d,R, c, T, α0, θ, A) such that the following holds. Let

µ be a finitely supported, contracting on average, (c, T )-well-mixing and (α0, θ, A)-

non-degenerate probability measure on G with supp(µ) ⊂ {g ∈ G : ρ(g) ∈ [R−1, R]}.
Then ν is absolutely continuous if

hU(µ)

|χµ|
≥ Cmax

{
1, log

(
SU(µ)

hU(µ)

)}2

.

The proof of Theorem 13.6.1 is analogous to the proof of Theorem 8.1.4. The only

point where a slightly different argument is needed is the following version of Propo-

sition 12.1.1. The remainder of the proof is verbatim to the proof of Theorem 8.1.4

with only changing the notation of hµ to hU(µ) and Sµ to SU(µ).

Proposition 13.6.2. Let µ be a finitely supported, contracting on average probability

measure on G. Suppose that SU(µ) < ∞ and that hU(µ)/|χµ| is sufficiently large.

Let S > SU(µ), κ > 0 and a ≥ 1 and suppose that 0 < r1 < r2 < a−1 with r1 <

exp(−S log(κ−1)/|χµ|). Then as κ→ 0,

Ha(qτκ ; r1|r2) ≥
(
hU(µ)

|χµ|
− d− 1

)
log κ−1 +H(sr2,a) + oµ,d,S,a(log κ

−1).

Proof. The proof is similar to the one of Proposition 12.1.1 thus we only provide a

sketch. Lemma 12.1.3 still holds and therefore we only need to show that

Ha(qτκ ; r1) ≥
(
hU(µ)

|χµ|
− 1

)
log κ−1 + oµ,d,S,a(log κ

−1), (13.6.1)

where Ha(qτκ ; r1) = H(qτκsr1,a)−H(sr1,a). To show (13.6.1) we apply Lemma 11.2.3

with X = R>0 × O(d) × Rd and Φ : G → X, g 7→ (ρ(g), U(g), b(g)) and mX the
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product measure on X as used in Lemma 12.1.3. Indeed, as Φ∗mG = mX , it follows

by Lemma 11.2.3 that H(qτκsr1,a) = DKL(qτκsr1,a ||mG) = DKL(Φ∗qτκsr1,a ||mX) and

therefore, since mX is a product measure,

H(qτκsr1,a) = DKL(U(qτκsr1,a) || dU) +DKL(ρ(qτκsr1,a) || ρ−(d+1)dρ)

+DKL(b(qτκsr1,a) || db).

As in Proposition 12.1.1 one shows that

DKL(U(qτκsr1,a) || dU) ≥
hU(µ)

|χµ|
log κ−1 +DKL(U(sr1,a) || dU) + oµ,d,S,a(log κ

−1).

On the other hand,

DKL(ρ(qτκsr1,a) || ρ−(d+1)dρ) ≫ DKL(ρ(sr1,a) || ρ−(d+1)dρ)

and

DKL(b(qτκsr1,a) || db) ≫ DKL(b(sr1,a) || db)

and note that by [KK25b, Lemma 2.5],

DKL(U(sr1,a) || dU) +DKL(ρ(sr1,a) || ρ−(d+1)dρ) +DKL(b(sr1,a) || db) ≥ H(sr1,a).

All these estimates combined imply the claim.
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Chapter 14

Well-Mixing and Non-Degeneracy

In this section we study (c, T )-well mixing as well as (α0, θ, A)-non-degeneracy. The

goal of this section is prove Proposition 8.1.2 and Proposition 8.1.3. We treat (c, T )-

well-mixing in section 14.1 and show that we have uniform results as long as U(µ) is

fixed. In section 14.2 we conclude the proofs of Proposition 8.1.2 and Proposition 8.1.3

by proving strong results on non-degeneracy.

14.1 (c, T )-well-mixing

In this subsection we establish in Lemma 14.1.2 that we have uniform (c, T )-well-

mixing whenever U(µ) is fixed and show that (c, T ) can taken to be uniform when we

know a lower bound on the spectral gap of U(µ). We start with a preliminary lemma

that will also be used in section 14.2. Throughout this section and next we denote

by mH the Haar probability measure on H and by I ∈ O(d) the identity matrix.

Lemma 14.1.1. (Schur-type Lemma) Suppose that d ≥ 1 and that H is an irreducible

subgroup of O(d) and let V be a uniform random variable on H. Let B be a random

variable independent from V taking values in Rd. Then V B has mean zero and

covariance matrix of the form λI for some λ ≥ 0.

Proof. For h ∈ H the random variables hV B and V B have the same law. This means

that the mean of V B is invariant under H and so since H is irreducible it must be

zero. Moreover the covariance matrix M of V B is invariant under conjugation by

elements of H. Since M is symmetric positive definite, it has an eigenvector v and

therefore Mv = λv and Mhv = hMv = λhv for some λ ≥ 0 and all h ∈ H. Since H

is irreducible it therefore follows that M = λI as claimed.

Lemma 14.1.2. Let µU be a finitely supported probability measure on O(d) such

that supp(µU) acts irreducibly on Rd. Then there exists T = T (µU) only depending
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on µU such that every finitely supported probability measure µ on G with U(µ) is

( 1
2d
, T )-well-mixing.

Proof. Let H ⊂ O(d) be the closure of the group generated by supp(µU). Then H

is compact and let mH be the Haar probablility measure on G and denote by V a

uniform random variable on H. We first claim that for all unit vectors x and y in Rd

we have

E[|x · V y|2] = 1

d
. (14.1.1)

Indeed, we can view y as a random variable independent from V and therefore, by

Lemma 14.1.1, the random variable V y has mean zero and covariance matrix λI.

Moreover, since E[|V y|2] = dλ = 1 it follows that λ = 1
d
and therefore (14.1.1) holds.

Let F be a uniform random variable on [0, T ]. Then F is distributed as

1

T + 1

T∑
i=0

µ∗i. (14.1.2)

We claim that (14.1.2) converges as T → ∞ to mH in the weak∗-topology. Indeed,

we note that any weak∗-limit m of (14.1.2) is µU -stationary and, upon performing

an ergodic decomposition, we may assume without loss of generality that m is in

addition ergodic. As this is equivalent to the measure being extremal, we conclude

that m is invariant under the group generated by supp(µU) and therefore also by H,

implying that m = mH .

Finally, we just choose c = 1
2d

and T sufficiently large depending on µU such that

(14.1.2) is sufficiently close in distribution to mH and therefore E[|x · U(qF )y|2] ≥ 1
2d

for all unit vectors x, y ∈ Rd, implying the claim.

For a closed subgroup H ⊂ O(d) and a probability measure µU supported on H we

denote, as defined in (8.3.4), by gapH(µU) the L
2-spectral gap of µU on L2(H). We aim

to show uniform well-mixing as long as gapH(µU) ≥ ε independent of the subgroup

H. To do so, we first show that we have uniform convergence in the Wasserstein

distance with a rate only depending on ε and d.

Lemma 14.1.3. Let d ≥ 1, ε ∈ (0, 1) and let µU be a probability measure on O(d).

Assume that gapH(µU) ≥ ε for H the subgroup generated by the support of µU . Then

for n ≥ 1

W1(µ
∗n
U ,mH) ≪d (1− ε)αn

for α = (1 + 1
2
dimO(d))−1.
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Proof. We consider the metric d(g1, g2) = ||g1 − g2|| on O(d) for || ◦ || the operator

norm and note that it is bi-invariant and restricts to H. Denote by BH
δ (h) for h ∈ H

and δ > 0 the δ-ball around h ∈ H and denote

Pδ =
1BH

δ (e)

mH(BH
δ (e))

.

For δ ∈ (0, 1) we note thatmH(B
H
δ (e)) ≫d δ

dimO(d) for an implied constant depending

only on d and therefore ||Pδ||2 ≪d δ
−(dimO(d))/2. Also we note that for h ∈ H we have

(µ∗n ∗ Pδ)(h) =
µ∗n(BH

δ (h))

mH(BH
δ (e))

. By the triangle inequality,

W1(µ
∗n,mH) ≤ W1(µ

∗n, µ∗n ∗ Pδ) +W1(µ
∗n ∗ Pδ,mH).

Note W1(µ
∗n, µ∗n ∗ Pδ) ≪d δ and since H is compact,

W1(µ
∗n ∗ Pδ,mH) ≪d ||µ∗n ∗ Pδ − 1||1

≤ ||µ∗n ∗ Pδ − 1||2
≤ (1− ε)n||Pδ||2 ≪d (1− ε)nδ−(dimO(d))/2.

To conclude, if follows

W1(µ
∗n,mH) ≪d δ + (1− ε)nδ−(dimO(d))/2.

Therefore setting δ = (1− ε)αn for α = (1 + 1
2
dimO(d))−1 implies the claim.

Lemma 14.1.4. Let d ≥ 1, ε ∈ (0, 1) and let µU be a probability measure on O(d).

Assume that gapH(µU) ≥ ε for H the subgroup generated by the support of µU . Then

there exists T = T (d, ε) only depending on d and ε such every probability measure µ

on G with U(µ) = µU is ( 1
2d
, T )-well-mixing.

Proof. The proof is similar to the one of Lemma 14.1.2 and recall the notation used

in it. Consider a list of tuples of unit vectors (x1, y1), . . . , (xm, ym) such that for every

two unit vectors x and y in Rd there is some i ∈ [m] such that

sup
U∈O(d)

∣∣∣ |x · Uy|2 − |xi · Uyi|2
∣∣∣ < 1

4d
.

Such a list of tuples exists as the action of O(d) on Sd−1 ⊂ Rd is uniformly continuous.

We claim that for T large enough depending only on ε we have for all i ∈ [m] that

E[|xi · U(qF )yi|2] ≥
3

4d
.
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Indeed, we note that for h1, h2 ∈ H we have∣∣ |xi ·h1yi|2−|xi ·h2yi|2
∣∣ ≤ ∣∣ |xi ·h1yi|+ |xi ·h2yi|

∣∣ ·∣∣ |xi ·h1yi|−|xi ·h2yi|
∣∣ ≤ 2||h1−h2||.

Thus it follows that

E[|xi · V yi|2 − |xi · U(qn)yi|2] ≤ 2W1(µ
∗n,mH)

and the claim follows by Lemma 14.1.3. This concludes the proof as for all x and y

we have

E[|x · U(qF )y|2] ≥ sup
i∈[m]

E[|xi · U(qF )yi|2]−
1

4d
≥ 1

2d
.

Another direction to show uniform well-mixing would be to study the stopped

random walk U(qτκ) and to show that U(qτκ) → mH . We do not pursue this direction

further and just note that the results by Kesten [Kes74] can be applied to this problem.

14.2 (α0, θ, A)-non-degeneracy

In order to state our results on (α0, θ, A)-non-degeneracy it is useful to understand

that we can translate and rescale our generating measures, without changing any of

the fundamental properties. It is also beneficial to replace µ by 1
2
δe+

1
2
µ and we show

in the following lemma that these changes do not change our self-similar measure or

any of the relevant constants in a fundamental way.

Lemma 14.2.1. Let µ =
∑

i piδgi be a contracting on average probability measure on

G with self-measure ν. Let h ∈ G and consider the measures

µh =
∑
i

piδhgih−1 and µ′
h =

1

2
δe +

1

2
µh.

Then the following properties hold:

(i) hµ = hµh
= 2hµ′

h
,

(ii) χµ = χµh
= 2χµ′

h
,

(iii) Sµ = Sµh
= Sµ′

h
,

(iv) gapH(µ) = gapU(h)HU(h)−1(µh) = 2gapU(h)HU(h)−1(µ′
h),

(v) µh and µh′ have hν as self-similar measure.
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Proof. As conjugation is a bijection on G and by using [HS17, Lemma 6.8], (i) follows.

Moreover, (ii) follows since ρ(hgih
−1) = ρ(gi) and (iv) follows similarly. To show (iii)

note Sµh
= Sµ′

h
since by the triangle inequality d(g, h) ≤ d(g, e) + d(e, h) for all

g, h ∈ G. To show that Sµ = Sµh
, set

A = min
g1,g2∈supp(µ),g1 ̸=g2

d(g1, g2)

and note that there is a constant Ch depending on h such that d(hg1h
−1, hg2h

−1) ≤
Chd(g1, g2) for d(g1, g2) ≤ A. Thus it holds that

Sµh
= lim sup

g1,g2∈Sn,g1 ̸=g2

− 1

n
log d(hg1h

−1, hg2h
−1)

≤ lim sup
g1,g2∈Sn,g1 ̸=g2

− 1

n
logChd(g1, g2) = Sµ

Applying the same argument to conjugation by h−1 implies the claim. Finally, we

note that µh and µ′
h have the same self-similar measure and it holds that

hν = h
∑
i

pigiν =
∑
i

pihgih
−1hν

and therefore hν is the self-similar measure of µh and µ′
h.

In particular, it follows that the self-similar measure of µ is absolutely continuous

if and only if the one of µh or µh′ is and all of the relevant quantities are the same up

to a factor of 2.

To give an idea of the proof of the main results in this subsection, we first dis-

cuss how to show that real Bernoulli convolutions νλ are uniformly non-degenerate.

Indeed, we distinguish between λ ≥ λ0 and λ ≤ λ0 for some λ0 sufficiently close to

1. Note that νλ is supported on [−(1 − λ)−1, (1 − λ)−1] and thus when λ ≤ λ0 one

easily shows uniform non-degeneracy depending only on λ0 by compactness of the

support. In the case λ ≥ λ0 it follows from the Berry-Essen Theorem 10.4.2 that

W1(νλ,N (0, 1√
1−λ2 )) ≈ 2/3. The latter then implies then the claim by Lemma 14.2.5

and by rescaling νλ to have variance 1.

Our results will be deduced from suitable results in the case when µ has a uniform

contraction ratio and then in the general case from comparing our given measure

with a self-similar measure with uniform contraction ratio. We now state the main

proposition of this section.
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Proposition 14.2.2. Let d ≥ 1, ε > 0 and let µU be an irreducible probability measure

on O(d). Then there is ρ̃ ∈ (0, 1) and some (α0, θ, A) depending on d, ε and µU such

that the following is true. Let µ =
∑k

i=1 piδgi be a contracting on average probability

measure on G satisfying U(µ) = µU and pi ≥ ε for 1 ≤ i ≤ k. Suppose further that

there is some ρ̂ ∈ (ρ̃, 1) such that

Eγ∼µ|ρ̂− ρ(γ)|
1− Eγ∼µ[ρ(γ)]

< 1− ε.

Then there is some h ∈ G with U(h) = I such that the conjugate measure µ′
h =

1
2
δe +

1
2

∑
i piδhgih−1 is (α0, θ, A)-non-degenerate.

Moreover, if in addition gapH(µ) ≥ ε, for H the closure of the subgroup generated

by supp(µ), then ρ̃ and (α0, θ, A) can be made uniform in d and ε.

We first show how to deduce from Proposition 14.2.2 the two propositions 8.1.2

and 8.1.3 from section 8.1. To do so we first state the following lemma.

Lemma 14.2.3. Suppose x1 < x2 and let X be a real-valued random variable such

that X ≤ x2 almost surely and P[X ≤ x1] ≥ 1/2 + p for some p > 0. Then

E[|X − x1|] ≤ E[|X − x2|]− 2p(x2 − x1).

Proof. Let X1 and X2 have the same law as X and be coupled such that at least one

of them is at most x1 almost surely. Let A be the event that both X1 and X2 are at

most x1. Noting that A has probability at least 2p we compute

E[|X1 − x1|+ |X2 − x1|] = E[(|X1 − x1|+ |X2 − x1|)IAC ]

+ E[(|X1 − x1|+ |X2 − x1|)IA]

≤ E[(|X1 − x2|+ |X2 − x2|)IAC ]

+ E[(|X1 − x2|+ |X2 − x2| − 2(x2 − x1))IA]

≤ E[|X1 − x2|+ |X2 − x2|]− 4p(x2 − x1).

The result follows.

We now prove Proposition 8.1.2 and Proposition 8.1.3.

Proof of Proposition 8.1.2. Let γ1, γ2, . . . be i.i.d. samples from µ. Let pmin be the

smallest of the p1, . . . , pk and let ρmin be the smallest of the ρ(g1), . . . , ρ(gk). Clearly

P[ρ(γ1 . . . γn) ≤ ρmin] ≥ 1− (1− pmin)
n.
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In particular there is some n depending only on ε such that this is at least 3/4. Note

that by Lemma 14.2.3 with x1 = ρmin and x2 = 1 and p = 1
4
we have

E[|ρ(γ1 · · · γn)− ρmin|]
1− E[ρ(γ1 . . . γn)]

≤ 1− E[ρ(γ1 . . . γn)]− (1− ρmin)/2

1− E[ρ(γ1 . . . γn)]

= 1− 1− ρmin

2(1− E[ρ(γ1 . . . γn)])

≤ 1− 1− ρmin

2(1− ρnmin)

≤ 1− 1

2n
.

The result now follows by applying Proposition 14.2.2, Lemma 14.1.2 and Lemma 14.1.4

to µ∗n.

Proof of Proposition 8.1.3. This follows directly by Proposition 14.2.2, Lemma 14.1.2

and Lemma 14.1.4.

Now we prove Proposition 14.2.2. We use the following definition.

Definition 14.2.4. Given two measures λ1, λ2 on Rd we define

PW1(λ1, λ2) := inf
γ∈Γ(λ1,λ2)

sup
p∈P (d)

∫
|px− py| dγ(x, y)

where P (d) is the set of orthogonal projections onto one dimensional subspaces of Rd

and Γ(λ1, λ2) is the set of couplings between λ1 and λ2.

We use this to show that if a measure is sufficiently close to a spherical normal

distribution then it is (α0, θ, A)-non-degenerate.

Lemma 14.2.5. Let I be the d × d identity matrix. Then given any p ∈ P (d) we

have

Ex∼N(0,I)[|px|] =
√

2

π
.

Moreover, for any ε > 0 there exists α0 ∈ (0, 1) and θ, A > 0 such that if ν is a

measure on Rd and

PW1(ν,N(0, I)) <

√
2

π
− ε

then ν is (α0, θ, A)-non-degenerate.
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Proof. The first part follows since if X ∼ N (0, I) and u ∈ Rd is a unit vector, then

⟨X, u⟩ is distributed as N (0, 1). The second part follows from the first part, the fact

that the y ∈ R such that Ex∼N(0,1)|x−y| is minimal is y = 0 and Markov’s inequality.

More precisely, we aim to estimate for all y0 ∈ Rd and all proper subspacesW ⊂ Rd

ν({x ∈ Rd : |x− (y0 +W )| < θ or |x| ≥ A}),

which is bounded by ν({x ∈ Rd : |x − (y0 +W )| < θ}) + ν({x ∈ Rd : |x| ≥ A}).
To deal with the second term we note that by Markov’s inequality for a coupling γ

between ν and N (0, 1) we have

ν({x ∈ Rd : |x| ≥ A}) ≤ A−1

∫
|x| dν(x)

≤ A−1

(∫
|y| dN (0, I)(y) +

∫
|x− y| dγ(x, y)

)
.

In order to apply our bound for PW1(ν,N(0, I)) we consider the projections p1, . . . , pd

to the coordinate axes. Then |x− y| ≤
∑d

i=1 |pix− piy| and therefore by choosing a

suitable coupling, it follows that for A sufficiently large only depending on d and ε

we have that ν({x ∈ Rd : |x| ≥ A}) ≤ ε/16.

To deal with the first term ν({x ∈ Rd : |x− (y0 +W )| < θ}), we assume without

loss of generality thatW has dimension d−1 and we let p be the orthogonal projection

to the orthogonal complement of W . Then it holds that |x− (y0 +W )| = |px− py0|
and therefore

ν({x ∈ Rd : |x− (y0 +W )| < θ}) = ν({x ∈ Rd : |px− py0| < θ}).

In the following we identify pRd as the real line. Let γ be any coupling between ν

and N (0, I). Then it holds that∫
|px− py| dγ(x, y) ≥

∫
|px− py|1|px−py0|<θ(x, y) dγ(x, y)

≥ ν({x ∈ Rd : (|px− py0| < θ})
∫

|py − py0| − θ) dN (0, I)(y)

≥ ν({x ∈ Rd : (|px− py0| < θ})

(√
2

π
− θ

)
,

having used in the last line that y ∈ R such that Ex∼N(0,1)|x − y| is minimal is

y = 0. By choosing a suitable coupling and setting θ = ε/4 it therefore follows for ε

sufficiently small that

ν({x ∈ Rd : (|px− py0| < θ}) ≤

√
2
π
− ε/2√

2
π
− ε/4

≤ 1− ε/8.
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The claim follows by combining the above two estimates.

To make this useful we need to show that our self-similar measures are close to

spherical normal distributions. We prove this in the case where all of the ρi are equal

with the following proposition.

Proposition 14.2.6. Given any ε > 0 and any irreducible probability measure µU =∑k
i=1 piδUi

on O(d) there is some ρ̃ ∈ (0, 1) depending on ε and µU such that the

following is true. Let µ =
∑k

i=1 piδgi be a probability measure on G without a common

fixed point and with U(µ) = µU as well as pi ≥ ε for all 1 ≤ i ≤ k. Assume there is

ρ ∈ (ρ̃, 1) such that ρ(gi) = ρ for all 1 ≤ i ≤ k. Then there exists some h ∈ G with

U(h) = I such that the self similar measure ν ′h generated by the conjugate measure

µ′
h = 1

2
δe +

1
2

∑
i piδhgih−1 satisfies

W3(ν
′
h, N(0, I)) < ε.

If moreover gapH(µU) ≥ ε then ρ̃ is uniform in d and ε.

We then extend to the general case using the following lemma.

Lemma 14.2.7. Let γ and γ̃ be contracting on average random variables taking values

in G such that U(γ) = U(γ̃) and z(γ) = z(γ̃) almost surely. Let ν and ν̃ be the self

similar measures generated by the laws of γ and γ̃ respectively. Then

PW1(ν, ν̃) ≤
E[|ρ(γ)− ρ(γ̃)|]
1− E[ρ(γ)]

sup
p∈P (d)

Ex∼ν̃ |px|.

We now have all the ingredients needed to prove Proposition 14.2.2.

Proof of Proposition 14.2.2. Without loss of generality we replace µ by 1
2
δe+

1
2
µ. Let

g̃i : x 7→ ρ̂Uix + bi and let µ̃ =
∑n

i=1 piδg̃i with self-similar measure ν̃. Then by

Proposition 14.2.6 there is some h ∈ G with U(h) = I such that

W3(ν̃h, N(0, I)) < ε/10.

Clearly this implies W1(ν̃h, N(0, I)) < ε/10 and therefore PW1(ν̃h, N(0, I)) < ε/10

and so by Lemma 14.2.7 if we define µh =
∑k

i=1 piδhgih−1 and let νh be the self similar

measure generated by µh we have PW1(νh, N(0, I)) <
√

π
2
− ε/2. The result follows

by Lemma 14.2.5.

Now we just need to prove Lemma 14.2.7 and Proposition 14.2.6. We start with

Lemma 14.2.7.
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Proof of Lemma 14.2.7. Let x be a sample from ν and x̃ be a sample from ν̃ such

that (x, x̃) is independent from (γ, γ̃). Note that this means that γx is a sample from

ν and γ̃x̃ is a sample from ν̃. Let p ∈ P (d). We have

E[|pγx− pγ̃x̃|] ≤ E[|pγ(x− x̃)|] + E[|p(γ − γ̃)x̃|]

= E[ρ(γ)]E[|pU(γ)(x− x̃)|] + E[|ρ(γ)− ρ(γ̃)|]E[|pU(γ)(x̃)|].

Therefore by taking a series of couplings such that supp∈P (d) E[|px−px̃|] → PW1(ν, ν̃)

we get

PW1(ν, ν̃) ≤ E[ρ(γ)]PW1(ν, ν̃) + E[|ρ(γ)− ρ(γ̃)|]Ex∼ν̃ [|p(x)|].

Now we wish to prove Proposition 14.2.6. First we need the following result.

Lemma 14.2.8. Let µU be a probability measure on O(d) and let H be the closure

of the group generated by the support of µU and let V be a uniform random variable

on H. Let γ1, γ2, . . . be independent samples from 1
2
δe +

1
2
µU . Then for every ε > 0

there exists N ∈ Z>0 depending on d,H and ε such that whenever n ≥ N we have

W3(γ1 . . . γn, V ) < ε.

Furthermore, if in addition gapH(µU) ≥ ε, then N can be made uniform d and ε.

Proof. This follows similarly to the arguments given in section 14.1 since the measure

µ′
U = 1

2
δe +

1
2
µU satisfies that (µ′

U)
∗n → mH as n→ ∞. In the presence of a spectral

gap we apply Lemma 14.1.3 and use that by compactness of H the L3-Wasserstein

distance is comparable with the L1-Wasserstein distance.

It is convenient to work with measures which are appropriately translated.

Definition 14.2.9. We say that a probability measure µ on G is centred at zero if

Eγ∼µ[γ(0)] = 0.

Lemma 14.2.10. Suppose that µ is a probability measure on G which is centred at

zero and has uniform contraction ratio ρ ∈ (0, 1). Then if γ1, γ2, . . . are i.i.d. samples

from µ and n ∈ Z>0 we have

E[γ1 . . . γn(0)] = 0

and

E[|γ1 . . . γn(0)|2] =
1− ρ2n

1− ρ2
E[|γ1(0)|2].
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Proof. Both of these follow by an induction argument left to the reader.

In order to prove Proposition 14.2.6, we need the following theorem of Sakhanenko

from [Sak85].

Theorem 14.2.11. For every p, d ≥ 1 there is some constant C = C(p, d) > 0 such

that the following holds. Suppose that X1, . . . , Xn are independent random variables

taking values in Rd with mean 0. Let Σi = VarXi, suppose that
∑n

i=1 Σi = I and let

Lp = (
∑n

i=1 E[|Xi|p])1/p. Then

Wp

(
n∑

i=1

Xi, N(0, I)

)
≤ CLp.

This is enough to deduce the following estimate. We note that we work with W3

norm in order to establish the decaying (n′)−1/6 term in (14.2.2).

Lemma 14.2.12. Let (p1, . . . , pk) be a probability vector, U1, . . . , Uk ∈ O(d) generate

an irreducible subgroup, b1, . . . , bk ∈ Rd and let ρ ∈ (0, 1). Let µ be the probability

measure on G given by µ =
∑k

i=1 piδgi where gi : x 7→ ρUix + bi. Suppose that µ is

centred at zero and that all of the bi have modulus at most 1. Let γ1, γ2, . . . be i.i.d.

samples from µ. Let ε ∈ (0, 1).

Given ℓ ∈ Z>0 we define Sℓ := E[|γ1 . . . γℓ(0)|2] and

Wℓ := W3

(
d1/2S

−1/2
ℓ γ1 . . . γℓ(0), N(0, I)

)
.

Suppose that there exist m,n ∈ Z>0 such that for V a uniform random variable

on the closure of the subgroup generated by the U1, . . . , Uk we have

W3(U(γ1 . . . γm), V ) < ε and
m

S
1/2
n

< ε.

Then for n′ ∈ Z>0,

W(m+n)n′ ≪d (T
−1/6 + T 1/2ε)(Wn + 1) (14.2.1)

where T :=
∑n′−1

i=0 ρ(m+n)i. In particular if ρ(m+n)n′
> 1/2 then n′/2 ≤ T ≤ n′ and

therefore

W(m+n)n′ ≪d ((n
′)−1/6 + (n′)1/2ε)(Wn + 1) (14.2.2)

Proof. For i = 1, . . . , n′ let

Xi := γ(i−1)(n+m)+1 . . . γ(i−1)(n+m)+m
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and

Yi := γ(i−1)(n+m)+m+1 . . . γi(n+m)

such that

Zi = XiYi = γ(i−1)(n+m)+1 . . . γi(n+m).

Furthermore consider V1, . . . , Vk independent random variables which are uniform on

H (the closure of the subgroup generated by the Ui), independent of the Yi and are

such that

E[∥U(Xi)− Vi∥3] < ε3.

Note that

Z1 . . . Zn′(0) = Z1(0) + ρ(m+n)U(Z1)Z2(0)+

· · ·+ ρ(m+n)(n′−1)U(Z1 . . . Zn′−1)Zn′(0).

Also note that

W3

(
ρ(m+n)(i−1)U(Z1 . . . Zi−1)Zi(0), ρ

(m+n)(i−1)+mViYi(0)
)

= ρ(m+n)(i−1)W3 (U(Z1 . . . Zi−1)(ρ
mU(Xi)Yi(0) +Xi(0)), ρ

mViYi(0))

≤ ρ(m+n)(i−1)(m+ ερm(E
[
|Yi(0)|3

]
)1/3)

≪d ερ
(m+n)(i−1)S1/2

n (Wn + 1),

having used the triangle inequality in the second line and that |Xi(0)| ≤ m as

supi |bi| ≤ 1 as well as that

W3 (U(Z1 . . . Zi−1)U(Xi)Yi(0), ViYi(0))

= W3 (U(Z1 . . . Zi−1)U(Xi)Yi(0), U(Z1 . . . Zi−1)ViYi(0))

as Vi is distributed like the Haar measure on H.

Note that by Lemma 14.1.1 the covariance matrix of ViYi(0) is d
−1SnI. Therefore

by Theorem 14.2.11 letting A = d−1/2
(

1−ρ2n
′(m+n)

1−ρ2(m+n)

)1/2
S
1/2
n we have that

W3

(
A−1

(
n′∑
i=1

ρ(m+n)(i−1)ViYi(0)

)
, N(0, I)

)

≪

(
n′∑
i=1

E
[
|A−1ρ(m+n)(i−1)Yi(0)|3

])1/3

≪d A
−1

(
1− ρ3(m+n)n′

1− ρ3(m+n)

)1/3

(Wn + 1)

≪d T
−1/6(Wn + 1),
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where we exploited that

1− ρ2n
′(m+n)

1− ρ2(m+n)
=

1− ρn
′(m+n)

1− ρ(m+n)

1 + ρn
′(m+n)

1 + ρ(m+n)
∈ [T/2, T ]

and a similar estimate for
(

1−ρ3(m+n)n′

1−ρ3(m+n)

)1/3
.

Therefore we may deduce that

W3

(
A−1γ1 . . . γ(m+n)n′(0), N(0, I)

)
≪d T

−1/6(Wn + 1) + εT 1/2(Wn + 1)

By Lemma 14.2.10 we have that

d−1/2S
−1/2
n′

A
= 1 +O(

m

n
) = 1 +O(ε).

We conclude

W(m+n)n′ ≪d T
−1/6(Wn + 1) + εT 1/2(Wn + 1) + ε

≪d T
−1/6(Wn + 1) + εT 1/2(Wn + 1)

as required.

From this we can deduce the following.

Corollary 14.2.13. For every ε > 0 and every irreducible probability measure µU on

O(d) there is C > 0 and ρ̃ ∈ (0, 1) such that the following is true. Let µ =
∑k

i=1 piδgi
be a probability measure on G such that U(µ) = µU and pi ≥ ε for all 1 ≤ i ≤ k.

Assume further that max1≤i≤k |b(gi)| = 1 and for some ρ ∈ (ρ̃, 1) we have ρ(gi) = ρ

for all 1 ≤ i ≤ k. Suppose that µ is centred at zero and let γ1, γ2, . . . be i.i.d. samples

from µ. Then for every k ∈ Z>0 such that Ck+1 < ρC

1−ρC
there is some n ∈ Z>0 such

that
1

1− ρn
∈ [Ck, Ck+1]

and

W3(d
1/2S−1/2

n γ1 . . . γn(0), N(0, I)) < C.

Moreover, if gapH(µ) ≥ ε, then C and ρ̃ can be made uniform d and ε.

Proof. Let ε′ > 0 be sufficiently small. Choose m = m(µU , ε
′) such that

W3(U(γ1 . . . γm), V ) < ε′

and choose n0 = n0(ε, ε
′, ρ̃) such that

m

S
1/2
n0

< ε′.
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Note that this is possible by Lemma 14.2.10 as ε ≤ E[|γ1(0)|3] ≤ 1 and providing we

choose ρ̃ to be sufficiently close to 1 in terms of ε′. Now inductively chose n′
k such

that
∑n′

k−1
i=0 ρ(m+nk)i ∈ [ε′−3/2, 2ε′−3/2] and define nk+1 := n′

k(nk + m). Repeat this

process until we find some k such that
∑∞

i=0 ρ
(m+nk)i < ε′−3/2 and let k∗ denote this

value of k. By Lemma 14.2.12 this means that for i = 1, . . . , k∗ we have

Wi ≪d ε
′1/4(Wi−1 + 1).

Providing we take ρ̃ to be sufficiently close to 1 we can bound n0 and Wn0 from above

purely in terms of ε and ε′. This means that, providing we choose ε′ to be sufficiently

small, there is some C1 = C1(ε, ε
′) such that for each i = 1, . . . , k∗ we have

Wni
< C1.

We also have that
1− ρni+1

1− ρm+ni
∈ [ε′−3/2, 2ε−3/2]

and so providing we choose ρ̃ to be sufficiently large we have

1− ρni+1

1− ρni
≤ 4ε′−3/2.

The result follows. When we have a spectral gap, all of these constants can be chosen

to be uniform.

Now we have enough to prove Proposition 14.2.6.

Proof of Proposition 14.2.6. Without loss of generality we may assume that µ is cen-

tred at zero and that maxki=1 |bi| = 1.

Let ε′ > 0. By Lemma 14.2.8 there is some m ∈ Z>0 depending only on ε and ε′

such that

W3(U(γ1 . . . γm(0)), V ) < ε′.

By Lemma 14.2.10 there is some N depending only on µU and ε′ such that for

any n ≥ N we have
m

S
1/2
n

< ε′.

Let C be as in Corollary 14.2.13 and choose n such that

1

1− ρm+n
∈ [C−1ε′−3/2, Cε′−3/2].
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Providing we choose ρ̃ sufficiently close to 1 we will also have n ≥ N . By letting

n′ → ∞ in Lemma 14.2.12 we deduce that

W3(A
−1ν,N(0, I)) ≪d Cε

′1/4

where A = d1/2(1 − ρ2)1/2 = limℓ→∞ d1/2S
−1/2
ℓ . In the presence of a spectral gap, all

of these bounds are easily seen to be uniform.
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Chapter 15

Construction of Examples

Throughout this section we denote as usual by G = Sim(Rd). We first study ran-

dom walk entropy in section 15.1 and then the separation rate in section 15.2. We

prove Corollary 7.0.11 on real Bernoulli convolutions in section 15.5 as well as treat

complex Bernoulli convolutions in section 15.6 proving Corollary 7.0.12. Finally, we

discuss examples in Rd in section 15.4 and show Corollary 7.0.8, Corollary 7.0.9 and

Corollary 7.0.10.

15.1 Bounding Random Walk Entropy

The techniques from [HS17, Section 6.3] or [Kit23, Section 9.2] follow through to our

setting. In particular we have the following using Breuillard’s strong Tits alternative.

Proposition 15.1.1. ([HS17, Section 6.3]) Let d ≥ 1. Then for every p0 > 0 there

exists ρ = ρ(p0, d) such that if µ =
∑k

i=1 piδgi is a finitely supported probability

measure on G with pi ≥ p0 and supp(µ) generates a non-virtually solvable subgroup,

then hµ ≥ ρ.

We will also use the following version of the ping-pong lemma for which we provide

a full proof for the convenience of the reader.

Lemma 15.1.2. (Ping-Pong) Let G be a group acting on a set X and let g1, g2 ∈ G.

Assume there exist disjoint non-empty sets A1, A2 ⊂ X such

g1(A1 ∪ A2) ⊂ A1 and g2(A1 ∪ A2) ⊂ A2.

Then g1 and g2 generate a free semigroup.

When this happens we say that g1 and g2 play ping pong.

181



Proof. Let w1 = h1h2 · · ·hℓ1 and w2 = f1f2 · · · fℓ2 with distinct sequences hi, fj ∈
{g1, g2}. Assume without loss of generality that ℓ1 ≤ ℓ2. First assume that there is

some 1 ≤ k ≤ ℓ1 such that hk ̸= fk. Choose the smallest such k and note that it

suffices to show that hk · · ·hℓ1 ̸= fk · · · fℓ2 , which follows by applying the resulting

maps to any x ∈ A1 ∪ A2 and noting that hk · · ·hℓ1x ̸= fk · · · fℓ2x. On the other

hand assume that hi = fi for all 1 ≤ i ≤ ℓ1, in which case we need to show that

w′ = fℓ1+1 · · · fℓ2 is not the identity. Without loss of generality assume that fℓ1+1 = g1.

Then for x ∈ A2 we have that w
′x ∈ A1 and thus w′ is not the identity. We note that

in particular it follows by the assumptions that g1 and g2 have infinite order.

Lemma 15.1.3. Let µ be a finitely supported probability measure on G such that

g1, g2 ∈ supp(µ) generate a free semigroup. Then

hµ ≫ min{µ(g1), µ(g2)}.

Proof. Denote µ′ = 1
2
δe +

1
2
µ. Then by [HS17, Lemma 6.8] we have hµ′ = hµ/2.

Thus the claim follows from [Kit23, Proposition 9.7] (generalised to G and applied to

K = min{µ(g1), µ(g2)}/2).

15.1.1 p-adic Ping-Pong

We first use ping-pong in a p-adic setting. For a number field K with ring of integers

OK . Let p ⊂ OK be a prime ideal and we denote by Rp the localization of OK at P

defined as

Rp =
{a
b
: a ∈ OK , b ∈ OK\p

}
.

Lemma 15.1.4. (p-adic Ping-Pong) Let K be a number field and let OK be its ring

of integers. Let p ⊂ OK be a prime ideal and let Mp be the ideal of Rp defined by

Mp =
{a
b
: a ∈ p, b ∈ OK\p

}
.

Let g1, g2 ∈ G be such that all of the entries of ρ(g1)U(g1) and ρ(g2)U(g2) are in Mp

and all components of b1 and b2 are in Rp. Suppose that

Mp × · · · ×Mp + b1 ̸=Mp × · · · ×Mp + b2.

Then g1 and g2 generate a free semigroup.

Proof. This follows immediately from Lemma 15.1.2 with X = Rp × · · · × Rp and

Ai =Mp × · · · ×Mp + bi for i = 1, 2.
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15.1.2 Ping-Pong under a Galois transform

We can also apply the ping-pong lemma using field automorphisms. Recall that given

a number fieldK, the automorphism group Aut(K/Q) consists of field automorphisms

that fix Q.

Lemma 15.1.5. (Galois Ping-Pong) Let g1 and g2 be two elements in G whose

coefficients lie in a real number field K and without a common fixed point. Let

Φ ∈ Aut(K/Q) be such that for i = 1, 2 we have

|ρ(Φ(gi))| < 1/3.

Then g1 and g2 generate a free semigroup.

Proof. For i = 1, 2 write hi = Φ(gi) and let pi be the fixed point of hi, which has

coefficients in K since it arises from a linear equation over K. Then h1 ̸= h2 as g1 and

g2 have no common fixed point. Consider Ai = Bd(h1,h2)/2(hi) (the open ball around hi

of radius d(h1, h2)/2) and note further that h1(A1 ∪A2) ⊂ A1 and h2(A1 ∪A2) ⊂ A2.

So the claim follows by Lemma 15.1.2.

15.1.3 Height Entropy Bound in Dimension One

In dimension one we also have the following tool for bounding the random walk

entropy. We use the absolute height H(α) and the logarithmic heigh h(α) of an

algebraic number α as defined in (7.0.4) and (7.0.5).

Proposition 15.1.6. Suppose that µ is a finitely supported probability measure on

G and that there exist f, g ∈ supp(µ) which are of the form f : x 7→ λ1x + 1 and

g : x 7→ λ2x with λ1 and λ2 real algebraic and λ2 ̸= 1. Let n = ⌈ log 3
max{h(λ1),h(λ2)}⌉ + 2.

Then

hµ ≫ 1

n
min{µ(f), µ(g)}n.

This is a simple consequence of the following lemma.

Lemma 15.1.7. Suppose that λ is algebraic and in some number field K. Let f, g ∈ G

be defined by f : x 7→ λ(x − a) + a and g : x 7→ λ(x − b) + b for some a, b ∈ K with

a ̸= b. Suppose that H(λ) > 3. Then f and g freely generate a free semi-group.

Proof. First note that

H(λ) = H(λ−1) =
∏

v∈MK

min(1, |λ|v)−
nv

[K:Q] .
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This means that either there is some Archimedean place v such that |λ|v < 1/3 or

there is some non-Archimedean place v such that |λ|v < 1.

In the Archimedean case there is some Galois transform ρ such that |ρ(λ)| < 1/3

and the result follows from Lemma 15.1.5. In the non-Archimedean case there is some

prime ideal p ⊂ OK with λ ∈ p and Lemma 15.1.4 applies.

We now deduce Proposition 15.1.6.

Proof of Proposition 15.1.6. For n = ⌈ log 3
max{h(λ1),h(λ2)}⌉+2, using that h(αn) = |n|h(α)

and h(αβ) ≥ h(α)−h(β) for all α, β algebraic and n ∈ Z, there exists f ′, g′ ∈ {f, g}n

satisfying the conditions of Lemma 15.1.7. Therefore by Lemma 15.1.3 we deduce

that

hµ∗n ≫ min{µ(f), µ(g)}n and so hµ ≫ 1

n
min{µ(f), µ(g)}n

as required.

15.2 Heights and Separation

In this subsection we will review some techniques for bounding Sµ using heights as

defined in (7.0.4) and (7.0.5). We wish to bound the size of polynomials of algebraic

numbers. To do this we need the following way of measuring the complexity of a

polynomial.

Definition 15.2.1. Given some polynomial P ∈ Z[X1, X2, . . . , Xn] we define the

length of P , which we denote by L(P ), to be the sum of the absolute values of the

coefficients of P .

We recall the following basic facts about heights.

Lemma 15.2.2. The following properties hold:

(i) H(α−1) = H(α) for any non-zero algebraic number α.

(ii) If α is a non-zero algebraic number of degree d,

H(α)−d ≤ |α| ≤ H(α)d.

(iii) Given P ∈ Z[X1, X2, . . . , Xn] of degree at most L1 ≥ 0 in X1, . . . , Ln ≥ 0 in

Xn and algebraic numbers ξ1, ξ2, . . . , ξn we have

H(P (ξ1, ξ2, . . . , ξn)) ≤ L(P )H(ξ1)
L1 . . .H(ξn)

Ln
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Proof. (i) and (ii) are well-known and (iii) is [Mas16, Proposition 14.7].

Proposition 15.2.3. Suppose that µ is a finitely supported measure on G = Sim(Rd).

Let S be the set of coefficients of ρ(g), U(g) and b(g) with g ∈ supp(µ) supported on

a finite set of points. Suppose that all of the elements of S are algebraic and let K be

the number field generated by S. Then

Sµ ≪d [K : Q] max(h(y) : y ∈ S} ∪ {1}).

Proof. We let m,n ∈ Z>0 and we consider an expression of the from

a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm

for a1, . . . , an and b1, . . . , bm elements in the support of µ. We wish to show that

this is either the identity or at least some distance away from the identity. Let

C := max{H(y) : y ∈ S}. First note that

ρ(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm)− 1

is a polynomial in elements of S and their inverses with length 2 and total degree at

most n+m. Therefore by Lemma 15.2.2

H(ρ(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm)− 1) ≤ 2Cm+n

and so either ρ(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm) = 1 or

|ρ(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm)− 1| ≥ 2−[K:Q]C−(m+n)[K:Q].

By a similar argument, using that the coefficients of the inverse matrix of a matrix

are polynomial in the coefficients of the given matrix, we see that either

U(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm) = I

or

||U(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm)− I|| ≥ (dm+n + 1)−[K:Q]C−Od(m+n)[K:Q]

and that either b(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm) = 0 or

|b(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm)| ≥ (dm+n + 1)−[K:Q]C−Od(m+n)[K:Q].

Overall this means that either a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm = Id or

log d(a−1
1 a−1

2 . . . a−1
n b1b2 . . . bm, Id) ≫d −(m+ n)(logC + 1)[K : Q].

The result follows.
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15.3 Inhomogeneous examples in R

In this section we prove Corollary 7.0.7, which we recall for convenience of the reader.

Corollary (Restatement of Corollary 7.0.7). For every ε > 0 there exists a small

constant c = c(ε) > 0 such that the following holds. Let K be a number field and

λ1, λ2 ∈ K∩(0, 1) and write h(λ1, λ2) = max{h(λ1), h(λ2)}. Consider the similarities

given for x ∈ R as

g1(x) = λ1x and g2(x) = λ2x+ 1.

Then the self-similar measure of 1
2
δg1 +

1
2
δg2 is absolutely continuous if

h(λ1, λ2) ≥ ε and |χµ|max{1, log([K : Q]h(λ1, λ2))}2 < c.

Proof. (of Corollary 7.0.7) Write µ = 1
2
δg1+

1
2
δg2 By Proposition 15.1.6 for every ε > 0

there exists a δ > 0 such that if h(λ1, λ2) ≥ ε then it follows that hµ ≥ δ. Therefore

by Theorem 7.0.4 and using that Sµ ≪ h(λ1, λ2)[K : Q] it follows that µ is absolutely

continuous if for absolute constants C1, C2 it holds that

δ

|χµ|
≥ C1max{1, log(C2δ

−1h(λ1, λ2)[K : Q])}2,

which easily implies the claim.

15.4 Examples in Rd

In this section we prove Corollary 7.0.8, Corollary 7.0.9 and Corollary 7.0.10 on

general examples with absolutely continuous self-similar measures, which we all again

recall for convenience of the reader.

Corollary (Restatement of Corollary 7.0.8). Let d ≥ 1 and ε > 0, let µU =
∑k

i=1 piδUi

be an irreducible probability measure on O(d) with pi ≥ ε and let b1, . . . , bk ∈ Rd with

b1 ̸= b2. Assume that U1, . . . , Uk and b1, . . . , bk have algebraic coefficients. Let q be a

prime number and for 1 ≤ i ≤ k consider

gi(x) =
q

q + ai,q
Uix+ bi for any integer ai,q ∈ [1, q1−ε].

Assume that g1, . . . , gk do not have a common fixed point and consider µ =
∑k

i=1 piδgi.

Then the self-similar measure of µ is absolutely continuous for q a sufficiently large

prime depending on d, ε, U1, . . . , Uk and b1, . . . , bk.
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Proof of Corollary 7.0.8. We first show that g1 and g2 generate a free semigroup for

sufficiently large q by using Lemma 15.1.4. For simplicity we first treat the case when

all of the entries are rational. Then consider the q-adic numbers Qq and the q-adic

integers Zq. As the U1, . . . , Uk and the b1, . . . , bk are fixed, for a sufficiently large prime

q all of their entries are in Zq\qZq. On the other hand, by construction ρ(gi) ∈ qZq

for 1 ≤ i ≤ k and as qZq is an ideal therefore also all of the entries of ρ(gi)Ui are in

qZq. By Lemma 15.1.4 it therefore suffices to check that (qZq)
d + b1 ̸= (qZq)

d + b2 or

equivalently b1− b2 ̸∈ (qZq)
d, which is clearly the case for sufficiently large q. Thus g1

and g2 generate a free semigroup. The same argument applies in the general case for

K the number field generated by the coefficients of the entries of gi and by choosing

any prime ideal that factors (q).

Thus it follows by Lemma 15.1.3 that hµ ≫ ε and note that by Lemma 15.2.2

it holds that Sµ ≪K,d log q. Hence there exists a constant C depending on all the

relevant parameters such that the self-similar measure of µ is absolutely continuous

if

C|χµ| ≤
1

(log log q)2
.

Therefore it remains to estimate the Lyapunov exponent. Indeed, note that

log

(
q

q + ai,q

)
= log

(
1− ai,q

q + ai,q

)
≥ log

(
1− q1−ε

q

)
≫ −q−ε.

Therefore |χµ| ≪ q−ε and the claim follows for sufficiently large q.

Corollary (Restatement of Corollary 7.0.9). Let d, ε and µU =
∑k

i=1 piδUi
as well

as b1, . . . , bk be as in Proposition 7.0.8. Let q be a prime number and consider for

1 ≤ i ≤ k − 1

gi(x) =
q

q + 3
Uix+ bi and gk(x) =

q

q − 1
Ukx+ bk.

Assume that g1, . . . , gk do not have a common fixed point and further that

pk ≤
1

3
.

Then the self-similar measure of µ =
∑k

i=1 piδgi is absolutely continuous for q a

sufficiently large prime depending on d, ε, U1, . . . , Uk and b1, . . . , bk.

Proof of Corollary 7.0.9. As in the proof of Corollary 7.0.8, g1 and g2 generate a free

semigroup for sufficiently large q and therefore hµ ≫ ε. Write α1 = p1 + . . . + pk−1

and α2 = pk. Then we have as α1 + α2 = 1,

Eγ∼µ[ρ(γ)] = α1
q

q + 3
+ α2

q

q − 1
=
q2 + (4α2 − 1)q

(q + 3)(q − 1)
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and thus

1− Eγ∼µ[ρ(γ)] =
(q + 3)(q − 1)− (q2 + (4α2 − 1)q)

(q + 3)(q − 1)
=

(3− 4α2)q − 3

(q + 3)(q − 1)
.

On the other hand, choosing ρ̂ = q
q+3

we have

Eγ∼µ[|ρ̂− ρ(γ)|] = α2

(
q

q − 1
− q

q + 3

)
=

4qα2

k(q + 3)(q − 1)
.

Thus it follows that

lim
q→∞

Eγ∼µ[|ρ̂− ρ(γ)|]
1− Eγ∼µ[ρ(γ)]

=
4α2

3− 4α2

< 1 (15.4.1)

provided that α2 = pk < 3
8
. If we assume that pk ≤ 1

3
then we have that the

limit in (15.4.1) is uniformly away from 1. As in Corollary 7.0.8, we have that

Sµ ≪K,d log q. Therefore by Theorem 7.0.6 there exists a constant C depending on

all of the parameters such that µ is absolutely continuous if

C|χµ| ≤
1

(log log q)2
.

As in Corollary 7.0.8 it follows that |χµ| ≪ q−1 and hence the claim follows.

We next prove Corollary 7.0.10 and first show the following basic lemma.

Lemma 15.4.1. Let K be a real algebraic number field satisfying Q(
√
q) ⊂ K for a

prime q. Then there exists a field automorphism Φ ∈ Aut(K/Q) such that Φ(
√
q) =

−√
q.

Proof. Write K0 = Q(
√
q) and assume that K = K0(α1, . . . , αℓ) for some α1, . . . , αℓ ∈

K. Denote by Θ ∈ Aut(K0/Q) the automorphism with Θ(
√
q) = −√

q. When ℓ = 1

we consider the surjective map K0[X] → K0(α) with P 7→ Θ(P )(α1) for Θ(P ) the

polynomial to which all coefficients we have applied Θ. This map induces a field

automorphism of K0(α) with the required properties and our proof is concluded by

an induction on ℓ with the same argument.

Corollary (Restatement of Corollary 7.0.10). Let d ≥ 1 and ε ∈ (0, 1) and µU =∑k
i=1 piδUi

an irreducible probability measure on O(d) with pi ≥ ε for all 1 ≤ i ≤
k. Assume furthermore that U1, . . . , Uk have algebraic entries. Let ρ̃ ∈ (0, 1) be

sufficiently close to 1 in terms of d, ε and µU and let C > 1 be sufficiently large

depending on the same parameters.

Suppose that gi(x) =
ai+bi

√
q

ci
Uix + di with ai, bi, ci ∈ Z and di ∈ Zd for 1 ≤

i ≤ k and a prime number q do not have a common fixed point. Then the self-

similar measure associated to µ =
∑k

i=1 piδgi is absolutely continuous if the following

properties are satisfied:
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(i)
ai+bi

√
q

ci
∈ (ρ̃, 1) for 1 ≤ i ≤ k,

(ii) for j = 1 and for j = 2 we have∣∣∣∣aj − bj
√
q

cj

∣∣∣∣ < 1

3
,

(iii) For L = max(
√
q, |ai|, |bi|, |ci|, |di|∞) we have

C|χµ| ≤
1

(log(logL))2
.

Proof of Corollary 7.0.10. By Theorem 7.0.4 there exists ρ̃ ∈ (0, 1) and C ≥ 1 de-

pending on d, ε and µU such that µ is absolutely continuous if pi ≥ ε as well as
ai+bi

√
q

ci
∈ (ρ̃, 1) for all 1 ≤ i ≤ k as well as

hµ
|χµ|

≥ C

(
max

{
1, log

Sµ

hµ

})2

.

Let K be the number field generated by all the coefficients of elements in supp(µ).

Then by Lemma 15.4.1 there is a field automorphism Φ ∈ Aut(K/Q) such that

Φ(
√
q) = −√

q and therefore we have that |ρ(Φ(gj))| < 1
3
for j = 1, 2. Thus by

Lemma 15.1.5 and Lemma 15.1.3 we have that hµ ≫ ε. We also have hµ ≤ log ε−1.

On the other hand, it follows by Lemma 15.2.2 (iii) and Proposition 15.2.3 that

Sµ ≪d,µU
logL, which readily implied the claim upon changing the constant C.

Lemma 15.4.2. In the setting of Corollary 7.0.10, for ε > 0 choose

ai = ⌈√q⌉ −mi,q, bi = 2 ci = 3⌈√q⌉

formi,q an integer satisfyingmi,q ∈ [0, q1/2−ε] and any di ∈ Zd with |di|∞ ≤ exp(exp(qε/3)).

Then µ is absolutely continuous for sufficiently large q depending on d, p0, ε and

U1, . . . , Uk, provided g1, . . . , gk does not have a common fixed point.

Proof. It holds that
ai+bi

√
q

ci
∈ (0, 1) converges to 1 as q → ∞ and that |ai−bi

√
q

ci
| < 1

3
.

We next estimate the Lyapunov exponent of µ. Indeed, note that for q large enough,

log

(
ai + bi

√
q

ci

)
≥ log

(
⌈√q⌉ − q1/2−ε + 2

√
q

3⌈√q⌉

)

≥ log

(
1−

2(⌈√q⌉ − √
q) + q1/2−ε

3⌈√q⌉

)
≫ −q−ε

and therefore |χµ| ≪ q−ε. In our case, for large q we have L = |di|∞ = exp(exp(qε/3))

and therefore log(logL) = qε/3. Thus for sufficiently large q we have that C|χµ| ≤
(log logL)−2 = q−2ε/3 and the claim follows.
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15.5 Real Bernoulli Convolutions

In this section we prove Corollary 7.0.11.

Corollary (Restatement of Corollary 7.0.11). There is an absolute constant C > 1

such that the following holds. Let λ ∈ (1/2, 1) be a real algebraic number. Then the

Bernoulli convolution νλ is absolutely continuous on R if

λ > 1− C−1min{logMλ, (log logMλ)
−2}. (15.5.1)

Proof of Corollary 7.0.11. As in the paragraph before Proposition 14.2.2, Bernoulli

convolutions are uniformly non-degenerate. Since we are in d = 1 they are (1, 0)-

well-mixing and therefore Theorem 8.1.4 applies. For convenience write η = logMλ

and hλ = hνλ . We don’t keep track of possible enlargements of C. That Bernoulli

convolutions are uniformly non-degenerate follows from Proposition 8.1.2. Then The-

orem 8.1.4 implies that if

(1− λ)−1hλ > C (max {1, log η/hλ})2 , (15.5.2)

then νλ is absolutely continuous. Recall that by [BV20, Theorem 5] (which is stated

with logarithms base 2) there is an absolute c0 ∈ (0, 1) such that c0min(log 2, η) ≤
hλ ≤ min(log 2, η).

We proceed with a case distinction. First assume that η ≤ log 2. Then c−1
0 ≥

η/hλ ≥ 1 and therefore by (15.5.2) the condition (1 − λ)−1c0η > C is sufficient for

absolute continuity, which is equivalent to

λ > 1− C−1η. (15.5.3)

Next assume that η ≥ log 2. Then c0 log 2 ≤ hλ ≤ log 2 and so (15.5.2) gives

(1− λ)max{1, log η + log(c0 log 2)
−1}2 < C−1.

Note that max{1, log η + log(c0 log 2)
−1} ≤ 2 log(c0 log 2)

−1max{1, log η}. Therefore

we get the condition

λ > 1− C−1max{1, log η}−2 = 1− C−1min{1, (log η)−2}. (15.5.4)

To deduce (15.5.1), we note that there is a unique η′ > 0 with η′ = (log η′)−2

and this η′ satisfies 2 ≤ η′ ≤ 5/2. Moreover log η < (log η)−2 for 0 < η < η′ and

log η > (log η)−2 for η > η′. Therefore (15.5.1) holds for η < log(2) and η > 2η′ by

(15.5.3) and (15.5.4). In the range log(2) < η < 2η′, we enlarge C to ensure that

(15.5.1) holds.
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We note that if λ is algebraic and not the root of any non-zero polynomial with

coefficients 0,±1, then hλ = 2 and also as mentioned in Remark 5.10 of [Kit21],

Mλ ≥ 2. Therefore for such a λ, νλ is absolutely continuous if

λ > 1− C−1min{1, (log logMλ)
−2}. (15.5.5)

15.6 Complex Bernoulli Convolutions

Corollary (Restatement of Corollary 7.0.12). For every ε > 0 there is a constant

C ≥ 1 such that the following holds. Let λ ∈ C be a complex algebraic number such

that |λ| ∈ (2−1/2, 1) and

|Im(λ)| ≥ ε. (15.6.1)

Then the Bernoulli convolution νλ is absolutely continuous on C if

|λ| > 1− C−1min{logMλ, (log logMλ)
−2}.

Proof of Corollary 7.0.12. We can’t directly apply Proposition 8.1.2 so we give a di-

rect proof of mixing and non-degeneracy. First note that (15.6.1) ensures that there is

some c > 0 and T ≥ 1 depending only on ε such that the (c, T )-well-mixing property

is satisfied.

To deal with non-degeneracy, we distinguish the case when |λ| ≤ λ0 and |λ| ≥ λ0

for some λ0 sufficiently close to 1. As in the case of real Bernoulli convolution, for

any given λ0, the family of Bernoulli convolutions with |λ| ≤ λ0 are easily seen to be

uniformly non-degenerate depending on λ0. To deal with the case λ ≥ λ0, we rescale

our measure to the one given by the law of Bλ =
√

1− |λ|2
∑∞

i=0±λi and denote

the resulting measure by ν ′λ. Now let Σ be the covariance matrix of ν ′λ under the

natural identification of C with R2. Note that the trace of Σ is 1 and we claim that

the smallest eigenvalue of Σ is ≫ε 1. Indeed, for a unit vector x ∈ R2 we want to

estimate xTΣx, which is by identifying C with R2 equal to

E[|Bλ · x|2] = (1− |λ|2)
∞∑
i=0

|λi · x|2 ≫ε 1,

which follows as |λi · x|2 ≫ |λ|2 unless λi and x are almost colinear, which is only the

case for a very small proportion of i’s. It follows that

inf
p∈P (2)

Ex∼N (0,Σ)[|px|] ≫ε 1
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for p ranging in the orthogonal projections of R2 as in section 14.2. By for example

Lemma 10.4.3 we know that W1 (ν
′
λ, N(0,Σ)) ≪

√
1− |λ|2. Therefore for λ0 suffi-

ciently close to 1 in terms of ε, uniform non-degeneracy follows as in Lemma 14.2.5.

Having establish uniform well-mixing and non-degeneracy, Corollary 7.0.12 is estab-

lished by the same argument as the proof of Corollary 7.0.11.

192



Bibliography

[Agm65] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical
Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.
Prepared for publication by B. Frank Jones, Jr. with the assistance of George W.
Batten, Jr.

[AK63] V. I. Arnold and A. L. Krylov, Uniform distribution of points on a sphere and certain
ergodic properties of solutions of linear ordinary differential equations in a complex
domain, Dokl. Akad. Nauk SSSR 148 (1963), 9–12.

[And04] N. Andersen, Real Paley-Wiener theorems for the inverse Fourier transform on a
Riemannian symmetric space, Pacific Journal of Mathematics 213 (2004), 1–13.

[ARHW21] A. Algom, F. Rodriguez Hertz, and Z. Wang, Pointwise normality and Fourier decay
for self-conformal measures, Adv. Math. 393 (2021).

[Aub98] T. Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs
in Mathematics, Springer-Verlag, Berlin, 1998.

[Ave73] A. Avez, Limite de quotients pour des marches aléatoires sur des groupes, C. R. Acad.
Sci. Paris Sér. A-B 276 (1973).

[BB23] T. Bénard and E. Breuillard, Local limit theorems for random walks on nilpotent lie
groups (2023). https://arxiv.org/abs/2103.12684.

[BdlHV08] B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s property (T), New Mathematical
Monographs, vol. 11, Cambridge University Press, Cambridge, 2008.
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