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Abstract

In Part I, we establish the first examples of finitely supported measures on semisim-
ple Lie groups that satisfy a local limit theorem on the associated symmetric space.
We reduce the problem at hand to a spectral gap question for a natural operator
associated with the measure. When the given measure satisfies strong Diophantine
properties and is supported close to the identity, the latter spectral gap problem is
proven. Moreover, quantitative error rates for the local limit theorem are shown under
additional assumptions, and C*-smoothness of the Furstenberg measure is discussed.

Part II, which is joint work with Samuel Kittle, is concerned with absolutely
continuous self-similar measures. A condition for absolute continuity in arbitrary
dimensions is shown. We thereby construct the first explicit absolutely continuous
examples of genuinely inhomogeneous self-similar measures in dimensions one and
two. Varji’s result for Bernoulli convolutions is strengthened, and in dimension > 3

we improve the condition on absolute continuity by Lindenstrauss-Varju.
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Chapter 1

Introduction

The study of random walks on Lie groups is a broad topic. This thesis addresses two
subjects in the area: local limit theorems and the study of stationary measures, with
an emphasis on self-similar measures. Both topics have a rich historical background
and there are analogies and connections in the recent developments. Crucially, several
results from the past 20 years as well as the primary theorems from Part I and
Part II of this thesis require that the entries of the matrices in the support of our
given distribution are algebraic. More precisely, these advancements rely on distinct
problems in Diophantine approximation on Lie groups, which are well understood
when the entries are algebraic but remain mostly unresolved in the transcendental
case. We will direct our attention towards these facets in the introduction.

To set the stage, let G be a topological group acting on a space X, and let u be a
Borel probability measure on GG. Consider independent random variables Xy, X, ...

each distributed according to u, and fix a starting point xy € X. Denote
Zn,xo = Xl tee Xn.xg. (101)

The main goal in the subject is to study the behavior of Z,, ,,, as n — oco. We further
note that Z, ,, is distributed as p*" * d,,, where ™" denotes the n-fold convolution
of .

In the introduction, we first present some notation, then discuss local limit theo-
rems and state some of the results from Part I. Thereafter, we give an overview on

self-similar measures and finally discuss the main result from Part II.

1.1 Notation

We review notation that will be used throughout this thesis. More specific notation
that will be used in Part I will be reviewed in section B.1] and for Part II in section 8.3



The following asymptotic notation is used. We write A < B or A = O(B) to
denote that |A] < CB for a constant C' > 0 and for sequences X,, and Y,, we write
X, = o(Y,) to symbolize |§,—:| — 0 as n — oo. If the constant C' or the speed of
convergence depends on additional parameters, we add subscripts. Moreover, A < B
denotes A < B and B < A.

For a topological group G we denote by mg a fixed choice of a left Haar measure,
i.e. a measure satisfying mg(hA) = mg(A) for all Borel measurable subsets A C G
and h € G. Recall that the (left) Haar measure exists and is unique up to scaling
when G is a locally compact Hausdorff group. When G is compact, we denote by mg
the Haar probability measure. For G = R we write mg for the standard Lebesgue
measure.

When G acts on a space X, p is a Borel measure on G and v one on X, we define

the convolution p * v as the measure uniquely determined by satisfying

(s v)(f) = / / £(9.) dug)dv(z)

for all continuous compactly supported functions f : X — R.

1.2 Local limit theorems

To review some classical results, we first consider the case where G = X = R, and
let X1, Xs,... be independent random variables distributed according to p. Assume
that the mean E[X;] is zero and that the variance 0? = E[X?] < oo is finite. The

central limit theorem states that

Zno 2
ﬁ _>N(O70- )7

where the convergence is in distribution and N'(0, ?) is the distribution of a centered
Gaussian with variance o2.
about Z,( at scale /n. On the other hand, it is of interest to describe Z, o at scale

1, which is addressed by local limit theorems. Indeed, as long as p is non-lattice,

Thus, the central limit theorem provides information

meaning p is not supported on SZ for some § € R, we have, as n — oo,

*M MR
V't — N (1.2.1)

where mpr denotes the Lebesgue measure on R and the measures converge vaguely,

that is ((1.2.1]) holds for functions f € C.(R).



Our interest in this section lies in similar questions for arbitrary transitive actions
of a topological group G on a space X. While a central limit theorem in this general
context is difficult to formulate, it is expected that a local limit theorem usually holds,
provided the measure in question is non-degenerate and symmetric. Specifically, we

give the following definition.

Definition 1.2.1. A probability measure p on a locally compact group G is called
aperiodic if the support of p is not contained in a coset gH for some g € G and a
proper closed subgroup H < G.

The probability measure p is called symmetric if for all continuous compactly

supported functions f: G — R we have that

/ £(9) dulg) = / f(g7) dulg).

We offer the following general question on the behaviour of random walks for

transitive actions.

Question 1.2.2. (Does a Local Limit Theorem hold?) Let G be a locally compact,
second countable and Hausdorff group acting continuously and transitively on a space
X. Let u be an aperiodic, symmetric and compactly supported Borel probability mea-
sure on G.

Does there then exists a sequence of real numbers (a,)n>1 with a, > 0 such that for
every xg € X there is a limiting non-zero Borel measure m,, z, on X of full support
such that

A" % Ogy —> My a0 (1.2.2)

vaguely? More precisely, we ask whether for all continuous compactly supported func-
tions f : X — R it holds that

tiw a, [ f(ga0)dn™(9) = [ 7(0) dimpe o)

If in addition X is endowed with a Borel measure mx and the G action on X
is measure preserving, s then the limiting measure my, 5, absolutely continuous with

respect to myx for every ro € X ?

We have made the above strong assumptions on the measure g in order to for-
mulate a question that could be valid for all groups. However, when working with
concrete groups, some of the assumptions can be weakened. For example, when
G = R, it suffices to assume that p is centered, or when G is compact, we can drop

the assumption that p is symmetric, as in Theorem [1.2.3]



The author does not know of a group or group action where is false, yet as
the setting is vast, we have not dared to formulate the question as a conjecture. As
we discuss later, it is known that Question [1.2.2| can be answered in the affirmative
when G = X is a discrete ameanable group or a free group. In the remainder of this
section we discuss the case when G is a Lie group and Part I of this thesis addresses
G being a semisimple Lie group such as SL,(R).

When is known, it is of further interest to describe the limiting measure
My, OF to prove error rates for the convergence. When G is an ameanable group
and X = G, then in all known cases the limit measure m,, ,, is a multiple of the Haar
measure. As discussed below, the latter does not hold for the free group ((1.2.7)) or
for semisimple Lie groups (Theorem [1.3.1]).

Compact Groups

When G is compact, the Haar probability measure m¢ is the natural candidate for
the limit measure in (|1.2.2). Indeed, for compact groups the local limit theorem was
proven by Ito-Kawada in 1940. This is actually the first paper of Kyoshi Ito, the

pioneer of stochastic integration.

Theorem 1.2.3. ([IK40]) Let G be a compact topological group and let p be an

aperiodic probability measure on G. Then p*™ converges to mg vaguely as n — 0o.

The latter theorem affirms Question for compact topological groups. In fact,
every continuous function on X can be lifted to a continuous function on G and
follows from Theorem m

Having established that p** converges to m¢, one may wonder about the speed
of convergence. When G = T = R/Z and p = (6, + 0_,) for some irrational «,
then the speed of equidistribution of p*" is equivalent to Diophantine properties of
a. Indeed, this relies on the Fourier inversion formula and the observation that for
n € 7,

p(n) = /62””“ du(x) = cos(2mna).

Similar phenomena occur whenever G is a compact abelian Lie group.

We turn our attention for the remainder of this section to compact simple Lie
groups such as, for example, the orthogonal group SO(d) for d > 3 or the special
unitary group SU(r) for r > 2. When p is supported on finitely many elements
generating a dense subgroup of G, then it follows from the Tits alternative [Tit72]

that the cardinality of the support of ;" grows exponentially. It is therefore natural



to conjecture that p* converges to mg with exponential speed, in other words that
for every f € C*(G),

P (f) = ma(f) + Opr(e™™). (1.2.3)

for a constant 6 = 6(u) depending on .
The following two important results were proved by Benoist-de Saxcé, generalising
pioneering work by Bourgain-Gamburd [BGO§|, [BG12]. We first define the weak

Diophantine property of probability measures.

Definition 1.2.4. Let G be a compact group. Then pu is called weakly Diophantine
if there are constants c1,co > 0 such that for sufficiently large n,

Sup M*n(Befcln(H)) S e*CQTL’
H<G

where the supremum is taken over all proper closed subgroups H of G- and By-cn(H) =
{ge G :d(g,H) < e “"}.

Theorem 1.2.5. (|BdS16, Theorem 1.1]) Let G be a connected compact simple Lie
group and let p be a symmetric Borel probability measure on G. Then u is weakly
Diophantine if and only if it has a spectral gap on L*(G), that is there is v > 0 such
that

px flla < (L= f]]2 (1.2.4)
for all f € L*(G) with ma(f) =0 and where (= f)(x) = [ f(gx)du(g) for x € G.

Theorem 1.2.6. ([BdS16, Theorem 1.2]) Let G C GL4(R) be a connected compact
simple Lie group. Let p be a probability measure supported on finitely many matrices

in GL4(Q) and generating a dense subgroup. Then p is weakly Diophantine, and
therefore has a spectral gap on L*(Q).

When g has a spectral gap on L*(G), then (1.2.3) holds as it follows for example
from [KK24, Corollary 3.11] that there is a constant § = 6(x) such that for any
bounded Lipschitz function f : G — R,

p"(f) = ma(f) + Ou(max(||fllee, Lip(f))e ™),

where || f||oc = supyeq | f(g)| and Lip(f) is the Lipschitz constant of f.

Analogously to , it is believed that every probability measure on a connected
compact simple Lie group whose support generates a dense subgroup has a spectral
gap on L?(G). Tt is a major open problem in the field to remove the assumption
of Theorem that the entries of the matrices in the support of u are algebraic.

5



Throughout this thesis we will encounter numerous results that are understood in the
case when the entries of the matrices in the support are algebraic, yet open in the

general case.

Isom(R?) action on R?

Denote by Isom(R¢) the group of isometries of R?, i.e. maps of the form x — Ux + b
for U € O(d) and b € R? with z € R? Instead of studying the sum of random
variables on RY, it is an interesting question to study random walks for the Isom(R?)
action on R

The problem of establishing a central limit theorem or a local limit theorem in
this setting can be traced back to the paper by Arnold-Krylov [AK63| from 1963.
After the work of several people (we refer to [Varl5| for a historical account), Varji

finally proved a local limit theorem in 2015.

Theorem 1.2.7. ([Varld|, Local Limit Theorem with error rates) Let ju be an aperi-
odic, compactly supported probability measure on Isom(R?). Then there exists yo € RY,
a quadratic form A and constants Ca > 0 and ¢ > 0, all depending only on u, such
that the following holds.

Let f: RY — R be a smooth function with compact support. Then for Z, ., as

defined in (1.0.1)), it holds that

nPR[f(Znwy)] = CA/f(x)e_A(x_yo’x_yO)/" dmpga(x)

+O0u(n™2 + Jwo P Y| If | + Ople™

Nl s

where || - ||1 is the L'-norm and || - ||yy2.as12 is the L* Sobolev norm defined by

112 = S IFEPL+ €N dmpa(€).

In [Varl5|, Theorem is proved under weaker assumptions on yu, yet we have
stated the result in the above form for simplicity. We denote by U () the push forward
of p1 under the map that sends an isomtery to the orthogonal part, i.e. g € Isom(R?)
U(g) € O(d), where g(z) = U(g)z + b(g) for all € R% The proof of Theorem [1.2.7]
relies on establishing a weakening of the L?(O(d)) spectral gap discussed in the last
subsection. In the case when U(u) has a spectral gap on L*(SO(d)), the following
strengthening of Theorem was established by Lindenstrauss-Varju in 2016.

Theorem 1.2.8. (|LV16|, Local Limit Theorem with strong error rates) Let d > 3
and let p be a compactly supported probability measure on Isom(R?). Assume that

U(p) is supported on SO(d) and has a spectral gap on L*(SO(d)). Moreover, assume

6



that there is no point x € R? such that Xi(x) = = almost surely. Then there exists
vo € RY, a quadratic form A and constants Ca > 0 and ¢ > 0, all depending only on
1, such that the following holds.

Let f : RY = R be a smooth function with compact support. Then

WELf(Zya)] = Ca / Flw)emBEwe )/ g (2)
0™ + [z Y1 f1 4 Ople ™)1 casane

The difference between Theorem [1.2.8] and Theorem [1.2.7]is that the decay of the
term in front of the Sobolev norm || f||y2,+1)/2 is exponential and not only Ou(e*‘ml/‘l).
The former is optimal because the number of points in the support of u grows expo-
nentially.

The proof of Theorem and Theorem [1.2.§8| relies on spectral estimates of
natural operators arising from the theory of unitary representations on Isom(R?).
Indeed, as above, for g € Isom(R?) we denote by U(g) the rotation part and by b(g)
the translation part. Then for r € R consider the unitary representation p, : G —

U(L*(S4 1)) defined by

(pr(9))(€) = e 27 ED (U (g)71¢)
for p € L?(S?71), g € Isom(R?) and ¢ € ST,
For a given probability measure u on Isom(R?) one considers the operator
5= o) = [ o.() dulo) (1.2:5)

We observe that for n > 1,

Sr=p (™) = / pr(g) dp™ (g)

Then by the Fourier inversion formula and Fubini’s theorem the following holds, which

we state for simplicity in the case when xy = 0 (note that ¢g.0 = b(g)),

E[f(Zno)] = / £(b(9)) dy™(g) = / / F(E)e D dimga(€)d™ ()

_ / TSt 1)(€/[€]) dmpa(€). (1.2.6)

The proof of Theorem and Theorem proceeds using distinct bounds
for S"al in the ranges when the frequency ¢ is low and when it is high. For the low
frequency range one applies a Taylor expansion to deduce satisfactory bounds. For
Theorem the high frequency range is dealt with by subtle estimates relying on
the weakened spectral gap for U(u). The following important theorem is proven in
[LV16] to deal with the high frequency range in Theorem [1.2.8]

7



Theorem 1.2.9. (|LV16, Corollary 8.1]) Let d > 3 and suppose that p is a compactly
supported probability measure on Isom(RY). Assume that U(u) is supported on SO(d)
and has a spectral gap on L*(SO(d)). Then there is a constant ¢ > 0 such that

sup [S.]l <1 -,
r>1

where || - || is the operator norm.

Remarkably, Theorem has important applications in establishing absolute
continuity of self-similar measures in dimension d > 3, the topic addressed in Part II
of this thesis. The paper [LV16] is indeed a central source of inspiration for all the

results of this thesis.

Further results

We briefly mention a few further papers on local limit theorems in various contexts.
Nilpotent Lie groups were studied by Breuillard [Bre05b], Hough [Hou19], Diaconis-
Hough [DH21] and Bénard-Breuillard [BB23|.
The case of discrete groups is also an active area of research. When G is a discrete
amenable group, it follows for a symmetric aperiodic probability measure ;1 on G' by
[Ave73] (c.f. furthermore |[Ger80]) that

lim £ (9) _
n—voo [1*7(e)

for all ¢ € GG, which affirms Question [1.2.2) when G = X is amenable. On the other
hand, it was proven by Gouézel [Goul4|, generalising work by Lalley for free groups
[Lal93|, that if G is a discrete hyperbolic group and p is an aperiodic probability

measure on G, then for every z,y € G there exists a constant C(z,y) such that

n3/2
lim —P[Z,. =vy] =C(z,y) (1.2.7)

n—oo g"
for o € (0,1) a constant depending on .

Another topic of interest is to study volume preserving actions of discrete sub-
groups on finite-volume homogeneous spaces. We mention Bourgain-Furman-Lindenstrauss-
Mozes [BFLM11] establishing quantitative results for SL,(Z) acting on T?, Benoist-
Quint [BQ11] classifying stationary measures for the action on finite-volume homo-
geneous spaces of semi-simple Lie groups G by Zariski dense subgroups of G, and
the recent work of Bénard-He [BH24] proving a quantitative local limit theorem in
the latter setting for arithmetic quotients of for example G = SLy(R) and measures

supported on algebraic elements.



1.3 Results of Part 1

In contrast to the above, the understanding of local limit theorems for non-compact
semisimple Lie groups such as SL,(R) is much less complete. The only known case
where a local limit theorem is proven assumes that p is spread out, meaning a con-
volution power p*" for some n > 1 is not singular with respect to the Haar measure.

Indeed, the following theorem was proven by Bougerol in 1981.

Theorem 1.3.1. ([Bou81]) Let G be a non-compact connected semisimple Lie group
with finite center and let  be a compactly supported spread out probability measure
on G whose support generates a dense subgroup of G. Then there exists a constant

o=o(u) €(0,1) and a continuous function 1y on G depending on p such that

0/2

i * = [ 1o du(9) = [ Flo)inta) dmalo (13.1)

n—oo O

for all f € CX(G) and where £ = ((G) is an integer depending only on G. The
function Vg satisfies j * g = Yo * 4 = Ty.

The assumption that p is compactly supported is not necessary. Indeed, one only
requires that p has a finite second moment as defined in (2.0.2). The reader may
observe the analogy between (|1.3.1)) and ([1.2.7]).

Ever since Bougerol’s theorem, it has been an open problem to extend to

finitely supported measures whose support generates a dense subgroup. This question

motivates the first part of this thesis. Although we cannot solve this problem, we give
the first examples of finitely supported probability measures that satisfy a local limit

theorem on the associated symmetric space.

Theorem 1.3.2. (Follows from Theorem[2.0.1] and Theorem[2.0.7) Let G be a non-
compact connected semisimple Lie group with finite center, let K C G be a maximal
compact subgroup and denote by X = G/K the associated symmetric space. Then
there exists finitely supported probability measures p on G such that holds on
X.

Indeed, there exists a constant o = o(p) € (0,1) and a continuous function 1y on

G depending on p such that for all xog € X,

%

i * = [ Fgan) di(o) = [ fg.an)inlg) dmols) (13.2)

n—oo gn

for all f € CX(X) and where ¢ = ((G) is an integer depending only on G.



The proof of Theorem [1.3.1) and Theorem [1.3.2]is based on studying an analogous
class of operators to S, as defined in for Isom(R%). For symmetry, we also
denote this class of operators as S,. In Theorem we prove (|1.3.2)) under the
assumption that Sy is quasicompact, that is, the essential spectral radius (see (3.1.1)))
is strictly less than the spectral radius. We also show quantitative bounds for ((1.3.2)),
inspired by Theorem and Theorem [1.2.8 in Theorem and Theorem [2.0.3

To deduce Theorem from Theorem [2.0.1], we need to show that there exist
finitely supported measures with Sy quasicompact. When G = SLy(R), such ex-
amples were constructed by Bourgain |[Boul2]. In fact, as we discuss next section,
Bourgain showed that there exist finitely supported measures with absolutely contin-
uous Furstenberg measure. The method of [Boul2] was generalised in [BISG17] to
arbitrary connected simple Lie groups and we use the results there to conclude that
Sp is quasicompact for numerous examples as well as to generalise Bourgain’s result
for Furstenberg measures. All this is stated in Theorem [2.0.7] and Theorem [2.0.8|
Connecting to the weak Diophantine property from Definition [I.2.4] the measures
we work with have strong Diophantine properties while being supported close to the

identity. This leads to the definition of (cy, ¢z, €)-Diophantine measures as given in

Definition 2.0.5]

1.4 Self-similar measures

Returning to the setting of , when most of the elements of the measure p
exhibit a contracting behavior, it can be shown that Z, ., converges to a limiting
distribution. More concretely, let us assume that X is a complete metric space and
the measure p is contracting, that is, for every g € supp(u) it holds that Lip(g) < 1,
for Lip(g) the Lipschitz constant of g. According to Hutchinson’s theorem |[Hut81],
there exists a unique probability measure v on X such that for any starting point
zo € R% as n — oo,

[T By = v, (1.4.1)

This measure v is p-stationary, satisfying p * v = v, and the convergence stated
above is exponentially fast. The study of properties of the limiting distributions v in
various settings is an active area of research. We also note that is an instance
of .

From now on, consider the case where X = R? and that u is supported on sim-
ilarities. A similarity on R? is a map ¢ : R? — R? that, for some p > 0, satisfies

d(g9(z),g(y)) = p-d(z,y) for all z,y € RY. We denote the group of similarities as

10



Sim(R%). For each similarity g € Sim(IR%), there exist a scalar p(g) > 0, an orthogonal
matrix U(g) € O(d), and a vector b(g) € R? such that

g9(z) = p(g)U(g)z + b(g) (1.4.2)

for all x € R4
For a contracting measure y on Sim(R?), the limiting measure v from (1.4.1) is
referred to as the self-similar measure of p. Self-similar measures are well-known to

be exact-dimensional ([FHO09|), that is, there exists a constant « € [0, d] such that
V(B (w)) = roton=) (1.4.3)

as r — 0 for v-almost every z € RY, where B,(z) denotes the r-ball around z. The
quantity « is known as the dimension of v. Key questions in the study of self-similar

measures are:
1. What is the dimension of v?

2. Is v absolutely continuous on R?? That is, does there exist a function f, €
LY(R?) such that v = f, - volga?

Hochman’s Theorem

Recent decades have seen significant advances on these problems. We first recall
Hochman’s pivotal contributions ([Hocl4|, [Hocl7]). Let u be a finitely supported

probability measure. The random walk entropy of u is defined as

1 1
h, = lim —H(p*™") = inf —H(p™),

n—oo 1 n>1ln

where H(-) is the Shannon entropy. The Lyapunov exponent is given by

Xu = Egpullog p(g)]. (1.4.4)

Furthermore, we say that u is irreducible if the subgroup generated by {U(g) : g €
supp(u)} acts irreducibly on RY, meaning it has no invariant subspaces other than
the trivial ones {0} and RY. When all of the maps g € supp(u) have the same fixed
point € R?, then the Dirac measure d, is the self-similar measure of ;. When the
latter is not the case, we say that p does not have a common fixed point.
It is well known (cf. for example [FH09]) that
dim v < min {d, &} . (1.4.5)
Xl

Moreover the following conjecture is expected to hold.
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Conjecture 1.4.1. (Generalised Exact Overlaps Conjecture) Let u be a finitely sup-

ported, irreducible and contracting probability measure on Sim(R?) without a common

fixed point. Then
dim v = min {d, &} .
[Xul

Much of the literature on self-similar measures assumes that the support of u
generates a free semigroup, which is referred to as the support of u having no exact
overlaps. In this case, if u = Zlepiégi, then the random walk entropy can be

computed as
k
hy=H(pi,...,pr) = — Y _pilogp;.
i=1

Hochman proved Conjecture under a mild separation assumption. Indeed,
denote by
A, = min{d(g,h) : g,h € supp(u™) with g # h}, (1.4.6)

where d(-,-) is the metric on Sim(R?) given in (7.0.3).

Theorem 1.4.2. ([Hocl4|, [Hocl7]) Let u be a finitely supported, irreducible and
contracting probability measure on Sim(R?) without a common fized point. Suppose
that there is ¢ > 0 and infinitely many n > 1 such that A, > e~ ", then

dim v = min {d h } . (1.4.7)

_r
Xl
We also mention the following proposition, which implies, as we can embed Sim(R?)

in GLg41(R), that (1.4.7) holds for all u supported on finitely many similarities with

algebraic coefficients.

Proposition 1.4.3. (follows as Proposition Let p be a probability measure on
GL4(R) for some d > 1 supported on finitely many matrices with algebraic coefficients.
Then there exists ¢ > 0 such that A, > e~ " for alln > 1.

We invite the reader to compare Theorem [1.4.2] with Theorem[1.2.5] In both cases,
noticeable results concerning random walks on Lie groups are reduced to Diophan-
tine problems. There is an important difference: The weak Diophantine property
of Theorem [1.2.5| requires information on all scales whereas for the condition from
Theorem only infinitely many scales are necessary.

In the following discussion, for simplicity we consider G = SO(3). In the following

argument, that was communicated to me by Emmanuel Breuillard, it is shown that
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the conclusion of Proposition does not hold for every measure supported on two
elements generating a free group.
Denote by
T, ={(g,h) € SO(3) : g" =h" =1}
the n-torsion elements. It is simple to verify that |, T, is dense in SO(3) x SO(3)

for every kK > 1. When n,k > 1 there exists a small number r,; > 0 such that if
d((z,y), (a,b)) < rpy for some tuple (a,b) € T, then it holds that

d(z",I) <e ™ and d(y",I) <e ™.

We then write

Ek:U U BTn,k<<a7b))\Vn7

n>k (a,b)ETy,
where B, ,((a,b)) denotes the open 7, ball of (a,b) in G x G and V,, is the set of
all (g,h) € SO(3) x SO(3) such that w(g,h) = I for some word w of length < n.
Since V,, is a proper algebraic subset of SO(3) x SO(3), it follows that Ej is open
and dense. We finally denote

E=()E,

k>1
which by the Baire category theorem is a dense subset of SO(3) x SO(3). Also, every

element (x,y) € E generates a free group and for every k there is some n such that
0 < d(z",y") < 2.

Therefore for a probability measure supported on x and y the conclusion of Proposi-
tion that A,, > e~ for some ¢ > 0 and all n > 1 does not hold.

In contrast to the above discussion, Hochman’s theorem (Theorem only
requires separation on infinitely many scales. To the author’s knowledge, there is
no counterexample to the latter condition and one could therefore conjecture that it

always holds.

Conjecture 1.4.4. For every finitely supported probability measure on GL4(R), for
any d > 1, there exists ¢ > 0 such that A, > e~ for infinitely many n > 1.

Bernoulli Convolutions

The simplest interesting example of self-similar measures are Bernoulli convolutions.
For A € (0,1) we denote by

Uy the distribution of Z X\
i=0

13



where X; are independent random variables satisfying

The measure v, is referred to as the Bernoulli convolution of parameter A. It is the
self-similar measure associated to the unbiased measure supported on the two maps

x+— Ax + 1 and z — Axr — 1. We make the following basic observations:

1. When A € (0,1/2), then v, is supported on a Cantor set and v, is not absolutely

continuous.
2. For A =1/2, v, is the Lebesgue measure on [—2,2].

3. For A € (1/2,1), supp(vx) = [=5, 1) and vx may be absolutely continuous or

not.

The study of Bernoulli convolution is at least 90 years old and we expose the

following selection of known results:

1. (Jessen-Wintner 1935 [JW35, Theorem 11]) v, is of pure type, i.e. is either

singular or absolutely continuous to the Lebesgue measure.

2. (Erdés 1939 [Erd39]) When A~! is a Pisot number, then vy is not absolutely
continuous. A Pisot number is an algebraic number with all of its Galois con-
jugates having modulus < 1, as for example the golden ratio A = @ Erdos

result exploits that powers of Pisot numbers are well approximated by integers.

3. (Erdds 1940 |Erd40]) There exists some ¢ > 1/2 such that v, is absolutely

continuous for almost all A € [c, 1].
4. (Garsia 1962 |Gar62]) When A~! is a Pisot number, then dim vy < 1.

To continue our exposition, we recall the definition of the Mahler measure M.

Definition 1.4.5. The Mahler measure My of an algebraic number X\ is defined as
My = la| TT 12
|Zj|>1
where a(x — z1) -+ - (¥ — 2¢) is the minimal polynomial of \ over Z.
4. (Garsia 1962 [Gar62|) vy is absolutely continuous if A™! is an algebraic integer

and M, = 2. Examples include A = 27 %/* and the real roots of 2?*" — 2" — 2

for any max{p,n} > 2.

14



5. (Solomyak 1995 [Sol95]) vy is absolutely continuous for almost all A € (1/2,1).

6. (Hochman 2014 |[Hoc14]) It follows from Theorem that dimv, = 1 if A is
algebraic, but not the zero of a polynomial with coefficients in —1,0,1. Also,
it can be deduced from Theorem that the set of A € (1/2,1) such that

dim v, < 1 has Hausdorff dimension zero.

7. (Feng-Zhou 2022 [FF22|) Demonstrated that dim v, > 0.98040856 for all A €
(1/2,1).

We give special emphasis to the following two recent results by Varju, both pub-
lished in 2019.

Theorem 1.4.6. ([Varl9a|) For every € > 0 there is a constant c. > 0 such that v,
is absolutely continuous if X € (1/2,1) is algebraic and

A > 1 — c. min{log My, (log M,)~'7}.

Theorem |[1.4.6] established the first explicit examples of absolutely continuous
Bernoulli convolutions since the work of Garsia [Gar62] in 1962. For instance, Theo-
rem implies that v, is absolutely continuous for A =1 — § with coprime positive

integers p, ¢ and

p(log g)'+e

q
Theorem 1.4.7. ([Varl9b|) For every transcendental A € (1/2,1),

<e. (1.4.8)

dimvy, = 1.

Together with Hochman’s Theorem [1.4.2] Theorem [1.4.7| solves Conjecture [1.4.1
for Bernoulli convolutions. Varju’s proof strategy does not establish Conjecture[1.4.4
in the case of Bernoulli convolutions. Rather, the proof, roughly speaking, relies on
weakening the separation condition from Theorem for Bernoulli convolutions, as
was achieved by [BV19], as well as on exploiting subtle number-theoretic properties.
It is a remarkable achievement as it is the first time in the area where something can
be said about genuinely transcendental measures.

Similarly to the work of Breuillard-Varji [BV19], in my joint paper with Samuel
Kittle [KK25a], we show that a weaker separation condition than exponential sep-
aration on all scales is sufficient for arbitrary self-similar measures to establish the
conclusion of Theorem [1.4.2] The latter leads to an analogue of Theorem for

complex Bernoulli convolutions.
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Spectral Gap and Dimension d > 3

As mentioned above, the work of Lindenstrauss-Varji |[LV16] on the local limit the-
orem for Isom(R?) has applications to self-similar measures. In fact, the following

result is a consequence of Theorem [1.2.9]

Theorem 1.4.8. ([LV16| Theorem 1.3]) Let d > 3 and uy be a probability measure
on SO(d) with a spectral gap on L*(SO(d)). Then for every £ > 1 and € > 0 there
exists a constant py = pe(d, e, uy) € (0,1) depending on d, €, e and the spectral gap of
pu such that the following holds.

Let = Zle pidy, be a finitely supported probability measure on Sim(R?) without

a common fixed point. Then assume that

Ulp) = po

as well as for all 1 <1 < k,

plgi) € (pr, 1) and  pi>e.
Then the self-similar measure of i is absolutely continuous with a density in C*.

Before Theorem there was essentially nothing known on explicit examples of
absolutely continuous self-similar measures beyond the case proved by Garsia |Gar62]
in 1962 on Bernoulli convolutions with Mahler measure M, = 2. In addition, C*
densities are established, about which nothing explicit is known for Bernoulli convo-
lutions beyond the case when A = 27/* for k > 2, where Wintner [Win35| proved
that v has a density in C*~2(R).

Furstenberg Measure

Another case of interest are Furstenberg measures. We only discuss SLy(R) as much
of the recent work on Furstenberg measures is only established for this case.

Consider the SLy(R) action on one-dimensional projective space P!(R) = R?/ ~
given for g = (2¢%) and [j] € PY(R) by

()] = 1)

We recall the following definitions.
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Definition 1.4.9. A probability measure jn on SLa(R) is called strongly irreducible
if there is no finite subset S C PY(R) that is invariant under the action of elements
of the support of L.

The measure p is called unbounded if its support is not contained in a compact

subgroup.

It is a well-known theorem of Furstenberg (cf. for example [BL85|) that if 4 is a
strongly irreducible, unbounded probability measure on SLy(R), then there exists a
unique probability measure v on P!(R) that is u-stationary, i.e. u*v = v. Moreover,

the Lyapunov exponent Y, given in this setting by

Eypen [log 9]

= li
Ao = 0% n ’
is positive, for || - || the operator norm. The measure v is called the Furstenberg

measure of p. Furstenberg measures and self-similar measures are analogous and
there are numerous recent results in both settings.

Kaimanovich-Le Prince [KLP11] initially conjectured that the Furstenberg mea-
sure of a finitely supported measure is always singular with respect to the volume
measure on P!(R). Although there is evidence for the latter conjecture when the

support of p generates a discrete group, Bourgain [Boul2| disproved it.

Theorem 1.4.10. (|[Boul2|) For every { > 1, there exists a finitely supported measure

on SLy(R) whose Furstenberg measure is absolutely continuous with a density in C*.

As discussed previously, I have proved in Part I of this thesis that the measures
Bourgain constructed satisfy the local limit theorem as in . Moreover, I have
generalised Theorem to simple Lie groups in Theorem [2.0.8f We also point out
that Theorem [L.4.10] establishes C’-densities as in Theorem [1.4.8]

We next mention the following result on the dimension of Furstenberg measures.
Hochman and Solomyak proved an analogue of Theorem for Furstenberg mea-

sures.

Theorem 1.4.11. (|[HS17|) Let p be a finitely supported, strongly irreducible and
unbounded probability measure on G. Then the Furstenberg measure v is ezxact-

dimensional (as in (1.4.3)). Moreover, if there is ¢ > 0 such that A, > e~ for

alln > 1, then
dim v = min {1, &} .
2Xu

17



Similarly to ((1.4.5)), for Furstenberg measures dim v < min{1, 2};—‘;} Therefore, as
an absolutely continuous Furstenberg measure has dimension 1, for v to be absolutely

continuous, it must hold h, > 2x,,. It is therefore natural to conjecture that

h

. > 1

2Xu
implies absolute continuity for v. Recently, my collaborator Samuel Kittle [Kit23]
proved a weakening of the latter conjecture and thereby provided numerous new
examples of absolutely continuous Furstenberg measures.

To state Kittle’s result, let d(-,-) be a left-invariant metric on SLy(R), write

M,, = min {d(g, h) for g, h € Usupp(u*") with g # h} ,

i=0
and set .
S, = ——log M, and S, = limsup S,. (1.4.9)
n

n—o0

It is proven in Proposition [15.2.3| that if u is supported on matrices with coefficients
in a number field K of logarithmic height at most L, then

S, < LK : Q). (1.4.10)

Kittle worked with the following definition, for which we endow P!(R) with a

metric such that it is isometric to S'.

Definition 1.4.12. A measure v on P*(R) is said to be (o, t)-non-degenerate when-

v(By(x)) < «

for all z € PY(R), there B(x) is the open t-ball around z in P*(R).

Theorem 1.4.13. ([Kit23]) For every R > 1, o € (0,3) and t > 0 there is a constant
C > 0 depending on R,« and t such that the following holds.

Let v be a finitely supported, strongly irreducible and unbounded probability mea-
sure measure on G such that ||g|| < R for all g € supp(u) and the Furstenberg measure

is (av, t)-non-degenerate. Then v is absolutely continuous if

2
hy >C (max{l,logi}> :
Xu hy,
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We refer to Kittle’s paper for a discussion on how to apply Theorem [1.4.13] to
construct absolutely continuous Furstenberg measures. As the parameter a needs to
be less than %, the constructed measures are intricate. To state a concrete example,

denote for n > 1 by

n?-1 _ 2n n3+1 0
2 2 3

g= n2—71;1 ng;il_l and h = T(L) n3 :
n?4+1  n2+1 n34-1

Then the Furstenberg measure of %(59 + d5,) is absolutely continuous for sufficiently

large n.

1.5 Results of Part 11

I will state the main result of Part II (joint work with Samuel Kittle) and mention
a few consequences. The main discussion of the result presented will be given in the
introduction to Part II. We vastly generalise and strengthen Varji’s result on abso-
lutely continuous Bernoulli convolutions (Theorem and Lindenstrauss-Varji’s
condition on absolute continuity of self-similar measures in dimension d > 3 (The-
orem [1.4.8)). The result can be viewed as a strengthening of Theorem in the
context of self-similar measures in arbitrary dimensions.

Similarly to the case of Furstenberg measures, it is conjectured that

& > d
Xl

implies that v is absolutely continuous. The main result of Part II establishes a
weakening of this conjecture in the case where the rotation part of the self-similar
measure is fixed and the term d is replaced by a constant depending on the rotation

part and mildly on the separation rate.

We define S, as for Theorem [1.4.13 and note that (1.4.10) holds too.

Theorem 1.5.1. (Theorem Let d > 1 and € € (0,1). Given an irreducible
probability measure py on O(d) there exist constants C > 1 and p € (0,1) depending
on d,e and py such that the following holds. Let p = Zle pidg, be a contracting
probability measure on G without a common fized point satisfying U(pu) = py and

pi > € as well as p(g;) € (p,1) for all 1 < i < k. Then the self-similar measure v is

2
I > C (max{l,logi}) .
Xl hy,
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While leaving an extensive discussion of Theorem to the introduction of Part

IT, we make the following remarks:

1. Theorem is significantly simpler to apply than Theorem [1.4.13] However,
the proof method of Theorem [I.5.1]is closely related to that of Theorem [1.4.13]
The reason why these methods lead to a more applicable result for self-similar
measures is because the dynamics of the Sim(R?) action on R? is easier to
control than the one of the SLy(R) action on P!(R).

2. Theorem [L.5.1] strengthens Theorem (see Corollary [7.0.11)). For example,

when A =1 — g € (0, 1) for coprime natural numbers p, ¢, then v, is absolutely

continuous if ool )
p(loglogq)® _

e 7
q
for ¢ an absolute constant. We deduce similar results for complex Bernoulli

convolutions (Corollary [7.0.12)).

3. Although our methods cannot conclude results on C* densities, we can recover
the same condition as Theorem for absolute continuity. Indeed, as dis-
cussed in Theorem [8.1.5] our methods establish more explicit dependencies on

some of the parameters.

4. An inhomogeneous version of Theorem m (or rather Corollary|(7.0.11]) is given
in Theorem Indeed, denote for A\, Ay € (0, 1) the similarities

9i1(z) = Mz and g2(x) = Xox + 1.

Suppose that \; =1 — % for + = 1,2 and coprime natural numbers p;, ¢;. Then

the self-similar measure of p = 18, + 30,, is absolutely continuous if

. )2
piloglogg:)” _
d;
for ¢ = 1,2 and ¢ an absolute constant. This established the first absolutely

continuous examples of this form when A\; # As.

5. We construct examples of absolutely continuous self-similar measures for any
given collection of irreducible orthogonal matrices Uy, ..., U, and translations
b1, ..., by, provided they all have algebraic entries (Corollary . We note
that our result also applies in the case where Uy, ..., Uy generates a finite irre-
ducible subgroup of O(d).
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6. We also give examples of absolutely continuous measures that arise from gen-
erating measures that may have expanding similarities in their support, yet
satisfy x, < 0 (Corollary . We call such measures contracting on average
and they will be further discussed in the introduction to Part II.

21



Part 1

Local Limit Theorem on
Symmetric Spaces
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Chapter 2

Introduction to Part 1

Let G be a group and p a probability measure on GG. A fundamental problem in the
theory of random walks is to describe the distribution of the product of independent
p-distributed random elements, in other words, to study the measures p*”. Local limit
theorems, which establish the existence of a sequence a,, € R such that a,u™ con-
verges to a limit measure, were, as discussed in section [I.2] studied by many authors.
The case where GG is commutative or compact is classical (cf. for instance [Sto65],
[[K40]). Breuillard [Bre05b| and Diaconis-Hough [DH21] considered the Heisenberg
group and a local limit theorem for the Isom(R¢) action on R? was proved by Varji
[Var15] (Theorem [1.2.7)). For the latter case, under further assumptions on p, results
with strong error terms were shown by Lindenstrauss-Varju [LV16] (Theorem [1.2.8)).
The reader interested in discrete groups may consult Lalley’s local limit theorem for
the free group [Lal93], which was extended by Gouézel [Gould] to hyperbolic groups.

The above results establish local limit theorems for the various mentioned set-
tings under weak assumptions on p. In contrast, the understanding for non-compact
semisimple Lie groups is less developed. The only case where a local limit theorem
is known is by assuming that p is spread out, i.e. a convolution power p*"* for some
n > 1 is not singular to the Haar measure. For spread out measures Bougerol [Bou8]|
(Theorem proved in 1981 a local limit theorem.

For a finitely supported measure whose support generates a dense subgroup, the
convolutions p*" become increasingly well-distributed, more and more resembling a
continuous measure. Therefore Bougerol’s theorem is expected to hold. In this part
of the thesis we give the first examples of finitely supported measures on semisimple
Lie groups that satisfy Bougerol’s theorem for the Lie group acting on the associated
symmetric space. Indeed, we reduce the question at hand to understanding spectral

properties of a natural operator Sy = Syp(p) associated to p.
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The operator Sy may be viewed as the Fourier transform of the measure p at 0 and
was studied by Bourgain |[Boul2| in his construction of a finitely supported measure
on SLo(R) with absolutely continuous Furstenberg measure. Further results on S
are due to [BISG17], generalizing [Boul2|, as well as [BQ18]. These results imply the
necessary spectral properties for Sy in order to establish local limit theorems and will
be discussed after stating Theorem In certain cases, the necessary results for
So will also be proved following closely Bourgain’s [Boul2| original ideas.

In addition, we deduce quantitative error rates for the local limit theorem (Theo-
rem and Theorem .

We proceed with stating Bougerol’s theorem more precisely than in Theorem |[1.3.1].
Recall that a measure p on G is said to be non-degenerate whenever the semigroup
generated by its support is dense in G. Let G be a non-compact connected semisimple
Lie group with finite center. For a probability measure y on G, denote o = ||Ag(p)|],
where A\¢ is the left regular representation and Aq(p) = [ Ag(g) du(g). Furthermore
denote by p the number of positive indivisible roots of G and by d the rank of G
(these notions are further discussed in section and write ¢ = 2p + d. For a non-
degenerate and spread out probability measure y with finite second moment (defined
in (2.0.2)), Bougerol [Bou81| showed that there is a continuous function ¢y on G
(depending on p) such that

0/2

i * = [ £(g)au(9) = [ £(g)nlg) dmelo) 2.01)

n—oo gn

for all f € C°(G). The function vy satisfies p * 1y = 1o * 1 = oy.

To introduce further notation, let K be a maximal compact subgroup of G and
denote by X = G/K the associated symmetric space. We recall the definition of
the Furstenberg boundary. Let G = KAN be an Iwasawa decomposition of G as
introduced in section B.Il Let M be the centralizer of A in K and write P = M AN.
The Furstenberg boundary of G is defined as 2 = G/P = K /M. The measure mq, is
the pushforward of the Haar probability measure mg onto 2.

Denote by pg the Koopman unitary representation of the G action on the mea-
sure space (£2,mgq), which is also called the O-principal series representation (see
section [3.1]). For a probability measure pu on G, consider the operator Sy = po(u) =
[ po(g9) du(g). In order to state the first theorem, recall that a bounded operator
is called quasicompact if the essential spectral radius pess(A) (defined in (3.1.1))) is

strictly less than the spectral radius.
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Let a = Lie(A) and choose a closed Weyl chamber at. Then for every g € G
denote by k(g) € a™ the unique element such that g € K exp(k(g))K. We say that u

has finite k-th moment for some k > 1 if

/\ﬁ(g)\’“du(g) < 0. (2.0.2)

Theorem 2.0.1. (Local limit theorem) Let G be a non-compact connected semisimple
Lie group with finite center. Choose a maximal compact subgroup K and denote
X = G/K. Let u be a non-degenerate probability measure on G with finite second
moment and assume that Sy = po(p) is quasicompact. Write o = ||[Aa(p)|| = ||Sol|
and ¢ = 2p + d for p the number of indivisible positive roots of G and d the rank of
G.

Then there is a continuous real-valued function vy on G satisfying pxy = Yo*p =
athy such that for xg € X and f € CX(X),

/2

tim " [ f(g.20) du(g) = / £(9.20)0(g) dma(9). (2.0.3)

n—oo 0

Moreover, the operator Sy has a unique o-eigenfunction ny € L*(Q) of unit norm and
there exists a unique o-eigenfunction n} of S§ satisfying (no,ny) = 1. Then ny and )
are positive almost surely and g is given as Yo(g) = cu - (Mo, po(g)ng) for ¢, > 0 a

constant depending on .

The only difference between and is that the latter is only proved on
X. Indeed, the limit function of Bougerol’s theorem arises as in Theorem and
since a non-degenerate, spread out measure p satisfies that Sy is quasicompact (cf.
Proposition 2.2.1 of [Bou81]), Theorem is a generalization of Bougerol’s theorem
on X. We furthermore mention that it is conjectured that and therefore
also holds for every non-degenerate probability measure (with finite second
moment) on G.

Having stated Theorem [2.0.1] the question arises to give quantitative error rates
for (2.0.3). Towards this aim and in order to motivate Theorem , we discuss
G = R. Let u be a non-degenerate measure on R with mean zero and variance 0% < oco.
The local limit theorem on R (cf. [Bre92| section 7.4) states that /nu*" — —2E—

V2ro2?'
Denote

(2) = 1 z?
(1) = = exp |5 5 ).
Using that |z(r)] < 1 for r # 0 and fi(r) = [ " du(x) the Fourier transform of s,

one can show for f € C*°(R) a smooth function whose Fourier transform is compactly
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supported that there is a constant ¢y = c¢f(u) depending on p and the support of f
such that

Vit (f) = /f(fv)nn(fﬂ) dmg (@) + (Ou(n™") + Opp(e”™)) 1 f1]1, (2.0.4)

where the first implied constant depends on p and the second on p and the support
of f The result (2.0.4) may be referred to as the local central limit theorem as
it implies the local limit theorem as well as the central limit theorem. Using that

’\/2;7 — ()] <, n7t2?, it follows that

1
V2mo?

Vi (f) = /f(flr) dmg(2) + Ou(n M| fI1.) + Opup(e™"If[[1)  (20.5)

for
171l = [ 1#@I(1+ ) dm(z).
We deduce the same behaviour as (2.0.5) even with matching error terms for

the G action on its symmetric space under the assumption that Sy is quasicompact.
Choosing a maximal compact subgroup K corresponds to fixing the origin o = eK €
X of X. Denote by dx(-,-) the distance function induced by a Riemannian metric on
X (for which X is a symmetric space, see (3.1.10)). In the theorem below we refer to
the Fourier transform of a function f € C*°(X) as discussed in section [3.1} For the

asymptotic notation used see also section [3.1]

Theorem 2.0.2. (Local limit theorem with weak quantitative error rates) With the
notation and assumptions from Theorem|2.0.1, assume further that p has finite fourth
moment. Then for f € C®(X) with compactly supported Fourier transform, there is
a constant ¢y = cf(p) > 0 depending on p and the support of f such that forn > 1
and all o € X,

n

/2
"o [ foaaw o) = [ Hgan)inlg) dmes) 2.06)
40U e 7 i, 0P 1) + O™ 1),

where the first implied constant depends on u, the second on p and the support of ]?

and

||f||*=/|f(1‘)|(1+dx(ﬂf,0)2)dmx(x)- (2.0.7)

For G = R, it is only possible to give strong error rates for (2.0.5)) if one gains

control over the behaviour of the function |u(r)| as r — oo, which as is shown in
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[BreOba] is equivalent to assuming certain Diophantine properties on the support of
1.

In similar vein, we give strong error rates for under a suitable Fourier decay
assumption. The Schwartz space .7 (X) of the theorem below is defined in section [3.1]
For r € a* denote by p, the r-principal series representation defined in and

write

Sy = Pr(ﬂ)

Theorem 2.0.3. (Local limit theorem with strong quantitative error rates) With the
notation and assumptions from Theorem|2.0.1, assume further that p has finite fourth
moment and that

sup |[S-|] < |So]]- (2.0.8)

Ir[>1

Then for f € (X), z0 € X andn > 1,

n

02
e / fg-x0) dp™(g) = / f(g-z0)tbo(g) dme(g) (2.0.9)
+ Ou(n I fll + 1 dx (o, 0)? I fl|1 + e[| f]

H5>7

s 18 the Sobolev
norm (3.1.18) of degree s and the implied constant depends only on p. Moreover,
the assumption (2.0.8) holds whenever u is spread out or bi-K-invariant (i.e. p =

My * % Mg ).

where ¢ = c(p) is a constant depending on pi, s = $(dim X +1), || -|

We proceed with discussing spectral properties of the operator Sy and also related
results on absolute continuity of the Furstenberg measure. In order to introduce
convenient notation, the definition of weakly Diophantine measures introduced in
[BdS16] and stated in section [1.2]is recalled. We will need to be quantitative about

the constants, so we use the following terminology:.

Definition 2.0.4. Let G be a connected Lie group, p a probability measure on G
and let ¢1,co > 0. The measure p is called (¢, c2)-weakly Diophantine or simply

(¢1,¢2)-Diophantine if

sup p"(Be-en(H)) < e 2"
H<G

for sufficiently large n, where Be-cin(H) = {g € G : d(g,H) < e "} and the

supremum, is taken over all closed connected subgroups H of G.
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As mentioned in section [1.2) weakly Diophantine measures are useful in under-
standing random walks on compact groups. Generalizing the Bourgain-Gamburd
method developed for SU(2) by |[BGO8| and for SU(d) in [BG12|, it was shown in
[BdS16] for K a compact connected simple Lie group, that a symmetric measure p is
(¢1, ¢z)-Diophantine for some ¢y, ¢o > 0 if and only if Ax(u) has strong spectral gap
on L*(K) (Definition , in this setting being equivalent to [[Ar(1)]Lz(x)llop < 1
for LZ(K) = {f € L*(K) : mg(f) = 0}. Indeed, the essential spectral radius of
Ak (1) can be bounded in terms of K, ¢; and cp. As discussed in section strong
spectral gap on LZ(K) can be used to deduce that p*" equidistributes towards the
Haar measure with exponential speed.

For finitely supported measures, most known spectral results for Sy also rely on the
Bourgain-Gamburd method. However, one requires stronger Diophantine conditions.
Indeed, as in contrast to compact groups it is necessary to control the exponential
norm growth of the p-random walk on (G, we have to demand that the measure
is (c1, c2)-Diophantine while being close to the identity in terms of ¢; and c;. We

therefore introduce the following definition.

Definition 2.0.5. Let G be a connected Lie group, i a probability measure on G and

let ¢1, ¢, > 0. The measure p is called (cy, c2,€)-Diophantine if
(i) wis (¢ log%,cZ log %)—Dz’ophantz’ne, i.e. forn large enough,

sup " (Been (H)) < 2™,
H<G

(i) supp(p) C Be(e).

We state a result of [BISG17] showing that there is an abundant collection of

examples of (¢, ¢g, £)- Diophantine measures for arbitrarily small .

Theorem 2.0.6. (Theorem 3.1 of [BISG17]|) Let G be a connected simple Lie group
with finite center and adjoint representation Ad : G — GL(g). Let ' < G be a
countable dense subgroup and assume that there is a basis of g such that Ad(vy) is
algebraic with respect to that basis for every v € T'.

Then there exist c1,co > 0 such that for every g > 0 there is 0 < € < ¢y and
a finitely supported symmetric (cy, 2, €)-Diophantine probability measure p satisfying
supp(p) C I'N B..

Using the above defined notion of Diophantine measures, one can establish the
following result on quasicompactness of Sy. Together with Theorem [2.0.6, numerous
examples of finitely supported measures satisfying (2.0.3]) are provided.
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Theorem 2.0.7. Let G be a non-compact connected simple Lie group with finite
center. Let ¢y,co > 0. Then there is g = €o(G,c1,c2) > 0 depending on G and
c1,¢o > 0, such that every symmetric and (cy, ca, €)-Diophantine probability measure

w with € < gq satisfies that Sy = po(p) is quasicompact. In particular, Theoremm
and Theorem holds for yu.

Theorem [2.0.7]is a straightforward consequence of the techniques and results de-
veloped in [BISG17] and will be deduced in section [6.0.1] Under the additional as-
sumption that the maximal compact subgroup is semisimple, we offer an alternative
proof following more closely the method by Bourgain [Boul2|, leading to marginally
stronger results (Theorem [6.0.2)). Indeed, using an idea from [LV16], we simplify
Bourgain’s original approach by exploiting that the irreducible representations of K
have high dimension.

We proceed with discussing the Furstenberg measure. Let i be a measure on G
whose support generates a Zariski dense subgroup. Then the Furstenberg measure
of p is the unique p-stationary Borel probability measure vg on the boundary €2
(cf. for example [GAMS89]). It was initially conjectured by Kaimanovich-Le Prince
[KLP11] that the Furstenberg measure of a finitely supported measure is singular
to the Haar measure mq. However Bourgain [Boul2] and Bérdny-Pollicott-Simon
[BPS12] disproved the latter conjecture, with Bourgain [Boul2| giving an explicit
construction while [BPS12] exploiting probabilistic methods.

[BQ18| also provide examples of finitely supported measures with absolutely con-
tinuous Furstenberg measure, yet their construction does not lead to results as ver-
satile as Theorem [2.0.6] It is apparent from their proof, that Sy is also quasicompact
for these examples.

A further result of [Boul2| is the construction of finitely supported measures on
SLs(R) satisfying Cﬁ% € C*(Q) for any k € Zs,. Following Bourgain’s technique, we
also deduce smoothness results for the Furstenberg measure for arbitrary simple Lie

groups.

Theorem 2.0.8. Let G be a non-compact connected simple Lie group with finite
center. Let c1,co > 0 and m € Zsy. Then there is €, = €,(G,c1,¢2) > 0 depending
on G,ci,co and m such that every symmetric and (ci, c2, €)-Diophantine probability

measure i with € < &, has absolutely continuous Furstenberg measure with density

in C™(Q).

After publishing |[Kog22|, the author became aware of [Leq22] who establishes

a similar yet less general result to Theorem [2.0.8] Since our proof is short and
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differs from [Leq22| for instance in introducing Agmon’s inequality (Lemma for
compact Lie groups, it is included in this thesis.

We comment on the organization of Part I. After reviewing the necessary notation
and giving an outline of proofs in section [3| we discuss some preliminary results in
section Al Then the local limit theorems Theorem [2.0.1 Theorem and Theo-
rem [2.0.3|are proved in section[5] Finally, quasicompactness of Sy and the Furstenberg

measure are discussed in section [0, establishing Theorem [2.0.7] and Theorem [2.0.8
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Chapter 3

Notation and Outline

3.1 Notation for Part 1

In this section we collect the notations used in Part I. The reader may also recall the
notation stated in section [L1l

Throughout Part I of this thesis, we denote by G a non-compact connected
semisimple Lie group with finite center, by K a maximal compact subgroup of G
and write X = G/K for the associated symmetric space.

Let A be a Banach space and let A : 8 — 2 be a bounded operator. Recall
that A is called a Fredholm operator if there exists a bounded operator T such that
TA —1d and AT — Id are compact operators. Denote by spec(A) the spectrum of A.
The essential spectrum spec,(A) is defined as the set of complex numbers A such that
A — X -1d is not Fredholm. The spectral radius is defined as p(A) = maxcspec(a) |A|
and the essential spectral radius as

ess A) = )\7 3.1.1
Pess(A) )\Esgcaii(A)” (3.1.1)

if pess(A) # () and otherwise pess(A) = 0.

For a locally compact Hausdorff group H, write my for a fixed choice of Haar mea-
sure. Whenever H is compact, my is the Haar probability measure. The left-regular
representation is denoted Ay while we write py for the right regular representation.

If o is a finite measure on H and 7 : H — % (J¢) is a unitary representation,
where 7 is a Hilbert space and % () the space of unitary operators ¢ — 2,
then

w(w) = [ 7y dulg) (3.1.2)

is the operator uniquely characterized by (7 (p)v, w) = [(myv, w) du(g) for v,w € H.
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For a group H with metric dy, for R > 0 and = € H we will denote by Bg(z) =
{y € H : dy(y,x) < R} and abbreviate B = Bg(e) for e € H the identity
element. On G we fix a left invariant metric such that Br(g) = gBr(e). For a closed
subset H' C H we define Bgr(H') = {h € H : d(h,H') < R}, where d(h,H') =
supp e d(h, ).

We first fix notation for structure theory on K. Write T" for a maximal torus in
K with Lie algebra t and real dual Lie algebra t*. Let Wy be the Weyl group and
we fix a Wi-invariant inner product on t, inducing a Wi-invariant inner product on
t*. The set of real roots is denoted as R and we choose a fundamental Weyl chamber
C which we consider as a subset of t*. The fundamental Weyl chamber determines a
basis S of the real roots and the set of positive roots RT. We denote by I* C t* the
set of integral forms. Then (cf. [BtD85] section 6) the set C' N I* parametrizes the
irreducible representations of K.

For v € C' N I* denote by 7, the associated irreducible unitary representation of

K and by M, the span of matrix coefficients of 7. By the Peter-Weyl Theorem it

holds that

P M, (3.1.3)

~eonI*

where we used the convention applied throughout this paper that by a direct sum we
denote the closure of the algebraic direct sum of the involved vector spaces. For any
v € CNI* and an orthonormal basis vy, ..., vq, of T, we set Xi; (k) = (my(k)vi, vj).
Then the set of functions dl/ QXW forms an orthonormal basis of L*(K). For ¢ €
L*(K), we set @, = al; = (p, dy 12 Xi;)- For o € C*(K) and all k € K,

= ) de aj;x};(k (3.1.4)

~yeCnI* hj=1

We want to group together functions on K that oscillate at roughly the same rate.

Therefore, one defines

P M, and Vi= @ M, (3.1.5)

~eCnr* ~eCnI*
0<| <1 2071 y[]<2f

for £ > 1. The decomposition

((K) =BV (3.1.6)

£>0
is referred to as the Littlewood-Paley decomposition of L?(K). For ¢ > 0 we denote
by 7, the orthogonal projection from L?(K) to V. Therefore any ¢ € L?(K) can
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be decomposed as ¢ =), mep. For Littlewood-Paley decompositions on groups in
more general contexts we refer the reader to [MKMSG22].

We finally define Sobolev spaces and Sobolev norms on K. Denote by € the Lie
algebra of K and fix an orthonormal basis X7, ..., X,, of . Then the Casimir operator
given by A = —3"" | X; 0 X; is a central element of the universal enveloping algebra
U(E). For v € CNI* denote by ), the eigenvalue of A acting on .. For s € Zsq, we
define

HY(K) = {p € L*(K) : Ax(D)?p € [*(K)} (3.1.7)

=So=> o€ @D Mol = D> Nl < oo

yeCNI* ~eCNI* yeCNI*

We also need structure theory for G. We take care not to confuse the notation
introduced for the structure theory of K. The Lie algebra of GG is denoted as g and
we choose a Cartan decomposition g = £ ® a @ n for € the Lie algebra of K. Denote
by a* the real dual of a. Let ¥ be the sets of roots, choose a closed Weyl chamber
at and let ¥7 = {ry,..., 7} C a* be the system of positive roots. For a root r € X2
write m(r) for the multiplicity of 7 and denote by § = 3> .. m(r)r the half sum of
the positive roots counted with multiplicities. We fix a norm |- | on g arising from an
Ad-invariant inner product. The latter norm restricts to a and induces the operator
norm on a*.

Denote A = exp(a), N = exp(n) and Pt = AN. Then (cf. [Kna02| chapter
VI) the multiplication map K x A x N — G is a diffeomorphism, giving rise to the
Iwasawa decomposition G = KAN. Write further K : G —- K, A: G — A and
N : G — N for the maps induced from the Iwasawa decomposition and the map
H : G — ais defined for g € G as

H(g) = log A(g). (3.1.8)

Set AT = exp(a™). Then the Cartan decomposition G = K AT K holds and denote
by k£ : G — a* the map uniquely characterized by g € K exp(x(g)) K. We furthermore
define

gl = Ix(g)I (3.1.9)

On the symmetric space X = G/K, one defines the metric dx as

dx(g.0,0) = |k(g)| (3.1.10)
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for the origin o = K € X and all g € G. Then for g € KA it holds that |H(g)| =
dx(g.0,0) = |k(g)|. Recall Exercise B2 (iv) from Chapter VI of |Hel78| stating that
d(a.0,0) < d(an.o,o0) for all a € A and n € N, which follows by applying suitably
that the manifolds A.o and N.o are perpendicular at their unique intersection point
o € X. It therefore holds for all g € G that

[H(9)| < [r(g)] = llgll (3.1.11)

For each g € G consider the diffeomorphism
a,: K — K, k— ay,(k) = K(gk).

The map G' — Diff(K),g +— «, defines an action of G on K. Denote by aj the

Radon-Nikodym derivative of (o, ).mg with respect to mg. Then by I Lemma 5.19
of [Hel84],

d(org) —26H (g 'k
For r € a*, we consider the unitary representation p} : G — L*(K) defined for g € G

and p € L*(K) as

(07 (9)@) (k) = e~ TR (K (g k) (3.1.13)

with k£ € K.

The representation (3.1.13)) is not irreducible in general. In order to make it
irreducible, denote by M the centralizer of A in K and write P = M AN for the
associated minimal parabolic subgroup. The Furstenberg boundary 2 = G/ P can be
identified with K /M and we therefore view functions on € as M-invariant functions
on K. The probability measure mgq is the pushforward of mg under the projection
map. For r € a* we consider the r-principal series p, : G — % (L*(2)) defined for
g€ G and p € L*(Q),

(pr(9)p) (w) = e~ CHNHET )5 (g7 (3.1.14)

for w € Q where we denote by g 'w the element K (g 'k)M for any representative
w = kM with k € K and note that H(g 'w) does not depend on the representative
of w (cf. [War72| section 5.5). The principal series is irreducible.

The Weyl group Wg of G is defined as the group quotient Nk (a)/Zx(a), where
Nk(a) ={k € K : Ad(k)a C a} and Zk(a) = M ={k € K : ka = ak for all a €
A}
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We call a root r € ¥ indivisible if %7’ is not a root and we order the positive roots
in such a way that ry,...,r, are the indivisible roots. For any complex linear form r

on a denote

o= (I (*5255) ) (12 (452252 )

where B(z,y) = [; t*"'(1 — t)¥~" dt is the Beta function. We further set for r € a*,

The spherical function of parameter r € a* is defined as ¢,(g) = (p,(g)1, 1). Denote
by Z(G) the set of differential operators on G (see [Hel84] chapter 2). The Harish-
Chandra Schwartz space introduced in [HC5H8] (see further page 230 of [Wal88]) is
defined as

F(G) = {F € C(G) : (1+ |H(@))IDSI(g) <1,p¢ dolg) for all D € F(G), ¢ > 0}.

(3.1.15)

The Schwartz space on X, denoted .(X), is defined as the set of right K-invariant
functions in .7 (G).

Recall that a function f on G is called bi-K-invariant or radial if f(ki1gks) = f(g)

for all ¢ € G and ky,ky € K. For a radial function f € . (G) we denote by p,.(f)

as in (3.1.2) the operator [ f(g)p-(g) dma(g). We then define the spherical Fourier

transform as

) = (1 pe()1) = (pr()L 1) / F(9)6—r(9) dma(g).

Note that by using that f is bi-K-invariant, it follows that for all w € €2 we have
F(r) = (p—r(f)1)(w). For all g € G, the spherical Fourier inversion formula holds

= [ Fwyonts) dvan(r), (31.16)

where dvgn(r) = |c(r)|"2dmg- (r) is the spherical Plancharel measure.
We furthermore define for f € .7 (X), r € a* and w € Q,

Firw) = (o / £(9)(pr(0) D)) dme(o).
Then it follows by a brief calculation from (3.1.16), for f € /(X)) and g € G,
B / /Qﬂr’ w)(pr(9)1)(w) dima(w)dvep (7). (3.1.17)
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We say that f € (X) has compactly supported Fourier transform if there is a
constant R > 0 such that f(r, w) =0 for |r| > R and w € Q.
We will further need Sobolev spaces and Sobolev norms on X, defined for s > 0

as

H00 = {11 200 1B = [ 1701+ 1720 dnlr) < |

(3.1.18)

It holds that C°(X) C ¥ (X) C H*(X) for all s > 0 (c.f. |Hel84] chapter IV).

For a probability measure 1 on GG, we write for r € a*
Sy =pf(p) and S, =p(n), (3.1.19)

using the definition for the unitary representations p;” and p,.

We further use the notation o = ||Sp||. Since M AN is an amenable group, it holds
by section D of |Gui80| that o = ||[Ag(u)||. If A(r) € C satisfying |[A(r)| = p(S,) is in
the discrete spectrum of S,., has geometric multiplicity one and is the unique element
of spec(S,) on the circle of radius p(S,), then we denote by n, € L?(Q) the A(r)-

eigenfunction of S, with unit norm. Furthermore, if the same properties hold for S

and A(r), choose 7. the S*-eigenfunction with eigenvalue \(r) satisfying (n.,n,) = 1,

provided there exists such an 7. Then we denote

Upur(9) = (7, pr(9)107) (3.1.20)

for g € G.
The operator Ty : L2(2) — L2(2) is defined as

Top = /so o oy dp(g)

for ¢ € L*(2), where we equally denote by o, : @ — Q the map on Q induced by
ag: K — K, and

Ty L*(K) — L*(K) defined as Ty = /¢ o ay du(g)

for p € L*(K).
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3.2 Outline of Proofs

For the proof of Theorem[2.0.1] Theorem [2.0.2/and Theorem [2.0.3]one uses the Fourier
inversion formula on X to reduce the question at hand to spectral problems about
the operators S,. Indeed, by it holds for g = hoK € X with hy € G and
feZ(X),

nt/2

%
) du™(g) = / /f r,w)(Sypr(ho)l)(w) dma(w)dvspn(r). (3.2.1)

One then decomposes (3.2.1)) into high and low frequencies. Namely for §y € (0,1)
small enough depending on p and for f € . (X),

) d(g) = / . | B (82 ) )e) dine ()i (1)
(3.2.2)
nt/? R )
0 [ LTS e dmad o).
(3.2.3)

The following spectral properties of S, are used to deal with the arising terms:

(1) There are operators Ey and Dy such that
So = O'Eo + Do, (324)

where Ej is a projection to a one-dimensional subspace, Eyo Dy = Dyo Fy =0
and Dy satisfies p(Dy) < o = ||S]|. In section we refer to the property
(3.2.4) as strong spectral gap.

(2) For |r| < 4y, the operator S, has a decomposition as (3.2.4), i.e.
S, = XNr)E, + D,, (3.2.5)
for £, and D, as in (3.2.4)).
(3) For any r # 0, p(S) < o = |[So|.

One deduces (1) from quasicompactness of Sy and by using that Sy is a positive
operator in the sense of Banach lattices (c.f. section £.2). (2) will follow as quasi-
compactness is an open property under certain assumptions (Corollary and (3)
by a convexity argument similar to an argument of Conze-Guivarc’h [CG13|. The

necessary spectral properties are proved in section [5.1}

37



Properties (1) and (2) will be necessary to deal with low frequencies ([3.2.3),
whereas (3) is used for high frequencies (3.2.2)). However, (3) only allows to prove a
decay for either by assuming that f has compactly supported Fourier transform
or by imposing the stronger assumption (sup, > [|S:[[) < |[Sol| of Theorem . One
then deduces Theorem and Theorem by approximating a given function
f € Z(X) with functions whose Fourier transform is compactly supported.

A novel contribution is the observation that the functions 1, , as defined in

(3.1.20), where |r| < g such that (3.2.5) holds, satisfy
/ F by dme — / Fr ) (B, 1) (w) dmo () (3.2.6)
Q

for f € 7 (X) (see Lemma|5.2.1). We further mention that (3.2.6) may be viewed as

an analogue of the formula
1

/ Fl2)e "% dmg(z) = N / Flr)e 5 dmp(r) (3.2.7)

on R, where f € .#(R) and ¢ > 0, which is used in the proof of the local limit

theorem on R.

The outline of the proof of the local limit theorem is concluded. We next discuss
quasicompactness of Sp. As in [Boul2] and [BISG17], the main tool are flattening
statements for p. These results, which will be recalled in section [£.4 have as a
consequence that for any v > 0 and z € G,

" (Bs(x)) < §ImE=y (3.2.8)

for 0 small enough depending on i and 7 and n <, log %. A measure with property
can be referred to as having high dimension, since an absolutely continuous
measure v satisfies v(Bj(x)) =<, §4m¢,

The proof of quasicompactness of Sy comprises two steps. First we will show that
the restricted operator Sp|y, has small norm for all ¢ large enough, where V; is the
Littlewood-Paley space introduced in . The second step is to use the latter
to deduce that Sy restricted to @@,.; Vi has small norm for a suitable L > 0 and
therefore is quasicompact. This exi)loits the first step and that the spaces V, are
mutually orthogonal. Indeed, since the measure p in question is supported close to
the identity, the spaces SoV; and Vi for £ # ¢ are almost orthogonal too.

For the first step, one uses that for ¢ € V; the matrix coefficients |{po(g)p, )| are
small on average. Indeed, it is shown in section following [LV16], that

1

ma(Br) /BR [{po(9), ) dma(g) < 2772 [¢l]s. (3.2.9)
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Since p has high dimension, we are able to use to give strong estimates for
(Sop, ¢) and therefore conclude a bound on the operator norm of Syly,.

In order to use (3.2.9)), we ought to control the size of the support of x*" while en-
suring that p*" has high dimension quickly enough. Analogous to [Boul2| and
[BISG17], this is where the (c1, ¢, €)-Diophantine property comes into play. Indeed,
as € becomes smaller, a (cy, co, €)-Diophantine measure is increasingly rapidly non-
concentrated on subgroups and therefore a strong flattening lemma applies (Lemmal4.4.2]).
The latter holds while the measure is still close to the identity, which will allow us to

conclude the claimed properties for Sy.

3.3 Relation to Other Work

As mentioned in the introduction, the necessary results for Sy are also proved in
[BISG17]. The main difference between [BISG17] and our proof is in the use of
a different Littlewood-Paley decomposition. [BISG17] develop a Littlewood-Paley
decomposition on G, which leads to more general results as they are able to deal with
all possible quotients of G, while we work with the Littlewood-Paley decomposition
on K, leading to marginally stronger results.

For the Isom(R?) action on R?, a similar representation theoretic decomposition
to holds for a suitable family of unitary representations p, : Isom(R9) —
U (L*(S41)) for r € R. In [LV16], a local limit theorem with strong error terms as in
Theorem is proved by just assuming that Sy = po(u) is quasicompact. Indeed
they establish for their setting by solely assuming that Sy is quasicompact. It
seems reasonable to believe that the same result may hold for a semisimple Lie group
acting on its symmetric space, yet the proof of [LV16] is not transferable as several
properties only applicable to Isom(R%) are used.

We further mention that in [Tol00] a Berry-Essen result is shown on G for a

probability measure with a smooth density of compact support.
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Chapter 4

Preliminary Results

4.1 Quasicompact Operators

Throughout this section we denote by Z# a separable Banach space and the reader
may recall the notations introduced in section [3.1} A bounded operator A : Z —
A is called quasicompact if pess(A) < p(A). In this secton we show that being

quasicompact is an open property. We first state a useful lemma.

Lemma 4.1.1. For any bounded operator A : B — A the following properties hold:

(1)
pess(A) = inf p(A - U)

U compact

(i1) A is quasicompact whenever A* is. Moreover,
Pess(A”) = pess(A).

(i) The set of spectral values of A with modulus > pess(A) is at most countable and

all of its accumulation points have modulus pess(A).

Proof. (i) follows as the essential spectral radius is the spectral radius of the image
of A in the Calkin algebra (c.f section 2.4 in the appendix of [BQ16]) and (ii) as a
bounded operator is Fredholm whenever its adjoint is (Corollary 2.12 of appendix B
in [BQ16]). Finally (iii) is contained in Proposition 2.14 of appendix B in [BQ16]. [

Corollary 4.1.2. Let A, : 2 — F be a sequence of bounded operators on a Hilbert
space € converging in operator norm to a bounded operator A : & — . If A is
quasicompact then so is A,, forn large enough and there is € > 0 such that for n large
enough pess(An) < pess(A) +€ < p(A) —e < p(An).
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Proof. By Lemmal[d.1.1] (i) for any £ > 0 there is a compact operator U (depending on
e) such that p(A—U) < pess(A) +e. We choose a small £ > 0 such that pess(A) +2e <
p(A) — 2e. Recall that the spectral radius is upper semi-continuous and since A is
quasicompact, A is a continuity point for the spectral radius (cf. [New51]). Thus for
large enough n it holds that p(A, —U) < p(A—U)+¢ and p(A) —2¢ < p(A,). Then

for the above compact operator U,
pcss(An) < p(An - U) < p(A - U) +e< pcss(A) +2e < IO(A> —2< p(An>7

showing the claim upon replacing 2¢ by €. ]

4.2 Strong Spectral Gap and Quasicompact Posi-
tive Operators

We introduce the following definition of strong spectral gap.

Definition 4.2.1. Let S : B8 — % be a bounded operator on a Banach space B. We
say that S has strong spectral gap if there are two operators E, D : 58 — % and a
decomposition S = AE + D with X\ € C satisfying |\ = ||S|| such that the following

properties are satisfied:
(i) The operator E is a projection onto its image and dim(Im(FE)) = 1.
(i) EoD=DoE =0.

(iii) p(D) <|IS]I

In the literature, an operator is referred to as having a spectral gap if there is
an isolated eigenvalue \ of maximal modulus and the rest of the spectrum lies in a
ball of radius |A| — ¢ for some € > 0. The definition of a strong spectral gap implies
the latter while requiring the above further conditions, which explains this choice of
terminology.

The aim of this section is to prove Corollary [4.2.4]below on quasicompact operators
which are positive in the sense of Banach lattices. We refer to the book [Sch74] as a
reference on Banach lattices. For the convenience of the reader, we recall the definition
of a Banach lattice from [Sch74] and a few further definitions. In this thesis, we will
work with the Banach lattice L?(Q2) (or L?(K')) endowed with the partial order defined
for f,g € L*(Q) as f < g if and only if f(w) < g(w) for all w € Q.
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Definition 4.2.2. A Banach space % with norm || o || is called a Banach lattice
if it is equipped with a partial order < satisfying the following properties:

(i) (Ordered vector space) For two elements x,y € A with x < y we have for all
2z € XA and \ € Ry that

r+z<y+z and Ar < Ay.

(11) (Vector lattice) For two elements x,y € A the supremum sup{z,y} (resp. infi-
mum inf{x,y}) is the, if it exists, unique element z € B with z > x and z > y
(resp. z < x and z < y) that satisfies for every further element z' € % with
2>z oand 2 >y (resp. 2 < x and 2/ < y) that 2 > z (resp. 2/ < z). We
assume that B is closed under taking suprema and infima of two elements, that

is, if x,y € B then sup{z,y} and inf{z,y} exist in AB.

(i1i) (Monotonicity) For v € % denote |x| = sup{z, —z}. If two elements x,y € A
satisfy 2] < |yl, then we have |lz]| < |lyl|.

For a Banach lattice # denote by #, = {z € £ : x > 0} the set of positive
elements. We note x > y whenever x —y € %, and further write x > y if and only
if z > y and v # y. We say that a bounded operator A : & — £ is positive if
A(A,) C Ay, in notation A > 0. We write A > 0 if Az > 0 for = > 0.

We furthermore say that the operator A : & — 2 has a strictly positive
invariant form if there is a linear form n : 8 — R that maps vectors > 0 to real
numbers > 0 and that is invariant under A, i.e. no A =n.

For an element u € %4, we denote by
I,={x€ % :0<|z| < Au for some \ >0}

the principal ideal generated by u, where as above we write |z| = sup{x, —z}. The
element u is called quasi-interior if I, is dense in 4.

A subspace I of & is called an ideal if I, C I for all u € I. An operator
A B — A is referred to as irreducible if the only A-invariant ideals are the trivial
ideals {0} and A.

The resolvent of a bounded operator A is defined as
R()‘7A) = (/\] - A)_lv

which by [DS58, VII Lemma 3.2] is an analytic collection of operators well-defined

on the complement of the spectrum of A. A complex number Ay in the spectrum of
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A is called a pole of the resolvent of A if there is k € Z-y and € > 0 such that for all
A € C with |A — A\g| < € we have that

R\ A) = > By(A—X)"
n=—=k
for {B,}>2_, a collection of bounded operators from % — 2. The number k is the
order of the pole.
The following is the main result on Banach lattices that we use in this thesis,

which is a generalisation of the Perron-Frobenius theorem to Banach spaces.

Theorem 4.2.3. (Corollary to Theorem V 5.2 of |Sch74]) Let & be a Banach lattice
and let A : B — A be a positive irreducible bounded operator > 0 satisfying p(A) = 1
and such that 1 is a pole of the resolvent of A. Then the following properties hold:

(i) 1 is an eigenvalue. The eigenspace of 1 is one-dimensional and spanned by a

quasi-interior element of A, .

(i1) Every eigenvalue A of A with |\| = 1 is a root of unity and has a one dimensional

eigenspace. Moreover, the latter set of eigenvalues form a group.
(7i) 1 is the unique eigenvalue of A with a positive eigenvector.

Using Theorem [£.2.3] combinded with basic properties of quasicompact operators,

we can draw the following corollary.

Corollary 4.2.4. Let B be a Banach lattice and let A : B — B be a positive
quasicompact bounded operator > 0 and assume that A" is irreducible for everyn > 1.

Then A has strong spectral gap.

Proof. Without loss of generality, we may replace A by A/p(A) and assume that

p(A) = 1. Therefore, since A is positive, by |Sch74, Proposition V 4.1] it follows that

1 is an eigenvalue of A. Moreover, by [DS58, VII 8.2|, since A is quasicompact, the

resolvent R(\, A) has a pole at 1. Therefore, Theorem applies and as is shown

in the proof of the Corollary to Theorem V 5.2 of [Sch74] we moreover have that
E=1lm\—-1)R(\ A)

A—1

is a strictly positive projection of rank 1.
Set D =A—FE. Then FoD = Do E =0 as A commutes with £ and we claim
that p(D) < 1, which follows if we show that 1 is the unique eigenvalue of A on the
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circle of radius 1. To show the latter, if A is an eigenvalue of A with |[A| = 1 and
eigenvector vy, then by Theorem m (ii) A is a root of unity and hence T"vy = vy
for some n > 0. Therefore by Theorem m (i) applied to T™, it follows that vy > 0.
Finally, by Theorem [4.2.3| (iii) applied to T, the vector vy must be the unique positive

eigenvector of T" and hence \ = 1. O]

We return to the operators Sy and S;~ defined in (3.1.19).

Lemma 4.2.5. Let G be a connected semisimple Lie group with finite center and let p
be a non-degenerate probability measure on G. Then Sy and Sy are positive bounded

operators and Sy and (Sg)" are irreducible for all n > 1.

Proof. We show that Sy is irreducible and the same argument will apply to S} and
(Sg)™ for all n > 1 since G is connected. By III Proposition 8.3 of [Sch74], it suffices
to show for any o1, s € L?(Q2) with 1 > 0 and @y > 0 that (S5p1, @s) is > 0 for
some ¢ > 1. Indeed, we may reduce to the case where p; = 1y, and ¢y = 1y, for Uy
and U, two sets of positive measure. Using that the support of y generates a dense
subgroup, we may choose ¢ large enough such that the support of S§1y, has measure
larger that 1 — mq(Usy)/2 and therefore (S§1y,, 1p,) > 0. O

4.3 Preliminaries on Representation Theory of Com-
pact Lie Groups

Recall the notation introduced in section 3.1l

For v € C'NI*, by Schur’s Lemma, the operator m,(A) acts as a scalar. For
functions on K, the operator Ag(A) can be understood as the Laplacian. There-
fore (3.1.3]) is a decomposition into eigenfunctions of the Laplacian and on M., the

Laplacian has eigenvalue A\, = 7, (A).

Lemma 4.3.1. For v € C N I* denote d, := dimm, and \, := 7,(A). Then for v
large enough it holds that A, < ||v||* and d, < ||y||/F"] . Moreover, assuming that K
is semisimple, ||| < d.,.

Proof. By Lemma 10.6 of [Hallb], A\, = m,(A) = (y+ p,v + p) — (p,p), where
P =32 wer+ @ is the sum of positive half roots (notice that the multiplicity of each
root is one cf. Theorem 7.23 of [Hall5]). This easily implies A, < ||7[|>. The upper

bound on d, follows by Weyl’s dimension formula:

(0,7 +p) [la] R+ Rt
dy= || =< T |+ ol < [
=11 (a,p) OLL (e, p)]

a€R*

44



for ||v|| large enough. For the lower bound we recall that in [dS13], also using the
Weyl dimension formula, it is proved that [|7]|'"" =7 <« d, where p is the number of
maximal elements of RT that are contained in one hyperplane. If K is semisimple,

the roots span the vector space t* and therefore (|JR*| —p) > 1. O

Recall the Sobolev spaces defined in (3.1.7). We deduce a condition for a function

being in C™(K) under an assumption on the decay of ||mp||2.

Lemma 4.3.2. Let m € Zxo, s > m+ 3dim K and let p € L*(K). Assume that for

all ¢ € Z>q large enough,

[[mecpl]2 < 27611,

Then ¢ € H*(K) C C™(K).

Proof. If ¢ = 3 czns ¢4, by the assumption for large enough ¢, 225|032 =
2203 et gyeze 105115 < 272 and hence using Lemmam

Yo Xl <Y 2% Y lellf <Y 27 <o,

yeCnI* >0 20-1< |y <2¢ £>0

showing that ¢ € H*(K). The inclusion H*(K) C C™(K) follows from the Sobolev
embedding theorem (cf. [Aub98| Theorem 2.10). O

4.4 Flattening of y*™

In this section we state strong flattening results from [BISG17] for (¢y, 2, €)-Diophantine

measures. To introduce notation, denote

1p
p— B
* " me(Bs)

and for a measure v and g € G, we note that (v * P5)(g) = ';Ei‘zgg)) We also use the
notation vs = (v)s = v * Ps.
We first relate the condition that a measure is (c1, ¢o, €)-Diophantine to the as-

sumptions of several theorems in [BISG17].

Lemma 4.4.1. Let ¢1,¢9,¢ > 0 and let p be a probability measure on G satisfying
supp(p) C B.. Then p is (cq, co, €)-Diophantine if and only if for § small enough and

log %

c1 logé’

sup " (By(H)) < 671,
H<G

where Bs(H) = {g € G : d(g,H) < 0} and the supremum is taken over all closed
subgroups of G.
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Proof. This follows from the fact that p is (¢, c2)-Diophantine if and only if sup o 1" (Bs(H)) <

C72
! forn:élog%. O]
We state Corollary 4.2 from [BISG17].

Theorem 4.4.2. (Flattening Lemma, Corollary 4.2 of |BISG17]) Let G be a con-
nected simple Lie group with finite center. Let c1,co > 0. Then for every v > 0 there
is €0 = €o(c1,C2,77) > 0 and Cy = Cy(c1, c2,v) > 0 such that the following holds:

If0 < e < egp and p is a symmetric and (cq, co, €)-Diophantine probability measure
on G, then for § > 0 small enough,
log %
log 2

[(™")s][2 <077 for any integer n > Cy

4.5 Estimate of Averages of Matrix Coefficients
for Oscillating Functions

In this subsection we prove the following proposition, which is inspired by [LV16].
We denote Br = {g € G : d(g,e) < R}.

Proposition 4.5.1. Let G be a non-compact semisimple Lie group with finite center
and maximal compact subgroup K. Recall the Littlewood-Paley decomposition
L*(K) = @, Vi and assume further that K is a semisimle Lie group. Then for any
reR and l € Zsy, for 1,02 €V, C L*(K),

L
mg(BR)

where the representation p; is defined in (3.1.13)).

/ (o (@)on, 02)] dme(g) < 27 grllalloslls,
Br

We recall the following lemma from [LV16].

Lemma 4.5.2. (Proposition 5.1 of [LV16]) Let (w, 7) be a unitary representation
of a compact group K and let D be the minimum of the dimension of all irreducible

representations contained in w. Then for any vectors u,v € F,

([ it amay) ™ < 1l

If 7 is irreducible, then Lemma follows from Schur’s Lemma (see [Kna02]
section 1.5). For the general case one decomposes 7 as a direct sum of irreducible

representations.
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Proof. (of Proposition [4.5.1)) Let By = Bgr - K. By left invariance of the metric,
it follows that Brr C Bgric for C' an absolute constant and therefore mg(Br) <
mea(Bgr). Using Cauchy-Schwarz and that for & € K the operator p; (k) acts as the

regular representation, it follows by Lemma [4.5.2]

/B (ot (9) 01 22} dme(g) < / (oF (9) 01, 02)] dmi()

B/

= /: (/K |<pi(k)9017pi(g1)@2>|dmx(/~f)) dme(g)
1/2

<[ ) ( / |<pf<k>sol,p:<g1>¢2>\2de</€>) dma(g)

—1/2
SmG<BR/>( min dv) el sl

2t-1<| <2

< ma(Br)272|p1|| || 2],

having used in the last line that ||y|| < d, from Lemma under the assumption
that K is semisimple. O
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Chapter 5

Proof of Local Limit Theorem

We fix throughout a non-compact semisimple Lie group GG with finite center. In this
section we prove Theorem [2.0.1] Theorem and Theorem [2.0.3] The reader may
recall the outline given in section

In section we prove the necessary spectral properties for the operators 5.
Then in section we prove the claimed properties of the limit measure as well as

deduce (3.2.6)). In section [5.3| we deal with the high frequency term (3.2.2]) while in

section we establish most of the necessary results to deal with the low frequency

term (3.2.3). The proof of Theorem and Theorem is then completed in
section [5.5], while Theorem is deduced in section [5.6]

5.1 Spectral Properties of S,

In this section we discuss spectral results for the operators Sy and S, and the func-
tion r — p(S,) under the assumption that Sy is quasicompact and using the results
developed in section and section [4.2] Notice that if p is non-degenerate and Sy is
quasicompact, then by Lemma [4.2.5 and Corollary the operator Sy has strong
spectral gap.

Before stating the first lemma, we mention that |S,n| < Sy|n| for all » € a* and
n € L*(Q), which implies p(S,) < ||So||. Lemma is concerned with improving
the latter inequality to p(S,) < [|So|| under suitable assumptions on .

Lemma 5.1.1. Let u be a non-degenerate probability measure and assume that Sy is

3 *
quasicompact. Then for any non-zero r € a*,

p(S,) < p(So) = IS0l (5.1.1)
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Moreover, for any co > c¢; > 0 and n large enough depending on c¢; and co,

sup  |[S™]]" < [|Sol- (5.1.2)
c1<|r[<es
Proof. To prove , we follow ideas from the proof of Theorem 3.9 of |[CG13]. Fix
a non-zero r € a*. We assume for a contradiction that p(S,) = p(Sp) and therefore
there is A = €p(Sy) € spec(S,) for v € R. Then (cf. section 12.1 of [EW17]) either
A is in the discrete spectrum or in the approximate spectrum, i.e. there is a sequence
ne € ker(S, — X - Id)* with ||n|| = 1 and

lim ||S,ne — Anel| = 0. (5.1.3)
f—00

Note that as Sy is quasicompact, p(Sp) = ||So||. We first treat the case where
A is in the discrete spectrum, i.e. that there exists n € L?(Q) such that S,n = M.
Then |[Soll [n] = [S1] < Sol] and thus || Soln| || = |1So]1|1n]l. Denote by no the [|So]-
eigenfunction of Sy with unit norm. As Sy has strong spectral gap (by Lemma m
and Corollary , it follows that n(w) = e?@ny(w), for § : @ — R a measurable
function and w € €.

Then for almost all w € Q and n > 1,

/e(6+ir)H(g_1w)+i9(g_1w)770(glw) dp"(g) = (Syin)(w)
= A"n(w)

= " [[So|[" e “ng(w)
i(n w — “ly — *n
= ¢+l ”/e I o9 w) dp™ (g).-

As 7 is a quasi-interior element by Theorem [4.2.3] it must hold that ng(w) > 0 for
almost all w € €. Hence for almost all w € €2 and g € supp(pu*™),

e~ i(rH(g™ w)=0(g~ tw)+0(w)+ny) _ |

Ifr 0, for afixedw € Q and n > 1, we can choose h,, € G such that e~ H(n'w) =
eim+m) ot ¢i(0(hn'@)=0@) = 1 Indeed, for a representative w = kM for k € K, we
may choose h,, = ka, k! for an element a,, € A satisfying e~ (@) = ¢+ a5 then
H(h,'k) = H(a,') and (h~'w) = 6(w). We may choose the h,, within a bounded
region of G and therefore upon replacing h,, with a subsequence we may assume that
h,, converges to some element h € G. Since p is non-degenerate we can find some n
and g € supp(p*™) such that g becomes arbitrarily close to h and hence for n large

enough also to h,. This is a contradiction.
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It remains to assume that A is in the approximate spectrum. Let 7, as in ((5.1.3]).
l—00 | ‘2

Since (Syne, Ane) = (Srme — Ao, M) + [1So|[?, it follows that (S,n,, Ane) —— [|So
and furthermore exploiting |{.S,1¢, Ane)| < (So|nel, ||:So]| |7¢]) one concludes

Jim (Solmel, |10 17e]) = 11|
—00

{—00

and hence ||So|ne| — [[Soll |mel I < 2[1.Sol[* = 2(Solmel, [|So| Imel) —= 0.
Denote 1, = || — (|0, mo)mo € (no)* € L*(Q2). Then it holds that

{—o0

[1(So = [[Sol)bell2 = [[Solmel = 1I:Sol[ 1] [l2 —= 0.

Since 1, in (no)* and Sy—|[Sp|| is invertible on (ng)* it follows that [|1),]|» — 0. Notice
that [|¢¢||3 = 1 — {Ine],m0)? and hence {|n,|,m0) — 1 and further || |5, — no||2 — O.
Upon replacing ¢ by a subsequence, we can assume that |r,| converges pointwise to
7o almost everywhere.

We further note that for all n > 1, (S™n,, A"ns) — ||So||*" as £ — oo. Indeed this

follows by induction as
(Sme — Sy Nme + 1 N, Ae)
= (S7 71 (Srme — M), Ny + 1|Sol[*(Sy e, A1) = 1[Sol [

Write A = €||Sp|| and ny(w) = €)|n,|(w) for 6, : © — R a measurable function
and w € €. Notice that (S'n,, \"n¢) equals

[ [ a4 1 ) 7 ) ) ™ () )

and on the other hand
(Som0, [1Sol"n0) = //65H(g_1“)||50|\”770(91w)?70(¢d) dp™ (g)dma(w).

As (81, N'ne) Lo, ||So||?™ = (SEno, ||So]|™n0) and since almost surely |n,| — 19, we
conclude that for almost all g € supp(p**) and w € €,

lim el H (g™ ) =0u(g7 W) H0e (@) ) — 1
{—00

This leads to a contradiction by a similar argument to the case of the discrete spec-
trum.

To prove , we notice that for an operator 7" on a Hilbert space 7 with
||T]| < 1, the value of ||T™|| for a given n controls ||T*||* for any k > n. Indeed (cf.
[Rem)) if £ = ¥¢n+ j for 0 < j < n — 1 then it holds that

1 i Lo i S R i
IT¥[[% < (T [=) F|T(= < (1T ]=) =+ |7 (5.1.4)
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Therefore for k large enough in terms of n, ||T%||* is at most slightly larger than
||77||#. Assume now for a contradiction that does not hold. Then there is a
o= 1Soll. As
the set {¢; < |r| < ¢o} is compact, we may choose a subsequence of the i such that
r; converges to r € a* with ¢; < |r| < c¢o. We arrive at a contradiction as by ,
Is
choose € > 0 small enough such that p(S,) + 3¢ < [|S|| and fix n large enough such
that ||S”||= < p(S,)+e. Then for r; close enough to r, HS}?H% < p(Sy)+2¢ and hence
by (5.1.4)), choosing i sufficiently large, ||Sm < p(Sy) 43¢ < ||So0]|, a contradiction

to the assumption. O

sequence (n;);>1 with n; — oo and for each i there is r; with [|S}"

1
" is at most marginally larger than ||S™||# for r; close enough to 7. Indeed,

Proposition 5.1.2. Let pu be a non-degenerate probability measure with finite second
moment and assume that Sy is quasicompact. Then there is 69 = do(p) > 0 such that
for any r € a* with |r| < &y the operators S, and S! have strong spectral gap.

More precisely there is 0 < dg < 1 small enough satisfying the following properties.

For |r| < g we can write

S, =\Nr)E, + D, and Sy =X\r)Er+ D; (5.1.5)

r

where X(r), E, and D, and equally X(r), EX and D} satisfy the assumptions of Defi-
nition [£.2.1, and the following properties hold:

(1) supji<s, || Drl| < (1= ¢)[|Sol| for ¢ = ¢(u) > 0.
(it) ||Ey — Eol| < |r|* and || EY — Eg|| <, [r[* for [r] < do.

(iii) Let n, be the unique \(r)-eigenfunction of S, with unit norm. Then for small

enough r there exists a unique \(r)-eigenfunction n.. of S* satisfying (n..,n,) = 1.
Additionally, for o € L*(Q),

Ero = (o, m.)n,.

(iv) Moreover,

[17r = mollz < Il and g — 1ol <o I

for |r| < 4.

Proof. As p has finite second moment, the directional derivatives of second order of
the family of operators S, and S exist. Therefore the function r s ||S, — Sp|| is C*.
Since S,p = S_,p for ¢ € L*(9), it follows by Taylor’s theorem that ||S, — Sy|| <,

o1



7> for small r. By Corollary and Corollary [4.2.4] Sy has strong spectral gap
and S, is quasicompact for small r. Equally by Lemma m (ii) and since S§ =
[ po(g~1) du(g) is a positive operator too, it follows that S has strong spectral gap
and S is quasicompact for small r.

We show that there is dp,c¢ > 0 small enough such that for |r| < d§y and two
orthogonal functions of unit norm ¢y, 9, € L*(2) it must hold for either i = 1 or
1 =2 that

1Sl < (1= SISl (5.1.6)

Indeed, assume for a contradiction that does not hold. Then ||Sop;|l2 >
15,12 = 105, = So)aillz = (1= IAO) + O ([rf2) > (1=2¢)][Sol| for r small enough.
For ¢ small enough, as Sy has strong spectral gap and (p1,¢2) = 0, the latter is a
contradiction.

Therefore we have shown for |r| < d that the A(r)-eigenspace of S, is one dimen-
sional and on its complement the norm of S, is bounded by (1—c¢)||So||. Choose 6y > 0
in addition small enough such |[So||(1 — §) < infj,j<5, A(r). Denote by 7 : St — C

a smooth parametrization of the closed circle of radius ||Sy||(1 — §) around zero and

by 72 : S — C a smooth parametrization of the circle of radius @3 around ||So|.
Consider the operators
1 1
P.=—— [ R(z,5,)dz, and E,=—— [ R(z5,)dz, (5.1.7)
2m 2m

for R(z,5,) = (S,—2-Id)~! the resolvent of S, at z. Then by Theorem 6.17 of Chapter
3 in [Kat95], the operators E, and P, are commuting projections with Id = FE,+ P, and
where ker(P,.) = Im(E,) is the one dimensional eigenspace of S, with eigenvalue A(r).
By setting D, = S, P, , we therefore have shown that S, = S,.(E,+ P.) = A(r)E,. + D,
has strong spectral gap and that (i) holds.

We claim that the operators E, and P, are also C?. Indeed by Lemma 3 of Chapter
VIL6 of [DS58], it holds that whenever ||S, — Sy|| < ||R(z,S0)||7!, then for any z in
the resolvent set of Sy that z is also in the resolvent set for S, and that

R(z,8,) = R(z,5) > (S, — S0)"R(z, So)".
n=0
Since S, is C? it therefore follows that for r small enough R(z, S,) is also C? on 7,
and vo. Thus ||P, — P|| <, |r|* and ||E, — Ey|| <, |r|* and the claim for E¥ is
established similarly.
To show (iii), first assume that such an 7, exists. Then as E,p = (p,¥)n, for

some ¢ € L*(Q) with S,.E, = E,.S, and E? = E, it follows that S = A(r)y and
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that (n.,%) = 1, which implies that ¢» = n.. By the above, it follows that there is
a unique A(r)-eigenfunction of S* with unit norm for |r| < &, yet we need to show
that there exists one with (n,,n.) = 1. For r = 0 this holds as both eigenfunctions
are positive almost surely and for small r we apply (iv) (for r. with a fixed norm) to
show that there is a A(r)-eigenfunction 7. of S* satisfying (n,,7.) # 0 and therefore
upon normalizing 7, the claim follows.

To conclude, we show (iv) for ||n, —no||2 and note that the same argument applies
to ||n. — npll2- The claim is deduced from (ii) by noticing that for d, small enough,
e = 722 Indeed, || Ewioll = [l Evio — 10 + ol 2 llmoll = l1(Ex — Eool| > & for &
small enough. To prove (iv), notice

|17 = noll2 < H||§:Zg|| - H?:ZgHHQ + HHE_SZE_H — 1ol |2

<4 1B: — Eoll + gk — 11 < 1P

using that 1 = ||Egno|| and |zt — 1] < [IBmlIEml) « || B, — Bof| <, [r2. O

Proposition 5.1.3. Let pu be a non-degenerate probability measure with finite second
moment and assume that Sy is quasicompact. Then \(r) is a C*-function and the

Hessian Hy o of A at 0 is a negative definite sesquilinear form.

Proof. Using the notation of the proof of Proposition it holds that A\(r) =
% and therefore for r small enough it follows that r — A(r) is a C*-function.

For the remainder we follow roughly the proof of Proposition 2.2.7 of [Bou81]. To
show that H) ( is negative definite, we fix a non-zero element r € a* and prove that
the function £(t) = A(¢r) has strictly negative second derivative at zero. Consider the
function h,(t) = (Djno,ng). As Dt = (Id — Ey.) D} (Id — Ey,) it holds that

r

|7 (8)] = [(Dp.(1d = Eiy)o, (Id = Ei ) ng) |
< [ Dee|["[1(1d = Ep)o] | [[(1d = B )|
< [ Dee|["[1(Eo = Evr)nol | [[(Eo = Ete) mo|
< 1Dl "M|(Eo = Ea)IH(E5 — LI < |[DF|1E,

using Proposition[5.1.2|(ii). In particular, using Proposition (1), AMO) ™™ hy ()| < pur
t? for all n > 1 and small ¢ and therefore A\(0)~"h/(0) is bounded for all n > 1 as

otherwise Taylor’s theorem would yield a contradiction.
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As £(0) = A\(0) and &'(0) = 0, it follows that

d? d?

2t (A0)™(Spm0:m0)) = &t (A0) ()™ (Ewrno, mo) + AN0) " hy (1))

2

— nA(0)¢(0) + 5

&), <Etr770, 1o) + A(0) ™" hyy (0).

(5.1.8)

Note that j—;t\tzo(Etmo, n6) is also bounded as by Proposition , (Ewno, 10)] <K
1+

We finally consider the functions f,(t) = A(0)~" (S} no, m,) for n > 1. We claim
that the function f,(¢) is positive definite. Indeed, for ¢y,...,t,, € Rand oy, ..., €
C,

Zakaéfn te) = Z(Sak —to)r o, CuTy)
- Z/ a@ize I =0 (g kg (k) dia(g)dma (k)

2
i -1
:/ E :6 itgrH(g k‘)ak

e MO R (g k) (k) du(g)dma (k)
k
which is positive as 79 > 0 and 7y > 0. Therefore by Bochner’s theorem and since

fn(0) = 1 one may expresses f, as the Fourier transform of a real valued random

variable X, ie. f,(t) = [e"dux,(x). Denote by v, = —if},(0) the expected
value of X,, and by o2 = —f”(0) its variance. For any given ¢ > 0 we notice that

P[|X,, —vn] < ¢] = 0 as n — oo since by Lemma it holds that f,(t) — 0 for
t # 0 as n — oo and therefore u, weakly converges to the zero measure. Applying
Chebyschev’s inequality,

o2

1- 70 <1 P[IX, —vn| > = P[|Xy — va] <] =0

c?

and hence 02 > ¢?/2 for any large enough n. Thus f”(0) — —oo which by (5.1.8)
can only happen if £”(0) < 0. This concludes the proof.

5.2 The Limit Measure

In this section we establish the claimed properties of the functions 1, , as stated in
(3.2.6). A multiple of 4,0 is the limit function of Theorem [2.0.1]

The main lemma of this section may be viewed as a Lie group analogue of ([3.2.7]).
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Lemma 5.2.1. Let pu and & € (0,1) be as in Proposition[5.1.4 Denote for |r| < & by
N, the unique \(r)-eigenfunction of S, with unit norm and by n,. the S}-eigenfunction

with eigenvalue \(r) satisfying (n.,n,) = 1. Then the continuous function

Upur(9) = (07, pr(9)107) (5.2.1)

satisfies px Py = Yy, * o = N1)¥,,. Moreover, for any f € /(X) and h € G,

/ F - PRy dme = / Fr ) (Bopr ()W) dmg(w),  (5.2.2)

where pg is the right regular representation of G and we view f as a right K -invariant

eigenfunction on G.

Proof. The relation (5.2.2)) follows as for f € ./(X) and h € G,

/f pG 77Z},urde_ nmpr(f pr( ) >

(e 22
= (r, pr (f) pr(mic) pr(R)1))

= (1, (f)< L oI
= (o (B e, 22 (D)
/fw Eypp(h™)1)(w) dma(w),

having used in the last line that f('r, k)= p_.(f)(1) = p.(f)(1).
To show that p %, , = A(r),,r, we calculate for g € G

-1

(1% ) (g) = / bpor (1 g) dpu()

= (777«75* ( ) 7/~>
- <S7“77T7pr(g) > ( )wﬁr( )

A similar argument shows that ¢, * gt = A(7),.,. O
For later reference we show the following lemma.

Lemma 5.2.2. Let pu be a non-degenerate probability measure on G with finite second
moment and assume that Sy is quasicompact. Denote by dg the constant obtained from
Proposition . Then for |r| < 0y with 6y small enough, and g € G,

Vur(9) = Yuo(g)l < [r[(1+1lgl]). (5.2.3)
Moreover, for |r| <&y and g € G,

w,u,r (g> + z/}u,fr (g)
2

— uo(g)| < Irl*(L+[]g]*). (5.2.4)
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Proof. Observe that

Y (9) = Luo(9)] = [0, pr(9)1) — (10, po(g)1))]
= [pr (g™, m) = (po(g™ )05 m0) |
< [pr (g™ )1 m = mo) + 1o (9™ e = polg™ )0, )]
Lo I = mollz + (e (g7 = polg™))mol|2-

Thus in order to prove (5.2.3)), by using Proposition [5.1.2] (iii) it suffices to deal with
(o (g71) = po(g7))nol|2- One calculates that for g € G and w € €,

[(pr(g™") = polg™))mo(w)] = (=9 — 1) nq (gw)|
< [r|l|gll le=*H o (guw)). (5.2.5)

Equation ([5.2.3) therefore follows by squaring the latter term, integrating over 2 and

using that ||po(g)n0ll2 = [0l = 1. For (5.2.4]) one performs the same calculation
and notices that

' (pr(g) + p—r(9)

5 - Po(9)> no(w)| = |(cos(rH (g~ w)) — 1)||e 2@ )y (g7 w)].

Then (.2.4) follows by using that |(cos(rH (g 'w)) — 1)| < |r[*||g]|*. O

5.3 High Frequency Estimate

For a Schwartz function f € (X)), we say that the Fourier transform fraxK —C
has compact support if there is R > 0 such that f('r’, w)=0forr > R and all w € Q.
In this section with make no notational difference between a function f € .(X) and

its G-lift. We first prove a preliminary lemma on the Fourier transform.

Lemma 5.3.1. For f € S (X),

17,22 < 11

Proof. We calculate for r € a and w € €2 that

2

Flrw)? = / £g 1)(w) dmel(g)

2

IN

/G F@] | (0—r(9) D) (@)] dma(g)

2

IN

/G £(@)] 1(o(9)D) (@) dmg(g)
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Set f1 = f

T SO that it follows that

2

Frw)” <111 -

/G (po(9)1) (@) 1(g) dmas(g)

Recall that if X is a random variable on a probability space then by Jensen’s inequality
E[X]? < E[X?]. By construction fidmg is a probability measure and hence it follows
that

Firw)l? < 112 / (po(g)D)(@)? f1(g) dmas(g)
<R [ FE0 ) fi(g) dmalo)

Thus we conclude that

7N < 118 [ (] 200 dmate)) il ameto)
< [IfI-
O
Lemma 5.3.2. Let i be a non-degenerate probability measure on G assume that Sy is
quasicompact and let 5y € (0, 1) be the constant from Proposition . Let R > 1 and
let f e L(X) be a Schwartz function whose Fourier transform satisfies f(r,w) =0

for all |r| > R and w € Q. Then there is cg = cgr(u) > 0 depending on p and R such
that forn > 1,

% R
e / / Fr,w) (570 (ho) 1) (w) dimgy(w) duspn ()
irl>80 J

<<,u RdimXefcRanHl'

Proof. Choose R such that J?(r w) =0 for r > R and w € Q. Then using Cauchy-

Schwarz and Lemma

/2
/50<r|<R/ F(r,w) (57 pr(ho)1)(w) dme(w)dvp (1)

~

S n || ( )“L2 ||Snpr(h0)]—||2 stph( )
o So<|r|<R
/2 _

< n sup HS:}H |‘f(T7>HL2(Q) dysph(r)
0" §<|r|<R 1<|r|<R

< emenn / 1F sl dvapn ()
6o<|r|<R

<o il [ Jetr)| e (1)
I7|<R

ST [ ) din 1) < R e
Ir|<R
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using ([5.1.2)) in order to choose a constant cg > 0 depending on p and R such that
< ;,/12 SUPsy<r1<r |1S] \) < e “r" for n large enough and Proposition 7.2 of chapter IV
in |Hel84], asserting that |c(r)|™? < 1+ |[r|%™¥ for any r € a* O

Towards proving Theorem [2.0.3] we strengthen Lemma [5.3.2| under strong as-

sumptions on ||.S,||.

Lemma 5.3.3. Let pu be a non-degenerate probability measure on G. Assume that
So s quasicompact and that (supw21 1S ) < ||Soll. Let &0 be the constant from
Proposition . Then for f € (X)), s > %dimX andn > 1,

nt/2 .
S [ R0 (St 1)) o) ()] < e
[r|>80 /2

Proof. The left hand side of the claimed equation is bounded by

nt/2 .
< — Lf (s 2@ 157 pr (ho) 1|2 dvspn ()

n
g T[>0

<o [ 1Tl ()
[r|>d0

\/ / 725 g \/ / 170,y 12 g (7)
|r|>60 |7|>60

sos € || ] mss

for n large enough and choosing s sufficiently large such that flrlzl 7|72 dvgpn (1)
is bounded. Indeed, by Proposition 7.2 of chapter IV in [Hel84], it holds that
le(r)]72 < 1+ |r|4™ Y for any r € a* and therefore |c(r)|72 <5, |r|9™N for |r| > dp.
Thus [, 77 dvsn(r) <so fi54 |74 N =25 g (r) and the latter term is < oo
whenever dim NV — 2s < — dim A. O

5.4 Low Frequency Estimate

Throughout this section we assume that S is quasicompact and denote by g € (0,1)
the constant from Proposition|s.1.2, In this section we deal with the some preliminary
estimates for the frequency range |r| < dg. We recall that by Proposition for

|r| < d¢ we have a decomposition
S, = \r)E, + D,,

where E, and D, satisfy the properties of Definition We first show that we can

ignore the contribution of D,.
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Lemma 5.4.1. Let pu be a non-degenerate probability measure on G and assume that
So is quasicompact. There exists a constant ¢ > 0 depending on p such that for all
fe LX) and hy € G,

nt/2 R ) B
F/|T|<60/Qf<7“7w)(DrPr<h0)1)(w) dmo(w)dvepn ()| < || f]l1e™.

Proof. Using Proposition [5.1.2 we deduce %5~ sup|r|<50 | D pr(ho)1|| < e~ for ¢ > 0
a constant depending on p. Using Cauchy—Schwarz the term in question is bounded
by

% R

— (s )220 (107 pr (ho) 1 |2 dvgpn (7).

" Jir|<éo
The lemma follows as Hf(/r,')HLQ(Q) < |Ifll by Lemma and by estimating
f\rl<5o 1 dvgpn(r) < 1 since dp < 1. O

Therefore, up to an exponential error term, we only need to deal with

z/z

/f r,w)(Eyrpr(ho)l)(w) dmg(w)dvspn(r). (5.4.1)

on |r\<50

Recall that ¢ = 2p + d for d the rank of G, where the rank is defined as the real
dimension of a. We therefore may rewrite (5.4.1]) by replacing r by \/Lﬁ as

n_n IT\géo\/ﬁ/\( r )n|C(‘/Lﬁ)|_2/ﬂf(ﬁ,W)(E\/rﬁp\/Lﬁ(hg)l)(w) dmq(w)dmg-(r). (5.4.2)

B

Towards proving the local limit theorem, we first replace (T{r V)" by a suitable

function. Before doing so we give some elementary calculative results.
Lemma 5.4.2. The following inequalities hold:
(i) For any A, B € R,
le? — eP| < |A — Bl max{e”, P}
(i) For any ¢ > 0,r #0 and n > 1,

_ _ 2 _
ne v < enr /27“ 2‘

V)
ol

29



Proof. For the first inequality by assuming without loss of generality that A > B
we deduce that |e? — eB| < e?|1 — P74 and hence reduce to showing that |1 —
eB~4] < |A — B|. For this we use that e* > 1 + x and hence as B — A is negative,
1—eP A =1-eB4< - (B-A)=|A-B]|.

For the second inequality we apply the observation that e™* < % to deduce that

ne=m*/2 < anTQ = CT% which implies the claim by multiplication with e~<*/2. [

As in the proof of Proposition one shows that \(r) is C* if u has finite fourth

moment. Indeed, by conducting a Taylor expansion of A, for small r,
/\(T) = A(O) - Q(T, T) + OG(|T|4)a

where Q(r,7) = —H,o(r,r)/2 for Hyy the Hessian of A at 0. By Proposition [5.1.3]

the sesquilinear form () is positive definite.

Lemma 5.4.3. Assume that p has finite fourth moment. There are constants co, ¢* >

0 such that for Q the above positive definite sesquilinear on a we have for |r| < dy,

)‘(T)n . 6—02nQ(r,r)

p <P,

In particular, for |r| < dov/n,

‘)\(T/\/ﬁ)n _ e_CQQ(r,T) <, n_le_c*lr‘2|r|2.
O—n

Proof. We may choose for small enough r a constant ¢, > 0 such that |A\(r)| <
A0)(1 — ¢*|r[*). Using that In(1 + z) < z, it therefore follows that

n ln(iggg) < —c*nlr?

Throughout set ¢y = ﬁ and choose ¢* < ¢y. Then

A(r «
Inax{e—CQnQ(r,r)7 e ln()\Eog)} < e € n\r|2'

Using Lemma [5.4.2] (i) it follows that

A(r)™ —conQ(r,r nln(2) —conQ(r,r
|)\E8n_6 2nQ( )|:|€ (,\(0))_6 2nQ(r,r)
A(r)
< max{e” =), "GO} n(38) + nQ(r,7)|
< efc*nQ(r,r)nlr“
< efc*nQ(r,r)‘HQ’
by using Lemma [5.4.2] (i) in the last line by changing the constant c*. O
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Recall by the definition of the c-function:

|C(T)|_2 — L B (m(ﬁ')’ i(% 7’€>) ‘ ‘ ﬁ B (m(m)’ m(m/2) n z(r’ re>) ‘
I(0) 2 (rg,me) Pated! 2 4 lre,7e)
. 1 ( |F(m(r ZTZ:i )|2 ) < ﬁ |F(m(7”£) + m(r;f/2 Z,;:i ),2 )
10) G IPCEHENGESE ) oS DG PN + f2 )
where B(z,y) = fol t*=1(1 —t)¥~1 dt is the Beta function satisfying B(x,y) = FF(ZE:E—%)

—= T

~
Il

(5.4.3)

Lemma 5.4.4. There is a constant c¢g depending only on G such that for |r| < dy,

p

e[ = ca [ [ 1tr.ro) > + O (Ir|*2).

(=1

In particular, for |r| < dov/n,

nP|e( - —CGanTg

Proof. As the singularities of the I' function are at 0, —1,—2,... and I'(z) behaves
around 0 like 1, it holds that ||F o7~ 2’| < 2t and [|T'(% +iz)? — (%)% < 22

< n TR

Therefore,

m(rg i{rre) \ (2 m
|F< + (M,Ti))’ |F< 2 ))’ ’<7’, Tg>‘2 - |r|4
EEDPIDGEDE DD (e, o) ?
and similarly
m(re) m(re/2) i{r,re) \ 2 m(r (e /2
DO+ =57 o)l (e 4 22 o
m(ry/2 i(r,r mr (rr ]2 .
[D(2ed)2|p (/2] 4 feryp ol (/)

Using these two estimates in (5.4.3|) the lemma follows for a suitable constant c¢g. [
Denote by
p
v(r) = cgee2Qrr H| 7|
=1
for ¢ the constant from Lemma [5.4.4,. We then may draw the following corollary.

Corollary 5.4.5. Assume that p has finite fourth moment. For |r| < dov/n and

cd >0 a constant depending on u,

A () = ()

/‘2

<y nte=clr”,
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Proof. Combining Lemma [5.4.3| and Lemma [5.4.4]

M=)
<’ Vn . —CQQ(T”‘ |np (T>_2|

e—CQQ rr)

nP|e(-= —69H|7“T‘g

1, —c'|r?

<<ne|r,

by using in the last line and that |r|?+2e=2@m) <« e~¢I"” for a suitable constant
d>0. O

5.5 Proof of Theorem [2.0.2 and Theorem [2.0.3

Throughout this section assume that p has finite fourth moment. We are now in a
suitable position to prove Theorem “ 2{ and Theorem “ Let f € . (X). Recall

that we expressed in ((3.2.1] ) dp"(g) for zog = ho K

by using the Fourier inversion formula as

(ho)1)(w) dmg(w)dvspn(r).

The latter term is decomposed into the high frequency and low frequency
(3.2.3) component for §p € (0,1) small enough such that Lemma holds. Under
the assumption supy,>q [|S:|| < 1, the high frequency term is dealt with by
Lemma collecting an error term of size O, (e™"||f||g=) for s = (dim X + 1).

Without this assumption, one requires that the Fourier transform of f is compactly

supported yielding by Lemma an error term of size O, f(e= ™).
For the low frequency term, one applies Lemma [5.4.1] thereby collecting an error
term of size O, (e~“"|| f||1). It remains to deal with (5.4.1)), which after the substitution

r to = is of the form (5.4.2). Using Lemma and Corollary [5.4.5, we arrive at
the term

/lf‘<5of7<r)/szﬂ%ﬁ’wxEﬁpfﬁ(h)l)(w) dmq(w)dme-(r)

- [ sawatn ([ A ) e () i)

admitting an additional error term of size
<o Wl [ e e ) < 1
r| <o/

62



using that the latter integral converges.

We define for n > 1 the continuous real-valued functions on G,

Uulg) = /| W @) ) and (55.1)

o(g) = Cp - %,o(g) for Cp = /e ) Y(r) dmg- (7).

While w#’ﬁ is not necessarily real-valued, the function 1, is as zb%% = z/zu,_% and

the definition of 1), is invariant under r — —r.

We have so far collected a total error of size

Ou(m M £l + e[ fl]+)

under the assumption sup;,>; |[S:|| < [|So|| and for f € #(X) and
Ou(n™MIf111) + Opp (eI f111)

without the latter assumption yet requiring that the Fourier transform of f has com-

pact support. To conclude the proof, we show the following lemma.

Lemma 5.5.1. Forge G andn > 1,

¥ (9) = Yo(g)| < n™ (1 + lg])-

Proof. Since v(r) <, e~I"” for a suitable constant ¢ it follows that

[Yu0(9)] 7(r) dme-(r)
|r[>d0v/n
decays exponentially fast in n (using that [¢,0(g)] = [{(m0, po(g)n;)| <, 1) and there-

fore we need to deal with

Yulg) — /| o A0l d (7).

By Lemma [5.2.2] it holds that

?/fu,ﬁ (9) + wuﬁﬁ(g)
2

(5.5.2)

_ wu,o@)\ < P+ lglP?)

and therefore using again that v(r) <, e=<"I"* and as the defining integral of v, is
invariant under replacing r by —r,

F5 < /| o W 0) = ol de (1)

<, n (14 |lglP) / ()P dmge ()
[r|<dov/n

<unH(1+]gll%)-
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Recall that we have defined

||f||*=/If(x)l(l+dx($,0)2)dmx(fv)=/|f(9)|(1+||9||2)dma(g),

where we make no notational difference between f and its lift to G. To conclude the

proof of and we estimate
[ stasinyanato) - [ ftazainto) dneto)
< [1@Ilvu(ahs") = dolghy")] dmelo)
<™ [ 1N+ llgh" ) dmelo)
< [ 171 + 1l + 1ralP) dml)
< m Y11 + n~dx (20, 02| 1],

having used in the penultimate line that ||ghy || < |lg|| + ||kg ]| by Corollary 7.20 of
[BQ16| as G is connected. This concludes the proof of Theorem and of (2.0.9).
The final claim of Theorem is proved in the following lemma.

Lemma 5.5.2. Let G be a non-compact connected semisimple Lie group with finite
center and let p be a mon-degenerate probability measure on G with finite second

moment. Assume that p satisfies one of the following properties:
(i) w is spread out.
(i1) p is bi-K-invariant, i.e. mg * p* my.

Then Sy is quasicompact and (supy, s ||Sk|]) < [[Sol|.

Proof. The claim of the lemma was established for spread out measures in section
2.2 of [Bou81]. It remains to treat the case where p is bi-K-invariant. Note that
as S, = p.(mg) * S, * p.(mg) it holds that S,1q = A(r)lg and S,(1g)* = {0} and
therefore A\(r) = [ ¢,.(g) du(g). The claim now follows as ¢,(g) — 0 (cf. for example
appendix A of [FM21]) for fixed g € G\K and r — oo and using that u(G\K) > 0

as i is non-degenerate. O
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5.6 Proof of Theorem 2.0.1]

Lemma 5.6.1. Let G and p be as in Theorem |2.0.1. Let f € #(X) be a Schwartz

function whose Fourier transform is compactly supported. Then

hm

e /fgxo dp™ ):/f(gwo)z/JO(g)de(g).

Proof. The proof is as the one of Theorem [2.0.3|expect that we cannot use Lemmal5.4.3|
Revising the argument of Lemma[5.4.3] it follows that for the positive definite quadratic
form () from Lemma [5.4.3] under the assumption that p has finite second moment,
it holds that A(r) = A(0) — Q(r,7) + o(|r|*) and therefore for |r| < dgy/n,

)\(T/\/ﬁ)n _ e—CQQ(T,r) M <

lim and
n—oo

for a suitable constant ¢ > 0. Similarly to Lemma [5.4.5]

p

lim A (=) e( )72 = 5 (r).

n—oo g Vvn

Arguing as in the proof of Theorem [2.0.2] it therefore follows by dominated conver-

gence,
lim Z /f g.x0) dp"(g) = lim (j5.4.1))
n—oo gm n—00
= [ 20) [ 70w Eoplto)t) @) dmafe)dme ()
rea*

_ / F(g-0)o(g) dma(g).

Lemma 5.6.2. Let f € /(X). Then

lim sup
n—oo

0/2
v [ S| < sl

where the implied constant depends only on G.

Proof. One may reduce to functions f > 0. By covering the latter function suitably
by a linear combination of characteristic functions, it suffices to show the claim for
f = 1p.(y) with € > 0 small and z € X. By Theorem 5.7 of [And04| there is a
positive function h € . (X)), whose Fourier transform has compact support, satisfying
1.(zy < h and ||h||; < volx(B:). The lemma follows by applying Lemma to
h. O
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Proof. (of Theorem Let §, € .(X) be an approximation to the identity on
G that is bi-K-invariant and whose Fourier transform has compact support. Such
functions exists by choosing a sequence w, of smooth bi- K-invariant approximations
to the identity that are supported on smaller and smaller balls around e € G. As a
Schwartz function is characterized by its Fourier transform, it suffices to determine
gg. Indeed one may choose (/52 to be equal to @y in a sufficiently large ball around the
identity and to decay to zero rapdily outside of it. One then readily checks that &,
satisfies the required properties.
Then for f € .#(X), it holds for r € a* and k € Q,

—_— ~ ~

[ 6u(r k) = (p—r(f ¥ 00)1) (k) = (p—r(f)p—r(00)1) (k) = f (1, K)0e(r).

Therefore the Fourier transform of f % d, has compact support.
Combining Corollary and Lemma [5.6.2} for f € ./ (X),

/2

/ f(g.20) du™(g)

% /2

= [ U 0g ) di(g) + / (f = [ % 80)(g-20) dys™(g)

O—’I'L

— [ #g0)ins) dma(g) + OIIF = £ *5ill) + opa(1)
having used Lemmaand that | [(f—fx3d)(9)vo(ghy) dmea(g)| <, ||f — f*0elx

as g is bounded. The claim follows by choosing ¢ sufficiently slowly increasing in
n. O
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Chapter 6

Quasicompactness of 5

In this section we discuss how to establish quasicompactness of Sy under strong Dio-
phantine assumption. The reader may recall the Littlewood-Paley decomposition
L*(K) = @,-, Vi (see (3.1.6])), where the space of functions V; can be pictured as
oscillating with frequency 2°. The main result of this section states that under suit-
able assumptions, the operator Sy has small norm on the space of functions with high
enough oscillations.

Recall that we denoted by pi the Koopman representation induced by the G
action on K, which contains the zero principal series py as a subrepresentation and
write S = pg (1). Instead of considering Sy, we study Sy, which leads to stronger

statements.

Theorem 6.0.1. Let G be a non-compact connected simple Lie group with finite
center. For ci,co > 0 there exists e = go(c1,c2) > 0 such that the following holds.
For any 0 < e < g9 and any symmetric and (cy, ¢z, €)-Diophantine probability measure
p there is L = L(c1, ca) € Zxy such that for ¢ € @y Vi,

1
1S5 ¢ll2 < < [lell2- (6.0.1)

Theorem will be deduced in section[6.1]using results and ideas from [BISG17],
thereby exploiting that the measure p has high dimension ((3.2.8]) as well as a Littlewood-
Paley decomposition and a mixing inequality on G. Under the additional assumption

that K is semisimple, one may instead follow Bourgain’s [Boul2| original ideas and

improve ((6.0.1]).

Theorem 6.0.2. Let G be a non-compact connected simple Lie group with finite
center and mazimal compact subgroup K. Assume that K is semisimple. For ci,co >

0 there exists g = €o(cy,¢a) > 0 such that the following holds. For any 0 < € < €q
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and any symmetric and (ci, c2,€)-Diophantine probability measure p there is L =
L(cy, ¢2) € Z»y such that for ¢ € @y Vi,

1S5 ll2 < oMol . (6.0.2)

The proof of Theorem was exposed in section As in [BISG17] we exploit
that p has high dimension, yet we work with the Littlewood-Paley decomposition on
K and use that the averages of matrix coefficients of V; are small (Proposition [£.5.1)).
From these results, one may easily deduce that Sy and S;” are quasicompact, therefore

also implying Theorem [2.0.7]

Corollary 6.0.3. Let G be a non-compact connected simple Lie group with finite
center. For ci,co > 0 there exists £ = go(c1,c2) > 0 such that the following holds.
For any 0 < & < g9 and any symmetric and (c1, ¢z, €)-Diophantine probability measure

u, the operators Sy and Sy are quasicompact.

Proof. As [|So|| = ||S5|| (by section D of [Gui80]) and since pg is a subrepresentation
of po, it suffices to show that S is quasicompact. By Lemma the estimate
(6.0.1) implies that pes(Sg) < 1. As for £ > 0 small enough, /g — e <
6] |lg]] < €M) for g € B., it holds that ||Sf|| > 1 — M and hence the claim
follows. m

We next explain how to deduce from (6.0.1) that the Furstenberg measure is
absolutely continuous. Given a non-degenerate probability measure, we study the

operator
Ty : L*(Q) — L*(Q), gor—>T0g0:/<poozgdu(g).

As we discuss in the proof of Corollary it is shown in [BQ18| that if pess(70) < 1,
then the Furstenberg measure of p is absolutely continuous. The following corollary

is also necessary to establish Theorem [2.0.8|

Corollary 6.0.4. Let G be a non-compact connected simple Lie group with finite
center. For ci,co > 0 there exists g = gq(c1,c2) > 0 such that the following holds.
For any 0 < & < g9 and any symmetric and (c1, c2, €)-Diophantine probability measure
w there is L = L(cy, ¢2) € Z>y such that

1
ITogllz < Sllella - for g€ <L2(Q) a @w) . (6.0.3)
Moreover, pess(To) < 1 and the Furstenberg measure of u is absolutely continuous.
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Proof. Using as in the proof of Corollary that ||,/ — 1o < [0]]lg]| < £
for g € B. and € > 0 small enough, it follows that ||Sy — Tp|| < %M. Therefore
is implied by . By Lemma we hence conclude pess(Tp) < 1.

We finally review the argument from [BQ18| to show that the Furstenberg measure
of p is absolutely continuous under the assumption that pess(7o) < 1. Indeed as
Tol = 1, it follows that 1 is in the discrete spectrum of Ty. If pess(Tp) < 1, one
furthermore concludes (cf. Fact 2.3 of [BQ1§]) that 1 is in the discrete spectrum
of the adjoint operator T;; and therefore there is a function ¢p € L?*(f2) satisfying
Tir = ¢¥p. One then readily checks that Ypdmg is a p-stationary measure and thus

by uniqueness of the Furstenberg measure it holds dvg = Ypdmy. O

We comment on the organization of this section. Theorem [6.0.1] is proved in
section [6.1l The proof of Theorem [6.0.2| comprises two steps. In section [6.2] we first
establish using the flattening results from Theoremmmat S¢ v, has small operator
norm. In section we complete the proof of Theorem by using that SV, and
Vy are almost orthogonal. Finally in section we show how to deduce that the

Furstenberg measure has a C™(K') density.

6.1 Proof of Theorem [6.0.1]

Write Tyf ¢ = [ o a,du(g) for p € L*(K). Since ||Sg — T, || < €90, as argued in
the proof of Corollary [6.0.4] in order to prove Theorem it suffices to show that

1
1757 ll2 < Sllell: (6.1.1)

for o € @, Ve and L = L(cy, ).

We proc_eed similarly to the proof of Corollary C' of [BISG17|. Indeed, we reduce
the problem at hand to studying the regular representation on L?(G). One then
uses the following result of [BISG17], which may be considered as their core technical
contribution, which uses that g has high dimension as well as a novel Littlewood-
Paley decomposition and a mixing inequality on G. We rephrase their result using
the notion of (¢y, ¢z, €)-Diophantine measures.

To introduce notation, for a measurable subset B C G we consider the norm

1122 = /B F(9)? dme.

Theorem 6.1.1. (Theorem 6.7 of [BISG17]|) Let G be a connected simple Lie group

with finite center and B C G a measurable set with compact closure. Let ci,co > 0.
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Then there is eg = €o(B, ¢1,¢2) > 0 such that the following holds. For any 0 < € < &g
and any symmetric and (cy, ca, €)-Diophantine probability measure p there is a finite

dimensional subspace Vg C L*(B) such that

| |>\G('u) |(VB)J‘ | ‘Op,LQ(B) < g0B.e1ea(),

In order to apply Theorem [6.1.1] we use the following lemma, which is inspired by
the proof of Corollary C of [BISG17]. Denote by mx : G — K = G/P* the natural

projection.

Lemma 6.1.2. Denote B={g € G : |c(g)| < ¢} for ¢ > 0. For small enough ¢ > 0
there is a constant D > 1 depending on G and ¢ > 0 such for all p € L*(K),

D_1||90||L2 < |lpomkllrzm) < Dl|oll 2k (6.1.2)

Proof. Recall that we denote Pt = AN. By |[BAIHV0§] Theorem B.1.4 there is a

continuous function p : G — R.( such that
/ F(9)p(g) dme(g) = / (k) dmp(p)dmac () (6.1.3)
KJpP

for all f € L'(G) with compact support. It moreover holds that aj(zP*) = £ ((gx) for
all z,g € G. We then calculate for ¢1, o € L*(K) using (6.1.3)),

ima(B) (1, 902>L2(K) (107K, P20 TK)12(B)|

| [ [ e 0alitato) dme(pamc(®) - [ 1a(o)or(mto) palmla)) dmeto)
[ exrta) a1 - pla) amata)

<1 OWKHLQ(B)\// la(mr(9))]2 [1 — p(g)]? dma(g)
B
< D'l|gr o el r2yllp2 © Tl |22 (m),

for a suitable constant D’ using that |1 — p(g)| is bounded on the compact set B. By
a similar argument and possibly enlarging the constant D', we may also estimate the
latter term by

ma(B)D'|e1ll 22l 2 ()
Setting ¢ = 1 = @9 the claim is readily implied by choosing D suitably in terms of
D" and mg(B). O
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Throughout the following denote by B = {g € G : |k(g)| < ¢} a set from
Lemma such that (6.1.2) holds. We are now in a suitable position to apply

Theorem [6.1.1] Indeed for ¢ € L*(K) it holds by (6.1.2)) that
1 Tollz2x) < DI[(Tow) o mcl|z2(5) = DI Aa (1) (@ o mx)l|L2(5)- (6.1.4)

Let Vg C L?*(B) the finite dimensional subspace of Theorem [6.1.11 We then may
choose L large enough such that if ¢ € @62 . Ve then

lpomn — (v omk)wy)llr2m) < o o mx|[r2(m), (6.1.5)

16D2
where (¢ 0 Tg ) (v;,)2 18 the projection of ¢ o 7k onto (Vi)*. Indeed this follows using
and that V3 is finite dimensional.

We conclude using Theorem [6.1.1], (6.1.2)),(6.1.4) and (6.1.5),

[ Topll 2y < D|[Aa(p) (@ o mr )| 22(B)
< DlAa(p) (pomk — (@ o) wimr) 2 + Dl Ac() (@ o mk) vp)r | 2(a)

1
< 16_D||(’0 o mk||z2(m) + De%r2W]|p o T ||L2(B)

1
(— + DQ&OCI’CQ“)) el

IN

16
showing (6.1.1)) by choosing ¢ small enough in terms of ¢; and ¢;. The proof of

Theorem [6.0.1] is complete.

6.2 Operator Norm Estimate for S on V}

In this section we prove the following proposition.

Proposition 6.2.1. For ¢;,co > 0 there exists g = £o(G, c1,¢2) > 0 such that the
following holds. For any 0 < ¢ < g9 and any symmetric and (cy, ¢, €)-Diophantine
probability measure pi, there is L = L(G, ¢y, ¢a) € Zsy such that ||Sg v, ||op < %102
for ¢ > L.

Recall that as introduced in section 4.4,

1p;
’I?’L(;(B(g)7

Ps =

where Bs is the open d-ball around e € . For the proof of Proposition [6.2.1] one
estimates by the triangle inequality for n > 1 and ¢ € V/,

(S5 ll2 < [1(S5)" e = oo (1™ * Ps)ell2 + [1pg (17" * Ps)ella- (6.2.1)
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We aim to show that is very small for a suitably chosen n and ¢. For the
first term of (6.2.1)), we use that the Lipschitz constant of ¢ is < ||y||°"). Therefore,
a d-perturbation of (S )"p = pd (11*™)¢ is small provided we choose § miniscule in
terms of £.

The second term of is dealt with by using that p has high dimension.
Indeed by Lemma[4.4.2]it will follow that p*" % P5 has small || - ||s-norm for n chosen
in terms of §. This will allow us to compare ||pg (11" * Ps) || to the average estimate

of matrix coefficients

1

mea(Br) /BR [(pd (9)¢, )| dma(g) < 2772 ||l

that was discussed in section [£.5l
We proceed with some preliminary lemmas used in the proof of Proposition |6.2.1].

First, we estimate how much pg (¢g)p differs from ¢, given that ¢ € V; and g € Bs.

Lemma 6.2.2. Fiz { > 0. Then for p € V; and 0 < § < 27¢, it holds for g € B;,

Po\g)¥Y — Pli2 € Pll2-
o (9) |2 < ?ME5OW |g)|

Proof. We first fix v € C' N I* and denote as usual by 7., the associated irreducible
representation and let vy,...,v, € m, be an orthonormal basis of the representation
space of 7. For k € By in K for § small enough, it holds by Lemma 3.1 of [dS13] that
||y (k) —Idr, ||op < di (K, €)||7||. Indeed, upon conjugation, we can assume that & is
inside the maximal torus T of K and hence we can write k = e* for X € t = Lie(T)
with || X|| < dg(k,e). With these assumptions, the eigenvalues of 7., (k) — Id,, can
be calculated as e”X) — 1 for 4/ the weights of .,. Choosing § < 27¢, and therefore
having |7/ (X)| < 1, we can bound max,, |e”X) — 1| < max, |7/(X)| < dk(g,e)||7]],
showing the claim.

Denote by 1 the matrix coefficient k — /d, (m, (k)v;, v;), satifying |[¢]|s = 1. We
first show that |[pd (g)1 — ¥|[» < §°W||y]|°M) for ¢ € Bs. Indeed, using as in the

proof of Corollary that [|,/af (k) — 1|| < 6°) and Lemma [4.3.1]

(e (@)0) (k) = k)] < | (/g k) = 1) g™ k)| + [l ) = ()]

< OO ) + V(g ) — 7 ()l
< W (g k)| + 67D |4]]°V,

which implies the claim using [¢(g7L.k)| < |[¥(g7 k) — (k)| + |¢(k)|.

72



To prove the lemma, denote by (¢;);c; an orthonormal basis of V;, with functions
as in the previous paragraph. Then |I| < ¢?Wf and for ¢ € V; we decompose
© = > ;5 @y, implying using Cauchy-Schwarz,

105 (9) —llz < D lail [l ()¢ — ¢llo < PP 67D] o] |2,

el

[]

We next show how to compare m(v)p with 7(v * Ps)p for a suitable vector ¢ and

a unitary representation 7w and probability measure v.

Lemma 6.2.3. Let (7, 5¢) be a unitary representation of G and let 6 > 0. Fix
p € H. Assume that ||m(g)e — || < Csl|pl| for all g € Bs and Cs > 0 a constant.

Then for any probability measure v,

Im(w)p — (v * Bs)el| < Csllgl|-

Proof. Using Fubini’s theorem and that 1p,(,)(h) = 1,m)(9),

- [ s ([ 1saednen) an

) / m (/BM ”<9>wdv<g>) dma(h).

Furthermore, by the assumption and using that Bs(h) = hBs(e) (the metric on G is

left invariant),

H/B et >—V<Bs<h>>-ﬂ<h>wHé /B o o) = m()ell ()
< [ Ittt =1l vty

< v(Bs(h))Cs||#|l.

Finally, as (v Fs)(h) = 55y

L
35 5 ([ wtoreato)) dmo(h) = [ ot Ry o)

ety ot

(Bs(
< cé||w||-/deG<h> = Gllell,

_v(Bs(h))
c(Bs e)

probability measure. O]

using in the last line that by Fubini’s theorem [ -* dmg(h) =lasvisa
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Proof. (of Proposition [6.2.1)) Let v > 0 be a fixed constant to be determined later.
Then by Proposition {4.4.2] “ there is €9 = eg(c1,c2) > 0 and Cy = Cy(cq, 02) > 0 such

that for § > 0 small enough it holds that ||(x*")s||2 < 077 for any n > C’Ol g‘f and

(")s = ™" * Ps.
Let ¢ € V, with ||p|]o = 1. Then by the triangle inequality,
1055)"ell2 < 11(S5)" e = pg (0™ * Ps)ell2 + Il pg (1™ * Ps)epl|a-

The first term can be estimated using Lemma and Lemma as ||(Sg )" —
o5 (™ Ps)pl|s < MO0 agsuming that § < 27¢. For the second term, first notice
that by applying Cauchy-Schwarz it follows that ||(x*™)s*(1*™)s||oo < |[(#*")s||5. Then

with Theorem and Proposition

16 (1™ % P)epllz = (pd (™ % Py x ™ 5 Py ), o)
< [ 1ot a)o )l ()5 (4™)5)(9) dmao)

<5 / (08 (@) )] dime(g)

< 572'ymG<B4n€)efO(1)Z < 572760(1)115670(1)8.

Let n be a power of 2 satisfying n < CO is self-adjoint and

log
n a power of 2, it follows by induction on k with 2% = n that ||(S+)gp||£‘ < 1Sl 2.

Therefore it follows for § < 2=¢ that
155 Willop < D max{e™ 6%, 6 v ),

20
for D, oy, 09,03 > 0 absolute constants. We choose § = e~ max{, o 5o that § < 27
Ulé oy

[5%4 £Y4
and en 6% < e n. We furthermore set v = z

m and therefore 6 ne~n =
¢ With these choices, [[Sg [v;|lop < Dwe Wi, In addition we make ¢ large
enough in terms of ¢; and ¢y such that 6 becomes small enough for Proposition 4.4.2

to hold. To conclude, it holds by construction that ﬁ =e1,00 log% and therefore

Oc¢q,c (1)
e~OW = g0e.e() gnd similarly Dn =g 7 , so choosing ¢ additionally larger
than a further constant depending on ¢; and ¢y, the claim follows. O

6.3 Proof of Theorem [6.0.2

Having established that ||Sg |v,||op 18 small for ¢ > L(cy,cz), we aim to convert this
to an estimate that |[Sy|@,., v |lop is also small. We use that the spaces SiV; and

Vi are almost orthogonal for ¢ # ¢ as shown in Lemma [6.3.2
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The Lie algebra of K is denoted £ and we also write A\x for the Lie algebra
representation induced by the regular representation Ag on K. Indeed, for a smooth
function ¢ on K the function (Ax(X)p)(k) = lim;o 1 (¢(e k) — p(k)) with X € ¢
and k € K is the directional derivative of ¢ in the direction —X.

As in [Boul2], we use an argument based on partial integration to show that
S§V, and Vp are almost orthogonal. For a general manifold there is no suitable
partial integration formula. However, for compact Lie groups we overcome this issue
by exploiting that the Laplacian acts as a scalar on functions on L?(K) induced by
the representation 7. Indeed, for a fixed orthonormal basis X, ..., Xqim x of € recall
that the Casimir element is defined as A = — Y. X;0X;. We then use as replacement

to partial integration that

(1, Ak (D)pa) = Y (A (=Xi)pr, Ak (Xi)oa). (6.3.1)

In order to give a suitable estimate for (6.3.1)), we first analyse ||[Ag(X)¢p]|2 for X € €.

Lemma 6.3.1. Let £ > 0 and € > 0. Then for p € Vg € B. and X € € of unit

norm,

Mk (X)ellz < 20l and  [Ax(X)(p5 (9))ll2 < (1 + 02 [l

Proof. Without loss of generality we assume that X € t. Fix v € C N I*. The
eigenvalues of the operator . (e'*)—Id can be calculated as e (X)—1 for 4/ the various
weights of the representation m.,. Therefore the operator my(X) = lim;_,q 1 (7, (") —
Id) has eigenvalues 7/(X). Let vq,...,v, be an orthonormal basis of eigenvectors of
7, (X). Then the functions ¢(k) = \/d,(m, (k)v;,v;) for k € K satisfy (Ax (X)) (k) =
Vo (o (k)i my (X)vy) = (7/(X)) (k). The first claim follows as ||7/(X)|| < ||y <
2¢ and by decomposing the function ¢ as a sum of functions of the form 1.

For the second claim recall that pg(g9)¢ = \/af - (¢ 0 ay) and therefore

Ac(X) (05 (9)¢) = (mxwa’;) (poag) /oy Ac(X)(poay).  (632)

To deal with the first term of (6.3.2)), since aj is a smooth polynomial perturbation of
the identity, it follows that ||)\K \/_ oo < (14 O(e°M)) and furthermore using
integration by substitution, ||¢ o ag|ls < (14 O(e O(l)))||<p]|2. For the second term of
(6.3.2), we use the chain rule and the first step to conclude that ||[Ax(X)(poay)|l <
(14 0(°M))2!|¢l|2, concluding the lemma. O

We now apply (6.3.1]) to prove the following lemma.
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Lemma 6.3.2. For ¢y, € Vy, and ¢, € Vi, with {1 # {5 and g € B,

(05 (9)pers pe)| < (L4 O(OW)) 2710l [0, o] o |2

Proof. Without loss of generality we assume that ¢5 > ¢;. Denote by ¢ € V;, the
function such that A\ (A) = ¢p,. Then by Lemma [4.3.1, |[1]]2 < 272%||¢w,|2-
Using then (6.3.1)) and Lemma [6.3.1]

105 (9)eers o) | = 105 (9)@ers A (D))

_ ‘ SO (=Xa (9)pe Ac(Xi))

< Z A& (=X3) (g (9) eI A w (Xa) 9|
< (1+ 027 |0y ||a| 11|
< (14 0(E°IN2972 g, |20 |2
O

We conclude this section by proving Theorem by combining Proposition|6.2.1
and Lemma [6.3.2]

Proof. (of Theorem [6.0.2) By Proposition [6.2.1} there is g9 = eg(c1,¢2) > 0 and
L = L(cy, ¢y) € Zsy such that ||Sg |v,||op < €912 for £ > L. Let ¢ € D> Ve and
let N > 1 to be determined later. Then

1STell3 < Y- (S e, Smee)|

Lo>L
= Y USTmep, STmep) + D SS e, Sme),
|e—0'|<N [t—0'|>N

where both of the sums are with ¢, ¢ > L. For the first of these two terms one uses

the conclusion of Proposition [6.2.1],

> ST mepl 1S5 meell < N D [1SFmepl 3 < NePra@ |3
|e—t'|<N (>L

Lemma [6.3.2] is used to bound the second term:

Y USimep, Sfmep)l < Y 27 || ||meol]

|e—¢'|>N |0—0'|>N
< Y 27 mpl[3
|e—0'|>N
<27V " lmepll3 = 27V [l 3.
oL
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Therefore it follows that ||S;¢|ls < V/NeQerea® £ 2-N|p||,. Setting N = log £

implies the claim of the theorem. O

6.4 Smoothness of the Furstenberg Measure

In this section we prove Theorem [2.0.8 which we restate here for convenience of the

reader.

Theorem 6.4.1. (Theorem Let G be a non-compact connected simple Lie group
with finite center. Let ¢y,co > 0 and m € Zsy. Then there is €, = €, (G, c1,¢2) > 0
depending on G,c1,co and m such that every symmetric and (cq, c2, €)-Diophantine

probability measure p with € < e, has absolutely continuous Furstenberg measure with
density in C™(2).

By Corollary we know that the Furtstenberg measure is absolutely contin-
uous if we choose ¢, small enough, i.e. there is ¢p € L*(Q) such that dvgp = Ypdmq.
In order to prove Theorem [2.0.8] we use the smoothness condition from Lemma |4.3.2

for ¢p. Indeed, for m, the projection from L?(K) to Vj, it suffices to show
||mep||o < 270"

for s > m + %dim K and / large enough.
By the characterization of the Furstenberg measure, for any n > 1 it holds that

vp = " * vp and therefore for ¢ € L?(K),

(el = | [ o
=| [ et du*"<g>duF<k>\

< ‘/W% d,u*”(g)Hoo. (6.4.1)

We thus study the L*°-norm of the function

We will use Corollary to give L?-estimates of ®,. In order to convert these
estimates to an L*>-bound, we use Agmon’s inequality (cf. [Agm65| chapter 13),

which we introduce for compact Lie groups.
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Lemma 6.4.2. (Agmon’s Inequality for Compact Lie Groups). Let K be a compact
Lie group. Then there is t € Z>o depending on K such that for any ¢ € C*(K),

1/2 1/2

[lelloe < lsplls" ol e

Proof. For M € R, to be determined, we group together the contribution of the
representations with ||y|| < M and ||y|| > 0. Indeed, by (3.1.4)), for k € K,

o= Y 3 e

76601*%] 1
_ 1/2 7 1/2 7
- Z Zd ZJXZJ Z Zd UXU
H’YH<MU 1 H'y\|>Mz] 1
1/2 7 ~tqL/27 A
Z Zd JXZJ Z Z/\v Y dv inj(k)’
[[vI<M 3,5=1 [[v]|>M i,5=1

where in the last line we multiplied the second term by 1 = A A" for some t €
Zso. By Cauchy-Schwarz and using Lemma [£.3.1] the first term can be bounded
by [[ell2q /221 1<ariy & < MC||¢l|a, where C is a constant depending on K. For

the second term, we choose t large enough such that \/Z“’Y‘|>M7i7j A2d, < M—C.

Again using Cauchy-Schwarz, the second term is bounded by M~=¢||¢||z:. The claim

is implied by setting M = (HIQITJHT )1/20 o

Lemma 6.4.3. For ¢ € V; set &, = T'¢. Let v € CNI* and r € Zs,. Then it
holds for ®,,(7) = m,(®,),

1@ (1)llop < 220T(1 4 €)M []| 0D [
Proof. Let vy, ...,vq, be an orthonormal basis of 7,. Then

@0 (V)llop < dy sup [[S(7)uil|
1<i<d~

~

<d, sup [(P(v)vi,v))]
1<i,j<d-

=d, sup [{®y, X))
1<i,j<d,,

<d, s |(poag ) (6.4.2)
gEsupp(p*™)
1<i,j<d
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Notice further that for g € B. and a further v/ € CNI* and 1 < ¢, j' < d,,

'
M

x
1 /

= 55100 0 g A (A1)

Y
1 /
<5 2 ) AXa Ny 0 g ACK) -+ AC D)

Y i1yeyin
< AT (14 )OI |||
< (L4 )OIy Iy

/ !
| Oy © gy x35)1| (Xirgr © a9, X351

where for the penultimate line one argues as in Lemma [6.3.1] and in the last line we
use Lemma (4.3.1] Similarly, it holds that |<X7,lj, oag, x7;)| Kz (14+)Wm ||y []77 [|y]].

Then using the decomposition
dy /
— § : E : vz
SO = d,y/ ai’j/X’i/j’
267 1<y | <2t 755" =1

we conclude

1 2 ! /
(g oag i < Y dPlad 1 0 ag X3l

T
’Y7Z 7j

< 2008 olly sup [(x} 0 ag, x|
,.y/’,L'/’jI
<, 2005781 4 )OO |17 |-

This implies the claim by (6.4.2)) and using Lemma [4.3.1} O

Proof. (of Theorem [2.0.8) Let ¢ € V; be of unit norm and write ®,, = Tj'p. It suffices

to prove for € < ¢, and some some n > 1 that
|| @] |oo < 270FDE (6.4.3)
where s is a constant depending on G and m. Indeed, if holds, then by ,
|metpp|lo < 2027V

which satisfies the smoothness condition from Lemma for s large enough de-

pending on G and m.
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We will use Agmon’s inequality to prove (6.4.3). Notice first that for the fixed
t € Z>5 from Lemma [6.4.2]

|| @ |

[[Ar (L8)72 P2
< sup [Ax(L)"(p o ag)ll

gEsuppu*™

< Ak (D)720]|so(1 + ) < 27,

N

for a constant A depending only on ¢ and where we choose n = mﬁ for £s > 1a
fixed constant to be determined later.
We next bound ||®,||2. In order to do so, we decompose ®,, into a low and high

frequency part:

d"/
®, =01 + 02  where &1 = Z Z di/z(én);xgj.

n n n
[MI<L(er,er) B3

Then for n > 1, exploiting Corollary

Il <|| [ #20apauta)]| +|| [ 8200 a0

2

<18+ 5 122l (6.4.4)
Using Lemma [6.4.3], it follows for all m <n and r > 1,
195 lloe <7 271+ €)™ L(er, 0) 7 |-
Iterating , there are absolute constants F;, Fy, E'5 > 1 such that
1@alle < (n2P77 (1 + )" Lier, )™ + 277 [ |2
By Lemma |6.4.2] it therefore follows that
[@nlloo <p (R2EFDTTL 4 )P Ly, e0) B +27") oo

Setting the parameters suitably, the proof is concluded. Indeed, choose for in-

stance

r=2(s+1)+E + A+ 100
and n = IOLEQJ . For s large enough and choosing € small enough in terms of r and s
the claim (/6.4.3) holds for large ¢ (depending on s and ¢). O
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Part 11

Absolute Continuity of Self-Similar
Measures
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Chapter 7

Introduction to Part 11

In the study of self-similar measures it is fundamental to determine their dimension
and to find conditions for absolute continuity. For the former problem progress was
made by Hochman [Hoc14], [Hoc17] (Theorem [1.4.2), relating the dimension of a self-
similar measure to the entropy and Lyapunov exponent provided the generating mea-
sure satisfies a mild separation condition. While it was shown by Saglietti-Shmerkin-
Solomyak [SSS18| that, under suitable assumptions, generic one-dimensional self-
similar measures are absolutely continuous, finding explicit examples remains chal-
lenging. It was shown by Varju [Var19a] (Theorem that Bernoulli convolutions
are absolutely continuous if their defining parameter is sufficiently close to 1 in terms
of the Mahler measure. In dimension d > 3, assuming that the rotation part of the
self-similar measure is fixed and has a spectral gap on L?(O(d)), Lindenstrauss-Varji
[LV16] (Theorem showed absolute continuity if all of the contraction rates are
sufficiently close to 1. In this thesis we strengthen and vastly generalise these two
results. Moreover, we give the first explicit examples of absolutely continuous self-
similar measures in dimension one and two with non-uniform contraction rates. For
instance consider for x € R the similarities
n

g1(z) = - 1:17 and  go(z) =

1. 7.0.1
n+2x+ ( )

We then show that the self-similar measure of 18, + 1d,, is absolutely continuous
on R for any sufficiently large integer n > 1. Furthermore, our methods allow us
to construct several classes of explicit absolutely continuous examples for g;(x) =
piUiz + b; for x € R? in any dimension d > 1 as well as for every collection of
orthogonal matrices U; acting irreducibly on R? and distinct vectors b; € R?, provided
they all have algebraic entries.

Let G = Sim(R?) be the group of similarities on R? and let O(d) be the group of

orthogonal d x d matrices. For each g € G there exists a scalar p(g) > 0, an orthogonal
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matrix U(g) € O(d) and a vector b(g) € R? such that g(x) = p(9)U(g)z + b(g) for all
r € R% A similarity is called contracting if p(g) < 1 and expanding when p(g) > 1.
The Lyapunov exponent of a probability measure p on G is defined, whenever it

exists, as
Xu = Egpllog p(g)].

Throughout Part II we use the following terminology.

Definition 7.0.1. Ifx, < 0, we call 1 contracting on average. Moreover, if every
g € supp(u) is contracting, we say that p is contracting. When x, < 0 and there
is g € supp(p) such that p(g) > 1, then we call u contracting only on average.

It is well-known ([Hut81], [BESS]|, [BP92]) that when  is a finitely supported con-
tracting on average probability measure on G, then there exists a unique probability
measure v on R? that is p-stationary (i.e. v satisfies u* v = v) and referred to as
the self-similar measure of p. Under these assumptions, it follows from the moment
estimates of [GP16, Proposition 5.1] that v has a polynomial tail decay in the sense

that there exists some a = a(u) > 0 such that as R — oo,
vireR?: |z| > R) <, R™° (7.0.2)

for an implied constant depending only on u. The authors have given in [KK25d| an
independent proof of for contracting on average measures on arbitrary metric
spaces.

Throughout we denote by v the self-similar measure associated to u. If u is (only)
contracting on average, we say that v is a (only) contracting on average self-similar
measure. Moreover, p or respectively v is called homogeneous if there are r € R+
and U € O(d) such that r = p(g) and U = U(g) for all g € supp(u). When this is
not the case, we say that u and v are inhomogeneous. A particular goal of this thesis
is to give explicit examples of inhomogeneous as well as contracting only on average
self-similar measures which are absolutely continuous.

To state our main result, we first discuss the Hausdorff dimension of v, which is
defined as

dimv = inf{dim £ : E C R? measurable and v(E) > 0}

where dim F is the Hausdorff dimension of £. In order to state the landmark results
by Hochman |Hocl4], [Hocl7], recall that the random walk entropy of a finitely

supported measure p is defined as

1 1
h, = lim —H(p*™") = inf —H(p™),

n—oo N n>1ln

83



where H(-) is the Shannon entropy. Observe that if supp(u) has no exact overlaps,
meaning that supp(u) generates a free semigroup, then h, = H(u) = — >, p;logp;.

Moreover, as in [Hoc17], denote by d(-, -) the metric on G defined for g = p1U; +b;
and h = poUs + by as

d(g,h) = |log p1 —log pa| + ||Uy — Us|| + |b1 — by (7.0.3)

for || - || the operator norm and | - | the euclidean norm.

To distinguish between the results for dimension and absolute continuity, denote
A,, = min{d(g, h) for g, h € supp(u™) with g # h}

and
M,, = min {d(g, h) for g,h € Usupp(u*i) with g # h} .
i=0
Furthermore we set

1
S, = ——log M, and S, = limsup S,
n

n—o0

where S, is referred to as the splitting rate.

We call a subgroup H of O(d) irreducible if H acts irreducibly on R?, i.e. the
only H-invariant subspaces of R? are {0} and R?. Moreover, we say that a mea-
sure 1 = Y .o pidg on G or O(d) C G is irreducible if the group generated by
{U(q1),...,U(gn)} is irreducible. When the elements in the support of u have a com-
mon fixed point x € R?, then ¢, is the self-similar measure of y. To avoid the latter
case, we say that p has no common fixed point if the similarities in supp(p) do not.

It follows by Hochman [Hocl7|, generalising [Hoc14], that if u is a finitely sup-
ported, contracting and irreducible probability measure on G without a common
fixed point such that A, > e for some ¢ > 0 and infinitely many n > 1, then
dim v = min{d, Izﬁ}

In the paper [KK25a] we use the techniques of Part II of this thesis to generalise
Hochman’s result to contracting on average measures. Moreover, we show that a
weaker requirement than exponential separation at all scales is sufficient (see [KK25a]
for a discussion). We work with M, instead of A,, for convenience only and in order

to apply the general entropy gap results from [KK25b).

Theorem 7.0.2. ([KK25a, Theorem 1.2 and Theorem 1.3]) Let p be a finitely sup-
ported, contracting on average and irreducible probability measure on G without a

common fized point. Assume that either of the following two properties holds:
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(i) For some c >0, M, > e~ " for infinitely many n > 1,

(ii) For some & > 0, log M,, > —nexp((logn)'/37¢) for all sufficiently large n > 1.

dim v = min {d, &} .
[Xul

Then

It is well-established that dimv < {d, &—7‘} Therefore v can only be absolutely

continuous if h, > d|x,|. The following general conjecture is expected to hold.

Conjecture 7.0.3. Let pu be a finitely supported, contracting on average and irre-
ducible probability measure on G without a common fixed point. Then v is absolutely

continuous if

h
— > d.
|Xu’

We observe that the latter conjecture is completely open and is not known for
any class of self-similar measures. Our main result establishes a weakening of the
latter conjecture. Indeed, when the O(d)-part of our measure p is fixed, we show
Conjecture with the d being replaced by a constant depending on the O(d)-part
as well as the logarithmic separation rate log S,,. Given a measure u on G we denote
by U(p) the pushforward of p under the map g — U(g). We first state a version of

our main theorem for contracting measures.

Theorem 7.0.4. Let d > 1 and € € (0,1). Given an irreducible probability measure
wy on O(d) there exist constants C > 1 and p € (0,1) depending on d,e and py such
that the following holds. Let y = Zle pidg, be a contracting probability measure on G
without a common fized point satisfying U () = puy and p; > € as well as p(g;) € (p, 1)

for all 1 < i < k. Then the self-similar measure v is absolutely continuous if

2
T >C (max{l,log&}) :
Xl hy,

Theorem [7.0.4]is a special case of the more general Theorem [8.1.4] which requires a
few new definitions we state in Section[8.1 When d = 1 we note that every probability
measure on O(1) is irreducible. We further observe that while Theorem applies
in the case when the spectral gap of uy is zero, the dependence of C' and p can be
made more explicit in the presence of a spectral gap. To introduce notation, given a
closed subgroup H C G and assuming that uy is a probability measure on O(d) with
supp(py) C H, we denote by gapy (uy) the L?-spectral gap of py in H as defined in
(18.3.4)).
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Theorem 7.0.5. Let d,e,uy and p be as in Theorem [T7.0.] Assume further that
gapy(pw) =€ >0 for H the closure of the subgroup generated by the support of uy.
Then there exists C > 1 and p € (0,1) only depending on d and € such that the
conclusion of Theorem[7.0.4] holds.

We point out that in Theorem[7.0.5] the constants are independent of the subgroup
H and the statement applies when H is a finite irreducible subgroup of O(d) as well
as when H is a positive dimensional irreducible Lie subgroup of O(d). As is shown
in section this observation relies on uniform convergence of yj;* towards the Haar
probability measure myg and on Schur’s lemma implying that Ej,,,[|z - hy|?] = d7!
for any unit vectors z,y € R? and any irreducible subgroup H C O(d).

To construct explicit examples of absolutely continuous self-similar measures on
R?, Theorem requires us to estimate hy,|x,| and S,. It is straightforward
to deal with |y,| as it can be explicitly computed. Lower bounds on the random
walk entropy follow in many cases (see Section by the ping-pong lemma or
Breuillard’s strong Tits alternative [Bre08]. It also holds that hy(,) < h,, so when
huy > 0, we only need to control |y,| and S,. With current methods we can
usually only bound S, if all of the coefficients of the elements in the support of u are
algebraic. In the latter case, as shown in Section [15.2, when all of the coefficients
of elements in the support of p lie in a number field K and have logarithmic height
at most L (see (7.0.5])), then S, <4 L-[K : Q). We observe that log S, is usually
very small as it is double logarithmic in the arithmetic complexity of the coefficients.
All this information makes it straightforward to find explicit examples of absolutely
continuous self-similar measures. The constants C' and p in Theorem can be
computed from the involved terms, yet we do not make the dependence explicit in
this work.

The proof of Theorem and Theorem builds on new techniques initiated
by Samuel Kittle in |[Kit23] and further developed in this part of the thesis, while
being inspired by ideas from [Hocl4], [Hocl7], [Varl9a] and [Kit21]. We give an
outline of our proof in Section and note that the main novelties exploited are
strong product bounds for detail at scale r (a notion introduced in [Kit21]) and a
decomposition theory for stopped random walks to capture the amount of variance we
can gain at a given scale, a technique we call the variance summation method. [Kit23]
is concerned with constructing absolutely continuous Furstenberg measures of SLy(R)
on 1-dimensional projective space P!(R) = R?/ ~ and an analogue of Theorem m
is shown. However, we currently can’t deduce a result similar to Theorem
for Furstenberg measures of SLy(R) as the dynamics of the SLy(R) action on P'(R)
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are more difficult to control than the one of the Sim(R¢) action on R?. Indeed, we
exploit that one can rescale and translate self-similar measures without changing the
Lyapunov exponent, the separation rate, the random walk entropy or the spectral
gap of the generating measure. Moreover, an analogue of Theorem [8.1.4] as well as
Theorem for Furstenberg measures of arbitrary dimensions is presently out of
reach since the current methods cannot deal with non-conformal measures.

To also treat contracting on average measures, we state the following version
of Theorem We require some control on the scaling rate of the expanding

similarities.

Theorem 7.0.6. Let d and py be as in Theorem and let R > 1 and € > 0.
Let p = Zlepiégi be a contracting on average probability measure on G without a
common fized point satisfying U(u) = uy and p; > € as well as p(g;) € [R™Y, R] for
all 1 <i < k. Then there is some p € (0,1) and C' > 1 depending on d, R,c and py
such that the conclusion of Theorem holds provided that for some p € (p,1) we

have .
Erulld = p()]

1—E\ulp(7)]
In the presence of a spectral gap, the analogue of Theorem also holds for
Theorem [7.0.6 Using Theorem [7.0.4, Theorem and Theorem one can

construct a versatile collection of explicit absolutely continuous self-similar measures.

<1l-—e¢.

We give a few cases below and encourage the reader to find further examples. Indeed,
as shown in Corollary and Corollary [7.0.9] for any given irreducible probabil-
ity measure puy on O(d) supported on matrices with algebraic entries and algebraic
vectors by, ..., b, with by # by, we can find explicit contracting as well as contracting
only on average measures p = S, pidy, on G with U(u) = py and b(g;) = b; for

1 <1 < k and having absolutely continuous self-similar measure.

Inhomogeneous Self-Similar Measures in Dimension 1

As a first example, we present results for self-similar measures supported on two
similarities in dimension one. Upon conjugating, we can assume without loss of
generality that our generating measure is supported on x +— Az and x +— Az + 1 for
A1, A2 € (0,1).

We recall the definition of the height of algebraic numbers, which measures the

arithmetic complexity. For a number field K and an algebraic number o« € K one
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defines the absolute height as

1/[K:Q]
H(a) = < 11 max(l,|a|v)””) (7.0.4)

vEMK

where My is the set of places of K, n, = [K, : Q,] is the local degree at v and
| - |» is the absolute value associated with the place v. We refer to [Mas16| for basic
properties of heights and note that the height of « is independent of the number field
K. We will also work with the logarithmic height

h(a) = log H(a). (7.0.5)

Corollary 7.0.7. For every ¢ > 0 there exists a small constant ¢ = c(g) > 0 such
that the following holds. Let K be a number field and A\, Ao € K N (0,1) and write
h(A1, A2) = max{h(A1), h(A2)}. Consider the similarities given for v € R as

g1(z) = Mz and go(z) = Aoz + 1.
Then the self-similar measure of %591 + %592 18 absolutely continuous if
h(A1, A2) > € and x| max{1,log([K : Qh(A1, X2))}* < c.

Concretely, generalising the example discussed in , it Ay = 1 —pi/q is
rational for 7 € {1,2} with coprime integers p;,q; > 1 then the self-similar measure
of 18, + 16,, is absolutely continuous if for i € {1,2},
i(log log q;)* <e

4;

Corollary can be viewed as an inhomogeneous version of our strengthening
of Varji’s result for Bernoulli convolutions (Corolarry , yet with an additional
dependence on the number field K and on the lower bound of max{h(A1), h(A2)}. We
further note that Lehmer’s conjecture states the existence of an absolute ¢y > 0 such
that max{h(A), h(A2)} > eo/[K : Q] for all A, A € K for any number field K.

It is straightforward to adapt Corollary to multiple maps and also to in-
clude contracting on average measures. We next discuss such examples in arbitrary

dimensions.
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Self-similar measures on R

With Theorem and Theorem numerous explicit classes of absolutely con-
tinuous self-similar measures in R? can be constructed. In order to apply these results
we need to estimate h,. In the following examples we have used the ping-pong lemma
(see section in two ways in order to establish lower bounds on h,. For the first
class of examples we have applied p-adic ping-pong as in Lemma [I5.1.4]

Corollary 7.0.8. Let d > 1 and € > 0, let py = Zle pidy, be an trreducible proba-
bility measure on O(d) with p; > ¢ and let by, ..., by € R? with by # by. Assume that
Up,...,Ug and by, ..., by have algebraic coefficients. Let q be a prime number and for
1 <13 <k consider

q .
() = U;x + b; or any integer a;q € |1,
gi(x) P for any integ a€lq

1—8]‘

Assume that gy, . . ., g do not have a common fized point and consider i = Zle Didg, -
Then the self-similar measure of pu is absolutely continuous for q a sufficiently large

prime depending on d,e,Uy, ..., Uy and by, ..., by.

We point out that any choice of integers a; , works and that the necessary size
of ¢ to derive absolute continuity does not depend on this choice, leading to a vast
number of examples. Moreover, we can adapt Corollary to give contracting only
on average examples. In order to satisfy the assumption from Theorem [7.0.6], we
require that p = Zle pidg, satisfies that p, < % This nonetheless leads to absolutely
continuous examples with U(u) = pp for any given irreducible probability measure

hy = Zle pidy, on O(d) as we do not require that the U; are distinct.

Corollary 7.0.9. Let d,e and py = Zle pidy, as well as by, ..., by be as in Propo-
sition [7.0.8. Let q be a prime number and consider for 1 <i <k —1

gi(x) = q_j_LgUﬂ:—Fbi and gr(z) = qlekx—Fbk.
Assume that gy, ..., gr do not have a common fixed point and further that
e < .
— 3
Then the self-similar measure of p = Zlepiégi 1s absolutely continuous for q a

sufficiently large prime depending on d,e, Uy, ..., Uy and by,. .., by.

We give a second class of examples that rely on Galois ping-pong in as Lemma
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Corollary 7.0.10. Let d > 1 and ¢ € (0,1) and py = S5, pidy, an irreducible
probability measure on O(d) with p; > € for all 1 < i < k. Assume furthermore that
Ui, ..., Uy have algebraic entries. Let p € (0,1) be sufficiently close to 1 in terms of
d,e and py and let C > 1 be sufficiently large depending on the same parameters.
Suppose that g;(x) = WEU}% +d; with a;,b;,c; € Z and d; € Z% for 1 <
1 < k and a prime number q do not have a common fixed point. Then the self-
similar measure associated to = Zle pidg, s absolutely continuous if the following

properties are satisfied:
(i) “2 € (5,1) for 1 <i <k,

(ii) for j =1 and for j =2 we have

(iii) For L = max(\/q, |a;|,|bi, |ci], |di|so) we have

1
C <
ol = loglog )
As a particular case of Corollary[7.0.10 we can consider as shown in Lemma[15.4.2

the maps
—my 2
Wl —mig £ 2V,

3l

for any m;, € Z and d; € Z* satisfying for some € > 0 that

g9i(x) =

Mg € [07 q1/275] and |dl|oo < eXp(GXp(qs/?’)).

Then the self-similar measure of 1 = " | p;d,, is absolutely continuous for sufficiently
large primes ¢ depending on d, uy and e, provided that gi,...,gr do not have a
common fixed point. We note that since we have a double exponential range for d;,

we get abundantly many examples.

Real and Complex Bernoulli Convolutions

While Theorem applies to arbitrary self-similar measures, it gives new results
for Bernoulli convolutions. Let A € (1/2,1) and denote by v, the unbiased Bernoulli
convolution of parameter A, i.e. the law of the random variable Y > £, A" with
&0, &1, - .. independent Bernoulli random variables with P[¢; = 1] =P[§; = —1] = 1/2.
It was shown by Solomyak [Sol95] that for almost all A € (1/2,1) the Bernoulli
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convolution vy, has a density in L*(R), while Erdés [Erd39] proved that vy is singular
whenever A1 is a Pisot number.

The Mahler measure of an algebraic number A is defined as

My =lal ] Il
|zj|>1

with a(x — 2z1) -+ - (x — 2,) the minimal polynomial of A over Z. We note that as in
Corollary 5.9 of [Kit23| it holds that

Sy, < log M,. (7.0.6)

Garsia [Gar62, Theorem 1.8] showed that v, is absolutely continuous for algebraic A
with M), = 2, while Samuel Kittle [Kit21] established that v, is absolutely continuous
if M, ~ 2. In landmark work, Varji [Var19a] (Theorem [1.4.6) proved for every € > 0

there is a constant C. > 1 such that that v, is absolutely continuous if
A > 1— C-'min{log My, (log My) ™'~} (7.0.7)

When applying Theorem to Bernoulli convolutions we deduce the following
strengthening of (7.0.7)), exploiting the comparison between the entropy and the

Mahler measure for Bernoulli convolution due to [BV20].

Corollary 7.0.11. There is an absolute constant C' > 1 such that the following
holds. Let X\ € (1/2,1) be a real algebraic number. Then the Bernoulli convolution vy

1s absolutely continuous on R if
A > 1 — C ' min{log My, (log log M,)~2}. (7.0.8)

We estimate that a direct application of our method would lead to C' ~ 10'° in
Corollary [7.0.11] It would be an interesting further direction to try to optimise C' for
Bernoulli convolutions and in particular for the case A =1 — %

Our most general result, Theorem [8.1.4] also applies to complex Bernoulli con-
volutions, which are defined analogously for A € D = {A € C : |\| < 1}. When
I\ € (0,271/2), then dimwvy < \E% < 2 and v, is singular to the Lebesgue mea-
sure on C. It was shown by Shmerkin-Solomyak [SS16a] that the set of A € C with
|A] € (271/2,1) and v, is singular has Hausdorff dimension zero, whereas Solomyak-Xu
[SX03] showed that v, is absolutely continuous on C for a non-real algebraic A € D
with M, = 2. We extend Corollary to complex parameters while assuming
in order to ensure that the rotation part of A mixes fast enough and so that

our measure is sufficiently non-degenerate (see section |8.1).
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Corollary 7.0.12. For every € > 0 there is a constant C' > 1 such that the following
holds. Let A\ € C be a complex algebraic number such that |\ € (27Y2,1) and

[Im(N\)| > e. (7.0.9)
Then the Bernoulli convolution vy is absolutely continuous on C if

|\ > 1 — C~*min{log My, (loglog M)~ 2}.

Dimension d > 3

Finally we discuss the case when d > 3. Under this assumption, O(d) is a simple
non-abelian Lie group and therefore instead of using the entropy and separation rate
on G we can use the same quantities on O(d).

We recall that Lindenstrauss-Varji |LV16] (Theorem proved the following.
Given d > 3, ¢ € (0,1) and a finitely supported probability measure puy on SO(d),
whose support generates a dense subgroup of SO(d) and with gapgo) (kr) > &

Then there exists a constant p € (0,1) depending on d and ¢ such that every finitely
supported contracting probability measure p = Zle pidy; on G with U(u) = pp and

pi>e aswellas  p(g) € (p,1) forall 1<i<k (7.0.10)

has absolutely continuous self-similar measure v. Moreover, [LV16] show that v has
a C*-density if the constant p is in addition sufficiently close to 1 in terms of k. As
discussed in section [L.2] by current methods ([BGOS|, [BAS16]) spectral gap of U(u)
is only known when supp(U(u)) generates a dense subgroup and all of the entries of
elements in supp(U(u)) are algebraic.

We note that hy,) < h, yet we do not have in general that Sy(,) > S,. In the case
when Sy () > Sy, which for example holds when the support of U(u) generates a free
group, follows from Theorem . Moreover, our method can be adapted
to work with Sy, instead of S, and we establish a generalisation of (in the
case when supp(uy) consists of matrices with algebraic coefficients) that we state in
Theorem . We note that our method does not require that supp(uy) generates
a dense subgroup of O(d) or SO(d) and we can also treat contracting on average
self-similar measures. Moreover, as shown in Corollary and Corollary [7.0.10]
we can also give examples when supp(uy) generates a finite irreducible subgroup of

0(d).
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Discussion of other work

In addition to the discussed above [Gar62], [SX03], [LV16], [Var19a] and [Kit21] there
is little known about explicit examples of absolutely continuous self-similar measures.
To the authors knowledge, the only other papers addressing this topic are [DFWO07]
and [Str24], which are concerned with homogeneous self-similar measures on R whose
contraction rate A\ satisfies that all of its Galois conjugates have absolute value < 1.

As exposed in section [I.4] a related problem is to study the Furstenberg measure
of SLy(R) or of arbitrary simple non-compact Lie groups. The first examples of
explicit absolutely continuous Furstenberg measures arising from finitely supported
generating measures were established by [Boul2] (Theorem|[I.4.10)), giving an intricate
number theoretic construction and also providing examples with a C*-density for any
k > 1. Bourgain’s methods were generalised and further used by [BISG17], |Leq22]
and in Part I of this thesis. Moreover, numerous new examples were recently given
by [Kit23] (Theorem [1.4.13).

Returning to self-similar measures, we observe that the behavior of generic self-
similar measures on R or C is better understood. [Shm14] showed, thereby improving
[Sol95], that the set of A € (1/2,1) such that the Bernoulli convolution v, is singular
has Hausdorff dimension zero. In [SSS1§| it was shown that when the translation
part (with distinct translations) and the probability vector is fixed, then generic
one-dimensional self-similar measures on R are almost surely absolutely continuous
in the range where the similarity dimension > 1. This was generalised to C by
[SS23]. A further line of research is to show that certain parametrized families of self-
similar measures or other types of invariant function systems are generically absolutely
continuous, see for example [Hocl4], [Hoc17], [SS16b] and [BSSS22].

We finally mention that Fourier decay of self-similar measures was studied by
numerous authors recently. The interested reader is referred to [LS20], [Bré21], [LS22],
[Rap22|, [Sol22|, [VY22] and [BKS24] and as well as JARHW21| and [BS23] for self-

conformal measures.
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Chapter 8

Main Result and Outline

In this section we first state our main results and give an outline of the proof of the
main theorem in section 8.2 Then we collect for the convenience of the reader some
notation used throughout Part II in section and comment on the organisation in
section

8.1 Main Result

Let i be a probability measure on G = Sim(R¢). To state our main results in full
generality we introduce notions that capture how well U(x) mixes on O(d) and how
degenerate v is.

Denote by 71,72, . .. independent samples from g, write ¢, := 7172 . . . 7, and given

k > 0 let 7, be the stopping time defined by
T, = inf{n > 1: p(q,) < K}.
We then have the following definitions.

Definition 8.1.1. Let u be a probability measure on G generating a self-similar mea-

sure v.

(i) We say that i is (g, 0, A)-non-degenerate for ag € (0,1) and 6, A > 0 if for
any proper subspace W C R? and y € R,

v({z € R : v — (y +W)| <0 or x| > A}) < ay.

(ii) We say that p is (¢, T)-well-mixing for ¢ € (0,1) and T > 0 if there is some

Ko such that for any Kk < ko and any unit vectors x,y € R? we have

Ellz - Ulgn+r)y)*] > ¢,

where F' is a uniform random variable on [0, T] which is independent of the ;.
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For d = 1 our measure p will always be (1,1)-well-mixing. As we show in sec-
tion [14.1] when U(y) is fixed and irreducible, there exists (c,T") depending only on
U(p) such that p is (¢, T)-well-mixing. This follows as U(qr) — mpy in distribution
as T — oo, where H is the closure of the subgroup generated by supp(U(u)) and my
the Haar probability measure on H. The latter would not be true if we fix F' to be a
deterministic random variable and therefore we have introduced the above definition.

Dealing with non-degeneracy is more involved and uniform results for many classes
of self-similar measures do not hold. However, instead of our given measure we can
consider a conjugated measure to establish uniform non-degeneracy results. Indeed,

for p = Zle pidy, @ measure on G and h € G we denote

k k
1 1
Hh = Zpiéhgih*1 and :U’/h = §5e + 5 Zpi(shgihfl-
i=1 i=1

Then as we show in Lemma [14.2.1] absolute continuity of any of the self-similar
measures of i, jup, or p, is equivalent and all relevant quantities such as h,, S, and
|| are the same or comparable.

Towards Theorem [7.0.4] Theorem[7.0.5]and Theorem[7.0.6] as we state in Proposi-
tion[8.1.2]and Proposition [8.1.3| we have essentially uniform (¢, T')-mixing and uniform
(v, 0, A)-non-degeneracy as long as we fix U(u). We first state a uniform mixing re-
sult adapted for Theorem and Theorem in the contracting case.

Proposition 8.1.2. Let d > 1, ¢ € (0,1) and let uy be an irreducible probability
measure on O(d). Then there exists p € (0,1), (¢, T) and (ay, 0, A) depending on d, e
and py such that the following holds. Let p = Zlepiégi be a contracting probability

measure on G without a common fized point and with U(u) = py and
pi>¢e aswellas p(gi) € (p,1) forall 1<i<k.

Then there is h € G such that pij, = 16, + %Zlepﬁhgihq is (¢, T)-well-mizing and
(v, 0, A)-non-degenerate.

Moreover, if gapy (p) > € > 0 for H the closure of the subgroup generated by the
support of py, then there exist (¢,T) and (ag, 0, A) depending only on d and £ such

that the above conclusion holds.
For Theorem we state a similar result for contracting on average measures.

Proposition 8.1.3. Let d and py be as in Theorem [8.1.9 and let € > 0. Let p =

Zle pidg, be a contracting on average probability measure on G without a common
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fized point satisfying U(pu) = uy and p; > ¢ for 1 < i < k. Then there is some
p€(0,1) and C > 1 depending on d,e and py such that the following holds.
The conclusion of Proposition holds provided that for some p € (p,1) we

have
Zf:l 1p— p(g:)]
k— Z?:l p(9:)
Proposition and Proposition [8.1.3] are proved in section We are now in
a suitable position to state our main result. Theorem [7.0.4] Theorem and The-
orem [7.0.6| follow from the main result Theorem by applying Proposition [8.1.2

and Proposition [8.1.3] as well as Lemma [14.2.1}]

<1l-—e¢.

Theorem 8.1.4. For every d € Z>, and R,c,T, ap,0,A > 0 with ¢,ap € (0,1) and
T > 0 there is a constant C = C(d, R, ¢, T, g, 0, A) depending on d, R, ¢, T, ap, 0 and
A such that the following holds. Let p be a finitely supported, contracting on average,
exponentially separated, (c,T)-well-mizing and (o, 0, A)-non-degenerate probability
measure on G with supp(p) C {g € G : p(g) € [R™*, R]} and satisfying

2
I > C (max{l,logi}) .
Xl hy,

Then the associated self-similar measure v is absolutely continuous.

A similar result for Furstenberg measures of SLy(R) was established by Samuel
Kittle [Kit23]. However in [Kit23] it is necessary to assume that o € (0,1/3) and
we currently can’t prove an analogue of Proposition for Furstenberg measures.
Therefore Theorem [7.0.4] can be deduced in the case of self-similar measures and we
also note that the examples of absolutely continuous Furstenberg measures in [Kit23]
are more intricate.

We next state a version of our main theorem for d > 3 that implies by
Proposition [8.1.2] provided that py is supported on matrices with algebraic coeffi-

clents.

Theorem 8.1.5. Let d > 3 and R, ¢, T, ap, 0, A > 0 with ¢,y € (0,1) and T > 1.
Then there is a constant C = C(d, R, ¢, T, ap, 0, A) such that the following holds. Let
W be a finitely supported, contracting on average, (c,T)-well-mixing and (ap, 0, A)-
non-degenerate probability measure on G with supp(u) C {g € G : p(g) € [R™', R]}.
Moreover assume that all of the coefficients of the matrices in supp(U(w)) lie in the
number field K and have logarithmic height at most L > 1. Then v is absolutely

continuous if
hu

, 2
ZCmaX{l,log (M>} .
|Xul hu ()
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As in (|7.0.10) we do not assume in Theorem that all the entries of elements
in supp(p) are algebraic and only require the latter for U(p). By Breuillard’s uniform
Tits alternative [BreO§|, there is a constant ¢4 > 0 only depending on d such that
hu(uy > ca as long as the group generated by supp(U(y)) in not virtually solvable.
The advantage of Theorem over is that our result is particularly effective
when U(u) has high entropy (for example when supp(U(u)) generates a free semi-
group) and is explicit in terms of the dependence of the heights of the coefficients
of supp(U(u)). In addition, Theorem applies to contracting only on average

measures and does not require supp(U(u)) to generate a dense subgroup of SO(d).

8.2 Outline

We give a sketch for the proof of Theorem [8.1.4, Our proof extends the strategy
of [Kit23] to self-similar measures and generalises it to higher dimensions, which in
turn is inspired by ideas and techniques developed in [Hoc14], [Hocl7|, [Varl9a] and
[Kit21]. Proposition will be discussed and proved in section An entropy
theory for random walks on general Lie groups was developed in [KK25b| and will be
used throughout Part II.

Let u be a measure on G' = Sim(R?) and let 71, Yo, . . . be independent p-distributed
random variables. For a stopping time 7 write ¢, = 7, - - - 7,. Note that if z is a sample

of v then so is ¢.x. The basic idea of our proof is to decompose ¢,z as a sum
G = Xy + -+ X,y (8.2.1)

with X1,..., X, independent random variables. We aim to show that for each scale
r > 0 and a suitable stopping time 7 that we can find a decomposition (8.2.1)) such
that for all 7 € [n],

1X;| <C™'r  and Z\/ar X; > C(loglogr 1)1 (8.2.2)

i=1
for a sufficiently large fixed constant C' = C(d) > 0 only depending on d, where
Var X is the covariance matrix of X, and we denote by > the partial order defined
in (8.3.1)). The proof of Theorem comprises to establish and to deduce
from that v is absolutely continuous. For the former we use adequate entropy
results and for the latter we work with the detail of a measure. The constant C' is be

closely related to the one from Theorem [8.1.4
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From Decomposition to Absolute Continuity

The notion of detail s,(v) at scale r > 0 of a measure v is a tool introduced in [Kit21]
measuring how smooth v is at scale r. Detail is an analogue of the entropy between
scales 1 — H(v;r|2r) used by [Varl9a], yet with better properties. Our goal is to
deduce from that our self-similar measure v satisfies for r sufficiently small,

s.(v) < (logr—)72, (8.2.3)

which implies that v is absolutely continuous, as shown in [Kit21].

A novelty introduced in [Kit23] is a strong product bound for detail on R, which
we prove for R? in section . Indeed, if \i,...,\; are measures on R?, a < b and
r > 0 with s,(\;) < « for some « > 0 and all r € [a,b] and 1 < i < k, then, as shown

in Corollary [10.2.4
i A x % M) < Q') (oF + Klka®b?) (8.2.4)

for some constant Q'(d) depending only on d. To prove (8.2.4), [Kit23] introduced
k order detail, which we generalise to R?. We note that is stronger than the
product bounds [Kit21, Theorem 1.17] and [Varl9a, Theorem 3| and is required in
our proof.

To convert into (8.2.3)), we first partition [n] as JiL. . .LJ, for k < loglog r™*
such that the random variables Y; = Y., X; satisfy VarY; >, C. Then we apply a

Berry-Essen type result to deduce that Y is well-approximated by a Gaussian random

1€J;

variable and therefore that s,(Y;) < « for some constant a depending on C, with «
tending to zero as C' tends to oco. Finally we conclude by that we roughly
get 5,.(v) < Q' (d)faf = Flos@(d+loge)  We choose k < loglogr~' and therefore
deduce provided that « is sufficiently small in terms of d or equivalently C' is

sufficiently large. This proves that v is absolutely continuous.

From Decomposition on R? to Decomposition on G

It remains to explain how to establish (8.2.2)), which we first translate into an analo-

gous question on G. Indeed, we will make a decomposition of ¢, into

¢ = g1exp(Ur) g2 exp(Us) - - - gn exp(U,) (8.2.5)

for random variables g¢y,...,¢9, on G and Uy,...,U, on the Lie algebra g of G. In
order to express ¢;v as a sum of random variables using ({8.2.5)), we apply Taylor’s
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theorem in Proposition to deduce
Grv R g1 gnU + Z G(Us), (8.2.6)
i=1

where
G = Du(g192 - - gi exp(u)gi+1Gi+2 " * Gn¥)|u=o0-

For notational convenience we write in this outline of proofs

gi=g1--gi and g =gi1-gn

and denote
Pz = Du(exp(u)x)|u:0.

Then by the chain rule, as shown in Lemma [9.1.3

Var(Gi(Ui)) = p(gi)* Ulgy) Var(pgy.(U:))U(g7)"

We will use the (¢, T')-well-mixing and (ayp, 0, A)-non-degeneracy condition to en-
sure that
Var(Gi(Ui) = e1p(g))*tr(Ui)T = extr(p(g)Us) 1 (8.2.7)

for some constant ¢; > 0 depending on d,¢, T, ap,0 and A and where tr(U;) is the
trace of the covariance matrix of U;. This will be shown in Proposition by
ensuring that each of the g; is a product of sufficiently many 7; such that we can
apply well-mixing and non-degeneracy as g;z is close in distribution to v. In fact,
we exploit suitable properties of the derivative of p, and use a principal component

decomposition.
So in order to achieve (8.2.2), we require that

Ul < plg)™'r and > tr(p(g))Us) > CP¢; (loglog ™" )r? (8.2.8)
i=1

for the constant C from (8.2.2]). Note that to arrive at (8.2.2) we replace U; by C~1U;
and use (8.2.7)).

Entropy Gap and Trace Bounds for Stopped Random Walk

We prove ([8.2.8)) by establishing suitable entropy bounds on G and then translate
them to the necessary trace bounds. We use the following notation. For a random

variable ¢ on G and s > 0, we define tr(g; s) to be the supremum of all ¢ > 0 such
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that we can find some o-algebra o/ and some @7-measurable random variable h taking

values in GG such that
llog(h'g)| <s and Eltr(log(h 'g)|a)] > ts?

where log : G — g is the Lie group logarithm and we assume that h~!g is supported
on a small ball around the identity. The reason we need to work with the conditional
trace is to use (8.2.12)).

To establish we therefore need to find a collection of scales s; = p(g})~r
such that

> tr(geisi) > Ccp ' loglogr™! (8.2.9)
=1

for C' an absolute constant depending only on d.
To show ([8.2.9) one converts entropy estimates for ¢, into trace estimates, using
in essence that for an absolutely continuous random variable Z on R’ we have

H(Z) < glog <? : tr(Z)) : (8.2.10)

where H is the differential entropy and tr(Z) is the trace of the covariance matrix of
7. Equality holds in if and only if Z is a spherical Gaussian.

We will work with entropy between scales on GG. Precise definitions are given in
section|l1] For the purposes of this outline consider the entropy between scales defined
for a random variable g taking values in G, two scales r1,r, > 0 and a parameter
a>0 as

Hy(g;r1lre) = (H(9Sr1.0) — H(Sr1,a)) — (H(gSr20) — H(Sr50)),

where H(-) is the differential entropy and s, , is a smoothing function supported on

a ball of radius ar and satisfying for ¢/ = dim g that
14 2
tr(log(s,q)) < ¢r* and  H(s,,) = 3 log 2mer? + Og(e™" /%) — Oga(r). (8.2.11)

The function s, is chosen such that H(s,,) is essentially maximal while being com-
pactly supported, which is necessary towards establishing . The parameter
a > 0 is useful as it gives us a uniform error bound in (8.2.11f). By using moreover
(8.2.10)), we relate in Theorem entropy between scales and the trace by

tr(g; 2ar) > a~2(H,(g: r|2r) — Og(e /%) — Oaa(T)). (8.2.12)
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For k > 0 denote by

=inf{n>1: p(y1- 7)) < K}

S
It is then shown in Proposition [12.1.1 for r; < o and with r; < /{ﬁ that as k — 0

the following entropy gap holds:

hy,
Ho(qr;11lr2) > (ﬁ - d> log k™' + € -logry + 0,a4(log ™). (8.2.13)
X

We will give a sketch of the proof of in the beginning of section [12] and just
note that the main point of is that most of the elements in the support
of q,. are separated by m%, which by standard properties of entropy implies that
H(qr,5r,0) = H(gr,) + H(5r,,0). As we have to use a stopping time in (8.2.13)), we
will need to work with ¢, instead of a deterministic time throughout our proof.

By it follows, assuming h,/|x,| is sufficiently large and « is sufficiently
small, that

B e hy -1
Ha(qm;/{\annze\xw) >4 |_10g,{ . (8.2.14)
Xp

Using (8.2.14)) and (8.2.12)), we show in Proposition |12.2.2| with setting S =

2max{S,, h,} that for a collection of scales
S hy

s € (Khul| K20xul) with 1<i<m

and 7 being a fixed constant depending on S, and x, that

h. S\~
Ztr (Gr.; 8i) >a —max{l,logh—“} . (8.2.15)
m

X

—1
As we explain at the beginning of section , the error term max {1, log ‘2—5} arises
from the error O4(e=**/4) in (8.2.12).

Conclusion of Proof

The trace bound is not sufficient to establish as we require a lower
bound depending on loglogr~t. To achieve such a bound and to conclude the proof,
we concatenate several decompositions arising from and therefore develop a
suitable theory of such decompositions in section [13]

It therefore remains to find sufficiently many parameters k1, ..., k,, such that the

resulting intervals

S hu S hp S hy
IXpl 200 xpl Ixpl 20 xpl IXpl 200 xpl
( 1 ! )7 ( 2 ) Ko )7 (’im y Fm )
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Ixpl

are disjoint. As we require that all of the scales are > r, we set k; = r 5 . On the

other hand, we want all scales to be sufficiently small. We, for example, therefore
_hu By

require that k< @710 Thus setting ki1 = K, thereby ensuring that the

resulting intervals are disjoint (provided h,/x, is sufﬁc1ently large), a calculation

shows that the maximal m we can take is
S _1
m < max {1, log —“} loglogr—*
hﬂ
Combining all of the above, it follows that when summing over all the scales

hy, A .
Ztr Qr. ; 8i) >q ——max < 1,log —+ loglogr™".
: | u| hy.

We therefore require in order to satisfy (8.2.9)) that
h S\
—“max{l,log—“} > %,
Xul hy

which leads us to the condition from Theorem [B.1.4] and concludes our sketch of the

proof.

8.3 Notation for Part 11

The reader may recall the notation stated in section [1.1. For an integer n > 1 we
abbreviate [n] = {1,2,...,n}. On R? the euclidean norm is denoted | - |.
Given two positive semi-definite symmetric real d x d matrices M; and My we

write
M, > M, if and only if 2T Mz > 2" Moz for all z € R%. (8.3.1)

For a random variable X on R? we denote by Var(X) the covariance matrix of X
and by tr(X) = tr Var(X) the trace of the covariance matrix.

Given a metric space (M,d), p € [1,00) and two probability measures A\; and A,
on M, we define the LP-Wasserstein metric as

’YEF(}\l,)\Q)

W,(A, A2) = inf ( /M XMd(x,y)pdv(:p,y));, (8.3.2)

where I'(\q, Ag) is the set of couplings of A\; and Ay, i.e. of probability measures v on

M x M whose projections to the first coordinate is A; and to the second is As.
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Throughout Part II we fix d > 1 and write G = Sim(R?), except for section ,
where G will be an arbitrary Lie group. The Lie algebra of G will be denoted g and
¢ = dim g. We usually consider a fixed probability measure p on G and independent

samples v1, 79, ... of u. We write for kK > 0
n = 71" In and 7, = inf{n > 1; p(y,) < k}.

When 4 is a probability measure on G = Sim(R¢) and v is a probability measure

R? we denote by p * v the probability measure uniquely characterized by

Gen)(5) = [ [ Hg) dutgravia
for f € C.(RY). When pu = >, pidy, is finitely supported, then

¥V = Zpigiy, (8.3.3)

where g;v is the pushforward of v by g; defined by (g;v)(B) = v(g; ' B) for all Borel
sets B C R,

The various notions of entropy between scales as well as tr(g, ) will be given in
section [l

We will denote by m¢ a normalised Haar measure on Sim(R¢). Moreover if H C
O(d) is a closed subgroup, we will denote by my the Haar probability measure on H.

For a probability measure j;; on H, the L-spectral gap of jy in H is defined as

gapy (py) =1— ||THU‘L3(G)H7 (8.3.4)
where (T, f)(k) = [ f(hk)duy(h) for f € L*(H) and L{(H) = {f € L*(H)

mpg(f) =0} for || o|| the operator norm.

8.4 Organisation

In section @ the Taylor expansion bound is proved and we establish several
probabilistic preliminaries. We discuss order k detail in section , establish
as well as show how to convert into suitable detail bounds. Entropy results
for general Lie groups are discussed in section . In section |12| we prove and
(8.2.15)). Finally, we deduce Theorem as well as Theorem in section
by developing a decomposition theory for stopped random walks. We study (¢, T)-
well-mixing and (ayg, 0, A)-non-degeneracy in section [14| and prove Proposition
and Proposition [8.1.3] In section we establish explicit examples and in particu-
lar we prove Corollary Corollary Corollary Corollary and
Corollary
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Chapter 9

Preliminaries

In this section we first study the derivatives of the G action on R? in section [9.1]
then regular conditional distributions in section and finally versions of the large
deviation principle in section [9.3]

9.1 Derivative Bounds

9.1.1 Basic Properties
Let G = Sim(R?) with Lie algebra g = Lie(G). For x € R? consider the map
wy - g — RY, u — exp(u)z.

Denote by ¢, = Dyw, : g — R? the differential at zero of w,.
Note that we can embed G = Sim(R?) into GL4,(R) via the map

g (T(g)(l)f(g) b(lg)) '

We can therefore identify g as a matrix Lie algebra and so can write

g= {(g g) ca € RI+504(R), 6 € Rd} C gl,1(R)

Thus for u = (9 7) it follows that ¢, (u) = u(}) = aa + 5. With this viewpoint we

also use the following convenient notation
ur = P (u) = ax+ (9.1.1)

We fix an inner product on g and denote by |o| the associated norm. Moreover, we
choose an ordered orthonormal basis of g, endowing g with a coordinate system. So

. ¢ . ..
every element u € g can be written as a sum u = ) ,._, u;, where u; is the projection
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of u to the i-th basis vector. On numerous occasions we will consider derivatives with
respect to u;

In the following lemma, some properties about the derivatives of w,, 1, and the
map g are collected. For notational convenience, we denote throughout this subsection
by % the derivative D, f of a function f : R" — R% at a vector x € R%. We

furthermore write ¢ = dim g.
Lemma 9.1.1. The following properties hold:
i) Let g = pU +b e G. Then for all z € RY, it holds that %2 = pU and all of the
ozx

second derivatives of g are zero.
(ii) Whenever x € R and |u| <1 and 1 <i,j </,

ow,

auiﬁuj

0w,

8ui

< g max(|z|, 1).

<g max(|z|,1) and ‘

111 107 any xri, T € Rd we haU@ that
||77Z]J:1 /l/}x2|| <y |Z’1 - Ilf2|-

(iv) Let u € g\{0}. Then there is a proper subspace W, C R% and a vector uy € R?
such that if ¥.(u) = 0 then ¥ € ug + W, for x € R

(v) For all 6, A > 0 there is 6 > 0 such that the following is true. Let v € g be a
unit vector. Then there is a proper subspace W, C R% and a vector vy € R?
such that if

r € R\By(vg +W,) and |z| <A

for By(vg + W,,) the 6-ball around vy + W, then

[z (v)] > 6.

Proof. (i) follows by definition and (ii) by compactness of {u € g : |u| < 1} and using
that a pure translation by a small vector has norm Oy4(1). For (iii) using notation
(9.1.1)) it holds for u = (2 7) € g with |u| <1 that

Uy (1) = Yy (u)| = |z — amy| < ||| - |21 — 22
g laf - |y — x| < ul - |2y — 2o
using that the operator norm || o || is equivalent to the inner product norm on g. To
show (iv), we may assume that 8 € Im(a) as otherwise there is nothing to show.

Then set W, = ker(a) and uy € R? such that auy = —f, implying the claim. (v)

follows from (iv) by continuity. O

105



For u € g\{0} we define
Ey(u) = RN\ By(ug + W,).

Given a random variable U taking values in g, we say that u € g is a first principal
component if it is an eigenvector of its covariance matrix with maximal eigenvalue.
Set

Ey(U) = | ] Eo(v),

veEP
where P is the set of first principal components of U. Similarly if p is a probability
measure which is the law of a random variable U then we define Ey(u) = Ep(U).
Recall that given a random variable U in RY, we denote by tr(U) the trace of the

covariance matrix of U.

Proposition 9.1.2. For all 6, A > 0 there is some § = 6(d,0,A) > 0 such that the
following is true. Suppose that U is a random variable taking values in g and that
r € R? with |z| < A. Suppose that x € Eg(U). Then

tr(Uzx) > 0 - tr(U).

Proof. We applied here the notation that ¢, (U) = Ux. Indeed, we do not
identify g as a column vector here, but simply use the latter convenient notation.
Write ¢/ = dimg and let wy,...,w, be an orthonormal basis of eigenvectors of
the covariance matrix Var(U). We may assume that U has mean zero. Denote by
U = (Uw;) = Ulw; for 1 < i < ¢ and assume without loss of generality that
Var(U;) > ... > Var(Uy) so that w; is a principal component. Then the (U;);<;<, are

uncorrelated since for i # j

cov(U;, U;) = E[U;U;] = E[(U w;, UTw;)]
= E[(UUTw;, w;)] = (Var(U)w;, w;) =0

and it holds that U = ¢ Usw; and that Var(U) > str(U). Also by Proposi-
tion [0.1.1] (v) it holds that |¢,(w;)| > . We then compute

ta(pu(U) = Bllpu(U)?] =B > BV (wn)?] > Str(U).

Y4
=1
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Lemma 9.1.3. Let U be a random variable on g and let g € G and v € R?. Denote

¢ = Dygexp(u)z|u=o.
Then
Var(C(U)) = p(g)* - U(g)tbs o Var(U) o4 U(g)"
Proof. Note that by the chain rule C(U) = p(g)U(g)t,(U) and therefore

Var ((U) = p(g)°U(g) Var(¢.(U)U(g)"

Viewing v, : g — R? as a matrix with our choice of coordinate system we write
Y, (U) =1, o U and the claim follows. O

9.1.2 Taylor Expansion Bound

The aim of this subsection is to prove the following proposition, which crucially relies

on the G action on R? having vanishing second derivatives.

Proposition 9.1.4. For every A > 0 there exists C = C(d, A) > 1 such that the
following holds. Let n > 1, r € (0,1) and let u™,... ,u™ € g. Let g,...,9, € G
with

plo) <1, [b(g)l <A and  [u®] < plgr--g) i < 1.
Let v € R* with |v| < A and write

(1)

z = grexp(ul)) - g, exp(u™)v

and
G = D0(9192 o gi GXP(U)%H e 'gn—1gnv)
and let

i=1
Then it holds that
|z =S| < C"p(gr- - ga)~'1".
To prove Proposition we use the following version of Taylor’s theorem.

Theorem 9.1.5. Let f : R® — R be a C%-function, let Ry,..., R, > 0 and write
B =[—Ri,Ri| x ... x[=Rp, Ry,]. Forintegersi,j € [1,n] let K;; = supp |6528];,| and
let x € B. Then we have that

)= 10) - Y gt

1 n
=3 D Ko lwil |y,

ij=1

=0
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Lemma 9.1.6. Let
w:gxg—RY  (z,y) — exp(z)gexp(y)v

for fixed g,v. Then if ||, |y| < 1 it holds that

‘Qﬂﬂzzyl

Proof. Let © = exp(y)v and by Lemma (ii), g—;| < g max(|v],1). Now let 0 = go.
Therefore, by Lemma m (i), ||%2]] < p(g) and moreover, since w = exp(z)? and
|z| < 1, it is readily shown that ||%|| <4 1. We conclude therefore by the chain

Proposition 9.1.7. There exists a constants C = C(d) > 1 such that the following
holds. Suppose that n € Zwq, g1, G2, .., € G and let uV, ... u™ € g be such that
lu®] < 1.

Let v € R? and

rule

ow
5%‘3%‘

ow

ov

51| | 5| < plo) max(lol. 1),

00
Dy

]

z = gy exp(uM) g exp(u®) - - - g, exp(u™)v.

Then for any 1 <i,j < { and any integers k,m € [1,n] with k < m we have
0%z

_ (m+1)y |
ou® oy t™ )
i JU;

g exp(u(”))v\, 1).

< C"0(g1 -+ gun) max(| s exp(u

Proof. First, we deal with the case k = m. Let

(2))

a = g1 exp(u™)gs exp(u®) -+ g1 exp(u® g,

and

(k+1) (k+2))

<+ gnexp(ul™)v

b= gri1exp(u Grro exp(u

and let b = exp(u®)b. We have

or  Or 0Ob
ou® b ou®

)

Note that by Lemma (i) all of the second derivatives of  with respect to b are

zero and therefore R
< 9%b
B ouM 9uM
i b

0%
augk) 8u§-k)

o
b

. (9.1.2)
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Thus by Lemma [0.1.1] (i) and (ii) we conclude that

0%x
PRCENG

<a pla) max(|b], 1) < C"p(gy - - - g¢) max(|b], 1)

for a suitable constant C' > 1 using that p(exp(u”)) is bounded.

For the case &k < m we consider

ar = gy exp(u®)gs exp(u®) -+ - gp_y exp(u® ) g,
42y g

G exp(u(”))v.

A2 = Gk+1 eXp(U(kH))ng exp(u

(m+1) ) (m+2) )

b= gm+1exp(u Gm+2 exp(u
Then we consider b = exp(u®)ay exp(u™)b and as before we conclude

Pr  Ox
ouMoul™ b gul ul™”

We again arrive at ((9.1.2)) and deduce the claim as in the case k = m using Lemma
instead of Lemma (i). O

Proof. (of Proposition [9.1.4) We first show that there is a constant C; = C}(A4, d)
depending on A such that for all 1 < i <n we have that

|gi exp(u@) - - - g, exp(ul™)v| < CPHL (9.1.3)

Indeed, we note that for any u € g with |u| < 1 and vy € R? it holds that | exp(u)vg —
vo| < Cs(|vp| + 1) for an absolute constant Cy = Cy(d). Without loss of generality
we assume that Cy(d) > 1. Therefore | exp(ul™)v| < Cy(2|v] + 1). Next note that as

p(Qﬂ) <1,

|9 exp(u™)v] < [gn exp(ul™)v — g, (0)] + |g,.(0)]
< p(gn)| exp(u™)v] + [b(gy))|
< Cy(2v| + |b(gn)] + 1) < 4C5(A + 1),

using that p(g,) < 1 and that |v] < A and [b(g,)| < A. Continuing this argument

inductively, we may conclude that
lgs exp(u®) - g exp(ul™)o] < 4"HOFTH(A 4 (0 — i) + 1),

which implies (9.1.3]).
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Note that by the assumptions

plgr- - g)|ul@ < plgr---g0) 7% < plgr -+~ gn) 12

Therefore, by applying Theorem together with Proposition and (9.1.3)) for

a sufficiently large constant C' depending on A and d in each of the coordinates of R,
|z = S| <dn®C"p(g1 -+ - gn) 17,

which implies the claim upon enlarging the constant C'. O]

9.2 Regular Conditional Distributions

In this section we review the definition of regular conditional distributions that will
be used in section . On a probability space (€2,.%#,P), we denote the conditional
expectation by E[f|«/] for f € L'Y(Q,#,P) and a o-algebra & C .#. Given two
measurable spaces (€)1, .27) and (€, 9%), recall that a Markov kernel on (£, .%)
and (g, .9%) is a map k : Q; x @b — [0,1] if for any Ay € o, the map k(-, As) is

gf)-measurable and for any w; the map Ay — k(wq, Ag) is a probability measure.

Definition 9.2.1. Let (2, .#,P) be a probability space and let o C .F be a o-algebra.
Let (E,&) be a measurable space and let Y : (Q, F) — (F,&) be a random variable.
Then we say that a Markov kernel

(Ye) : Q2 x & —10,1]
on (2,97) and (E,§) is a regular conditional distribution if for all B € &,
(Y|)(w, B) = PIY € B|/)(w) = Elly 15y | ](w).

In other words,

E[(Y]4)(, B)L4] = PIAN{Y € B}]
forall A e o .

Regular conditional distributions exists whenever (€2,.%#,P) is a standard proba-
bility space. To give a construction, recall (c.f. section 3 of [EW11]) that there exist

conditional measures P uniquely characterized by

Blfl)w) = [ fap.
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Then
Y] (w,-) = Y.P

Indeed, for B € &,

w

(Y|)(w, B) = E[ly-1(p)| ] (w) = / ly-1(p) dPZ =PZ(Y"Y(B)) = Y.PZ(B).

We denote by [Y].<7] a random variable defined on a separate probability space with
law (Y].e7).

We recall that given two further o-algebras 4,% C .%, we say that they are
independent given & if for all U € 4 and V € %,

PUNV|e| =PlU| PV ||

almost surely. Similarly, two random variables Y; and Y5 are independent given
o/ if the o-algebra they generate are. Note that if Y] is o/-measurable, then it is
independent given o7 to every random variable Y5.

Given a topological group G and two measures p; and py we recall that the

convolution puq * o is defined as

(1 * p2)(B) ://1B(gh) dpr(g)dp2(g)

for any measurable set B C G.

Lemma 9.2.2. Let (Q,.%,P) be a probability space, G be a topological group and g, h
be G-valued random variables. Let o/ C % be a o-algebra and assume that g and h

are independent given <. Then the following properties hold:
(i) (ghle?) = (g|<) * (h|</) almost surely.
(i1) [gh|<] = [g|<] - [h|</] almost surely.

Proof. To show (i) we note that by assumption g and h are independent with respect
to P for almost all w € . This implies that

Epy [£(9h)] = ey [Bry [ (9h) D] = By sayerer xpz [f (9(20)R(20))],

proving (i). (ii) follows from (i) on a suitable separate probability space. O
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9.3 Large Deviation Principle

In this subsection we review various versions of the large deviation principle. Through-
out this section we denote by i a measure on G and by 71,79, . . . independent samples
from p. Applying the classical large deviation principle to p, we can state the follow-
ing.

Lemma 9.3.1. Let u be a compactly supported, contracting on average probability
measure on G. Then for every € > 0 there is § = d(u,e) > 0 such that for all
sufficiently large n,

IF’[ X —log p(y1) -+ p(n)| > en | < e
We generalise Lemma to stopping times.

Lemma 9.3.2. Let p be a compactly supported contracting on average probability

measure on G and let kK > 0 and denote
Te=inf{n >1: p(y1...7) < K}

Then for every e > 0 there is § > 0 such that for sufficiently small k

log k1
T —

Pl

] > €logm_1} < g Oloas™
X

Proof. If 7, > 1°|g“‘ +elog k™! then

p( - T S 1) 2R

which by Lemma has probability at most e 985" for some 6 > 0 and sufficiently
small x.
Write R = inf{p(g) : ¢ € supp(p)} € (0, 1), which is non-zero since p is compactly

supported. Therefore when 7, < % —elog k™! happens there must be some integer
"

logk™t logr™t
|log R|’ X ]

1

ke

elogk™

such that
log p(71 -+ vk) < log k.

1

Note that for sufficiently small x we have k|x,| < logx™' —¢|x,||log R| and therefore

log p(71 -+ ) < logr < k(x, +¢|log R|x,)- (9.3.1)

By Lemma m the probability that (9.3.1)) happens is < e 9% = ¢=9Oulloas™) for
some ¢’ > 0. Since there are at most O,(log x~!) many possibilities for k, the claim

follows by the union bound. m
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From Lemma and ((7.0.2) we can deduce the following corollary.

Corollary 9.3.3. Let i be a contracting on average probability measure on G. Then
for every e > 0 there is 0 = d(u,€) > 0 such that for all sufficiently large N

IF’[EIn >N :p(yr--yn) > exp((x, + 6)n)] < e N (9.3.2)
and
P[3n,m = N b+ 30) = b1+ )| = exp((x + &) min(m, m)| < e,

Proof. Equation (9.3.2) follows from Lemma and Borel-Cantelli. For (9.3.3))

note that when m >n + 1,

by 7n) = 03 m)| < p(y - ) (= Yim) |
Therefore by (9.3.2)) it suffices to show that for sufficiently large N we have that

Pk >1: [b(yr---y)| > eN] < eV

— Y

which readily follows from ([7.0.2]) and Borel-Cantelli as b(7; - - - ) converges expo-

nentially fast in distribution to v. m
The next lemma was proved in [Kit23].

Lemma 9.3.4. (Corollary 7.9 of [Kit23]) There is a constant ¢ > 0 such that the
following is true for all a € [0,1) and n > 1. Let X;,..., X, be random variables

taking values in [0,1] and let my,...,m, > 0 be such that we have almost surely
E[X;|X1,...,Xi—1] > m; for 1 <i<mn. Suppose that > m; = an. Then

1
logP | X;+...+ X, < §na < —cna.

We generalise Lemma to higher dimensions.

Lemma 9.3.5. There is some absolute constant ¢ > 0 such that the following is true.

Suppose that X1, ..., X, are random d X d symmetric positive semi-definite matrices
such that X; < bl for some b > 0 and

E[XZ|X1, .. 7Xi—1] 2 mZI

Suppose that Y, m; = an. Then there is some constant C' = C(a/b,d) depending
only on a/b and d such that

]P’[X1+-~+Xn>%f] >1— Cecn
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Here we are using the partial ordering (8.3.1)).

Proof. For convenience write Y,, = X;+...+ X, and choose a set S of unit vectors in
R? such that if y is any unit vector in R? then there exists « € S with [z —y|| < &.
Note that the size of S depends only on d and a/b.

By Lemma|9.3.4) we know that for any z € S,

log P [Q:Tan < %} < —can.

Let A be the event that there exists some z € S with 27Y,xz < 5. We have that
log P[A] is at most —can + log|S|. It suffices therefore to show that on A we have
Y, > %1

Indeed let y € R? be a unit vector. Choose some x € R¢ with ||z — y|| < a/8b.
Suppose that A occurs. Note that we must have Y,, < bnl and therefore ||Y,,|| < bn.

This means

y'Y,y =2TY,x + xTYn(y —z)+ (y — x)TYny

an a an
9 — = 2
> g =

and result follows. O
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Chapter 10

Order k Detail

The goal of this section is to prove the product bound and to show how to
convert (8.2.2) into suitable estimates for detail. We first recall in section the
definition of the detail s,(\) of a measure A on R? at scale r > 0 that was first
introduced by |Kit21]. We then expand the definition and results of order k detail
sﬁk)(/\) of a measure from [Kit23] to measures on R,

As mentioned in the outline of proofs, the advantage of using k-order detail over de-
tail is that it leads to stronger product bounds. Indeed, we will show in Lemma[10.2.1
that

SN sk M) < sp (M) - s (\g) (10.0.1)

for measures Ap,..., A, on R? and r > 0. Moreover, if s$'(\) < a for all r € [a, ]
and some k > 1 then we show in Proposition [10.2.3| for a constant ()'(d) depending

only on d that
Sovi(A) < Q' ()M (a + klka®™?). (10.0.2)

Combining and , we deduce the strong product bound (Corollary
mentioned at in the outline of proofs.

In section [10.3] we show that the difference in the detail of two measures is bounded
in term of their Wasserstein distance. Finally, in section [10.4] we show how to convert
the conditions from into good estimates for detail. The latter requires Berry-
Essen type results, the Wasserstein distance bounds from section , and
a suitable partition of ) . X.

All of these results will be used in section [13
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10.1 Definitions

Denote by 7, the standard Gaussian density on R? with covariance matrix y - I, i.e.

0
77;(/1) = a_yny-

Moreover, we write

Given a probability measure A on R the detail of A at scale r > 0 is defined as
5:(\) =2 Q) A+ 12 [,

where Q(d) = |[p{V||7! = 1D(9)(£)~%? and note that by Stirling’s approximation
d=1? < Q(d) < ed™'/? for all d > 1. Moreover, r’Q(d) = an,?H‘l and therefore
sr(A\) <1 for every probability measure A.

Proposition 10.1.1. [Kit21, section 2] Let X and u be probability measures on R<.
Then the following properties hold:

(i) Suppose that there is 3 > 1 such that s,(\) < (logr~1)=# for sufficiently small

r. Then X\ is absolutely continuous.

(i) sr(Axp) < sp(A).

Definition 10.1.2. Given a probability measure A on R? and some k > 1 we define
the order k detail of \ at scale r as
s = Q) 1) nidlh,
(k) _ 0

k
where 1y’ = el

10.2 Bounding Detail

We have the following properties:

Lemma 10.2.1. Let k > 1 and let \i, \a, ..., Xy be probability measures on R?. Then
STV Ag %k M) < 50 (M)sa(Ag) - -+ 50 (An). (10.2.1)

In particular, for any probability measure X on R and k > 1,

s < 1. (10.2.2)



Proof. Recall that by the Heat equation a%ny(x) = %2?21 %ny(x) and therefore by

standard properties of convolution

d 2 2
w _ 1 o 0
e = 9% Z_l R

B1yeensifp=

1 P 1 Zd: 0° 1 P
— —_— * — —_— * PR * f— —_—
2 & Ou} e 2 & Oa} e 2 &~ 83:?777"2

k times

=3 ey

~
k times

This concludes the proof of (10.2.1]) as

)

|| A1 **)‘k*n;g:)zHl = ||\ *WS) *)\2*777% *---*Ak*nﬁ)lh

< D e @l [ % @[
To show ((10.2.2)) weset Ay = Aand Ay = ... = A\ = J. and use that s, (\;) < 1. O

Lemma 10.2.2. Let k be an integer greater than 1 and suppose that X is a probability
measure on RY. Suppose that a,b,c > 0 and o € (0,1). Assume that a < b and that
for all r € [a,b] it holds that

s\ < a+er?,

Then for all r € [a,/%,b,/k—fl} we have

sFDN) < 2eQ(d) 7 (a+ (572 4 k)2 V)

Proof. By the assumption and the definition of detail for y € [ka?, kb?] and writing
y = kr?,

A =P < r2*Q(d) F(a+ er™) = ay FEFQ(d)F + cQ(d) "

Therefore with y € [ka?, kb?],
k-1 ke
POl < il o+ [ 1<l du
v

b2
< Hn,ﬁ'f,;”Hl + / au " EFQ(d)F + cQ(d) " du
Yy

2\ —(k— —(k— gy— (=D _
< (B2~ E=DQ(d) "D 4 akFQ(d)F L + Q(d) R ekt?,
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where we bounded in the last inequality ||ngZ; 2 |1 by using that order (k —1)-detail is
at most one, [ au™FKFQ(d)F du by [ au™tkrQ(d)* du and [ cQ(d)™ du by

fokb2 cQ(d)~" du. Using that (k_ﬁl)_(k_l) < 1 we therefore get
—(k=1)
Pl < @kt QU™ T+ (07 + Q) ek Q(d)

Substituting the definition of order k detail gives for y = (k — 1)r* € [ka?, kb?] or

equivalently r € [a@/%,b\/% ;

D) = 26Q() Y w rff el

(k—1)r2
— 1)p2)— (k1)
e A T URETS
1 k
< aQ(d)™ (1 + m) + (025D 1 Q(d) "t ekb?)r2 kD),

Finally using that (1 + k—il)k < 2e and that 2eQ(d)~! > 1 the proof is concluded. [

Proposition 10.2.3. Let k be an integer greater than 1 and suppose that X\ is a
probability measure on RY. Suppose that a,b > 0 and o € (0,1). Assume that a < b
and that for all r € [a,b] we have

s\ < o
Then we have that

Sovi(N) < Q' () (a+ k! - ka®b™?)
for Q'(d) = 4eQ(d)™ > 1.
Proof. We will show by induction for j =k, k—1,...,1 that for all r € [a\/g, b\/g]
we have

sP(\) < Q () (a + 7b2Jr23> , (10.2.3)
J°

which implies the claim by setting j = 1 and r = avk. The case j = k follows

from the conditions of the lemma. For the inductive step assume now that for all

r e [a\/?, b\/ﬂ we have that ((10.2.3) holds. Then by Lemma |10.2.2| we have for all

re [a,/%,b,/%

sUD(N) < Q'(d)F72eQ(d) ™ (a + (b—%—l) + ljifb—% jb2> r2<ﬂ'—1>)
'k _ k! 1) 2
SQwﬁzwuw(a+@+u_Uob%wﬂ ﬂ

< Q/(d)k—(j—l) (a + b—2(j—1)7a2(j—1)) )

G-
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Combining Lemma |10.2.1) and Proposition [10.2.3] we arrive at the following corol-

lary.

Corollary 10.2.4. Let k > 1 and let A\, Ao, ..., N\, be probability measures on RY.
Suppose that a,b > 0 and o € (0,1). Assume that a < b and that for all r € [a,b] and
i € [k] we have

57"()\72) < a.

Then it holds that
Spvi(A) < Q' () (" + k! ka®b?).

10.3 Wasserstein Distance

Recall as in (8.3.2)) that the Wasserstein 1-distance on R¢ between \; and ), is defined

as
Wi(A1, A2) = inf / |z —yldvy(z,y),
R4 xR4

Y€l (A1,A2)
where I'(Ay, A2) is the set of couplings between A\; and As. We show that detail is

bounded up to a constant by the Wasserstein distance.

Lemma 10.3.1. Let A\, and \y be probability measures on R%. Then for k > 1 and
r >0,
s () = 5B ()| < edr™Wi(Ag, A,

where e is Buler’s number.

Proof. Let X and Y be random variables with laws A; and A\, respectively. Then
(A = Xo) iy (v) = E [ngﬁ)(v — X) = (v - Y)]
and therefore
| =) (@) B [ (0 - X) =0 (0 - V)|

Note that v
k k k
N w - X) =P w-v)| < /X (Vi (0 = w) | |dul,
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where [”-|du| is understood to be the integral along the shortest path between 2 and
y and V is the gradient. Thus

In =)l < [ U g v_u>;|du|] v
—E{//]Vn v—u)|dv|du|]

= ||V |LE(IX — Y]
< (Z 0 )E[IX—YH

: axl nkr

=1
We next bound Ha%i??;(j)’h. As in the proof of Lemma [10.2.1] it follows that
0 ) 4 o) M
8351-77’”2 52 - *n%ﬂﬁ*”'*n,ﬁﬂ'

Using standard properties of Gaussian integrals,

\/TH S
01’ e 3 r
and therefore
0, ® 0 (1) k
< |[|—
‘axinkr 1 8%7]%“7“2 Hn%ﬂﬁlh
a1 kD72
() e
Using that (%)(kﬂw < e, we conclude

s (A1) = s (Aa)] < r2RQ(d)*]| (M — Aa) * |4
< der 'E[|X - Y]].

Choosing a coupling for X and Y which minimizes E[|X — Y] gives the required
result. O

10.4 Small Random Variables Bound in R?

The aim of this subsection is to show that the sum of independent random variables
in R? have small detail whenever they are supported close to 0 and have a sufficiently
large variance. To state our result, we use the partial order (8.3.1)) for positive semi-

definite symmetric matrices.

120



Proposition 10.4.1. For every positive integer d > 1 and every a > 0 there exists
some C = C(a,d) > 0 such that the following is true for all r > 0 and positive
integers k. Let X1, Xo,..., X, be independent random variables taking values in R?

such that almost surely
1X;| < C'r  and ZVarXi > Ckr?l.
i=1

Then
sO(X 4+ ...+ X,) <a”.

Proposition [10.4.1] relies on a higher dimensional Berry-Essen type result, which
implies Proposition for k = 1, as deduced in Lemma To prove the

higher dimensional Berry-Essen type result we first need the following.

Theorem 10.4.2. Let X, X, ..., X, be independent random variables taking values
in R with mean 0 and for each i € [n] let E[X?] = w? and E[|X;|?] = v} < co. Let
w?=>" w?andlet S =X+ -+ X,. Let N be a normal distribution with mean

2

0 and variance w. Then for an absolute implied constant

Z?:l 723
Z?:l %2

Proof. A proof of this result may be found in [Eri73|. O

Wi (S, N) <

From this we may deduce the following higher dimensional Berry-Essen type result

by using projections onto one-dimensional subspaces.

Lemma 10.4.3. Let Xy, Xo,..., X, be independent random variables taking values

in R with mean 0 and for each i € [n] write
Ei = Var XZ

Suppose that § > 0 is such that for each i € [n| we have | X;| < ¢ almost surely. Let
Y= ZLI Yoand S =X+ ...+ X,,. Let N be a multivariate normal distribution

with mean 0 and covariance matriz . Then
Wl(S, N) <4 0.

Proof. First, we will deduce this from Theorem [10.4.2) when d = 1. In this case simply
note that

S = STEIX) < SRR =63,
=1 i=1 i=1 =1
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showing the claim.
Now in the case d > 1 the lemma follows by using, as shown in [BG21, Theorem
2.1], that
Wi (S, N) <4 sup Wi (pS, pN),

p
where the supremum is taken over all one dimensional projections p. The result is
therefore deduced as in the one dimensional case by using that E[|pX;|*] < 0E[|pX;|?].

O

Lemma 10.4.4. For every positive integer d > 1 and every o > 0 there exists some
C = C(a,d) > 0 such that the following is true. Let r > 0 and let X1, X5, ..., X, be

independent random variables taking values in R? such that

1X;|<C ' and ZVarXi > Cr?].
i=1
Then
(X1 4+ ...+ X,) <a.

Proof. Denote for 1 < ¢ < n by X! = X; — E[X;] and let S" = > " | X/. Note
that s,(>°1—, Xi) = s.(5"). Write ¥; = VarX; and let ¥ = >  3,. Let N be a
multivariate normal distribution with mean 0 and covariance matrix . Note that
| X!| < 2C~1r almost surely. Therefore by Lemma

WIS, N) <4 O~ 7,

Also
Iyl 1

F(N) <s, 2,2) = et — .

sy (N) < sp(nc2y2) HT](?H 02 11
Thus by Lemma [10.3.1

1
_ / —1
ST(X1+...+Xn)—ST(S)<<dC “f‘m,

implying the claim. O

The proof of Proposition [10.4.1|in the case k > 2 is more involved than the proof
in the case kK = 1. In order to prove this proposition we also need the following lemma

and a corollary of it.
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Lemma 10.4.5. Let V' be a Fuclidean vector space, let vyi,...,v, € V and write
S =wv+---+uv,. Letcy,co >0 be such that for all i € [n] we have

lv)| <er and v - S > co|vi]|S].

Let k be a positive integer. Then we can partition [n] as J; U Jo U --- U Jy such that

|S; — %S! < 02_1\/2%\S| + 2¢5%¢,

for each j € [k] we have

where S = e Vi

Proof. Choose the J; such that
k
> 181 (10.4.1)
j=1

is minimized. For each i € [n] let j(7) denote the unique j € [k] such that ¢ € .J;. For
each ¢ € [n] and j' € [k] we know that moving ¢ from J;(;y to J; cannot decrease the
sum in ((10.4.1). Therefore

S = vil® + 1Sy + uil* > 1S5 |* + 15y
Expanding this out and cancelling gives
Sy - vi — |vil* < Sy - s
and summing over all ¢ € J;, we get

Sj-8; < 8-Sy + Y ol

iEJj

Let A; denote .., |vg]?. Note that the above equation gives |S; — Sy|? < A; + A

and so
S, —19]< S; — Sl < /2 A 10.4.2
|5 k|—§¥1€%}§|J J|—1/§¥l€%’§] ( )

Now let A* = maxj e Ajr. We compute
> il < %S (- S)?
iEJ]’ iEJ]’

<6872 (v S)ea| S|

iEJJ‘

=cy2c1|S|71S - S < ey %] 5] < 05201(%|S| + \/§A)
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Therefore A% < c;?¢;(|S|/k + V/2A), which gives

2
(A= c%a/v2) < GalS|/k+ a2

and so
A< \/02201\S| N eyt N cy ey
- k 2 V2
< 651\/%+ 321V,
showing the required result by . O

Corollary 10.4.6. Let Ay, ..., A, be symmetric positive semi-definite d x d matrices.
Suppose that > | A; > CkI and that for each i € [n] we have ||A;]] < c. Then we
can partition [n] as Jy U Jo U -+ U Jy such that for each j € [k] we have

oA (c — dV2eC — 2d3/20> I

i€Jj

Proof. Let M = >"" | A;. We know that M is symmetric positive semi-definite and so
it may be diagonalised as M = P~!DP for some orthogonal matrix P and a diagonal
matrix D with non-zero real entries. Since M > CkI all of the diagonal entries of
D are at least Ck. Let D’ = v/CkD=! be a diagonal matrix and for each i € [n] let
Al = QA;Q where Q = P7'D'P. Note that A} is symmetric positive semi-definite,
|A;]] < cas|Q| <1and that ) | A} = CkI since

QMQ = (P"'D'P)(P"'DP)(P~*D'P) = P"'D'DD'P = CkI.

We now apply Lemma [10.4.5{ with V' being the space of symmetric d X d matrices
with inner product given by A-B =37, >° | Ay By, = tr AB and with vy,..., v,
being A},..., Al. We will denote the norm induced by this inner product by | - |.
Note that given a symmetric matrix A we have that |A]? is equal to the sum of the
squares of the eigenvalues of A and so in particular || - || <|-| < v/d|| - ||. This means
that we can take ¢; = v/dc so that |A}| < ¢;.

All that we need to do is find some lower bound on A}-CkI in terms of |A%|-|CkI].
Note that tr A} is equal to the sum of the eigenvalues of A} and that |A%|? is equal to
the sum of the squares of these eigenvalues. In particular since the eigenvalues are

non-negative tr A; > |A}| and so

Al CEI = Cktr A, > Ck|Al| = |4 - |CkI|/V4d.
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This means that we can take c; = 1/1/d.
We now apply Lemma [10.4.5|with S =" | A} = CkI to construct our partition
[n] = Jy U Jy U--- U Jg such that for all j € [k],

M A - CI|| < DA = CI| < dV2cC + 247 c.

iEJj iGJj
Therefore

S 4 — 0Q 2| < (V26T +2d20)1Q2
1€J;
and hence,
S 4 >0Q7 - (d\/QcC’ +2d% 20) QI
1€Jj

el (d\/% - 2d3/20> Q72|11
> (C — dV2cC — 2d3/%) I

using in the penultimate line that Q=2 = P~}(D’) 2P is symmetric and all eigenvalues
are > 1 and in the last line that ||Q~!|| > 1. O

Finally we can prove Proposition [10.4.1}

Proof of Proposition[I0.4.1. Note that since |X;| < C~'r almost surely we have
| Var X;|| < C~2r%. By Corollary [10.4.6| we can partition [n] as J; U Jo U -+ - U Jy
such that for each j € [k] we have

Y Var X, > ((J —dV20T — 2d3/20—2> r2.
i€J;

This means that by Lemma [10.4.4] provided that C' is sufficiently large in terms

of d, we know that

Sr ZXZ <a.

1€J;

The result now follows from Proposition [10.2.1 O]
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Chapter 11

Entropy and Variance on General
Lie groups

Throughout this section let G be an arbitrary Lie group of dimension ¢ with a fixed
choice of Haar measure mq and let g be the Lie algebra of G. We fix an inner product

on g, inducing an associated norm | o |. Also denote by
log: G — g

the logarithm on G, which is defined in a small neighbourhood around the identity.
We study entropy on arbitrary Lie groups. As exposed in the outline of proofs, we

shall convert entropy estimates of a random variable Z to estimates of the variance

of Z. Indeed, recall that if Z is an absolutely continuous random variable on R with

variance o2 then

1
H(Z) < 510g(27rea2), (11.0.1)
where H(Z) is the differential entropy of Z and equality holds in (11.0.1) if and only

if Z is distributed like a Gaussian with variance 02. We will prove an analogue of this
fact on Lie groups. To do so, for random variables g that are supported within small
balls of a given point gy we consider the covariance matrix of the Lie group logarithm
applied to g;'g. This viewpoint allows us to apply a higher dimensional analogue of
to deduce an analogous result on G.

Indeed, we recall that for an /-dimensional random variable X we denote by tr(X)
the trace of the covariance matrix of X. In particular, we use the following definition.

Given gy € G and a random variable g on GG we define

trg, (9) = tr(log(gs'9)),
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whenever log(gy'g) is defined. The analogue of (11.0.1]), which will be proved in
Proposition [11.3.1] then amounts to

2me

H(g) < glog <7 : trgo(g)> + O¢(e) (11.0.2)

for random variables supported on B.(go) and € > 0 sufficiently small.

A further goal of this section is to study entropy between scales on G. Indeed,
we will define in section an explicit family of smoothing distributions s, , on G,
which satisfy

l
tre(s,a) = 0r*  and  H(s,,) = 5 log 2mer? + Oy(e="/*) + Oga(r),  (11.0.3)

while being supported on By, (e). The error Oy(e=**/4) arises since s,., is compactly
supported while equality holds in (11.0.1)) for Gaussians, which are non-compactly
supported.

We then define the entropy at a scale » > 0 of a random variable as
Hu(g;r) = H(gsr,a) - H(Sr,a)
and the entropy between scales between two scales r1,75 > 0 as

H,(g;r1|r2) = Ha(gi 1) — Ha(g;72).

Roughly speaking, H,(g;r1|r2) measures how much more information g has on scale
ary than it has on scale ary. We work with the parameter a as the uniform bounds
(11.0.3|) are useful for our purposes.

We next aim to relate the entropy between scales to the trace of a random variable.
To do so we introduce the trace tr(g;r) for a random variable g at scale r, which we
define as the supremum of all £ > 0 such that we can find some o-algebra </ and

some .o/ -measurable random variable h taking values in G such that
|log(h'g)| <7 and Eltry(g|«/)] > tr’.
Then we show in Proposition that
tr(g; 2ar) > a~2(H,(g;7|2r) — Ople™*"*) = Oga(r)). (11.0.4)

In section [11.1] we give definitions and discuss basic properties of entropy on G,
after which we discuss the Kullback-Leibler divergence on G in section In sec-
tion we prove (11.0.2)), after which we study conditional entropy in section m

Finally we prove ([11.0.4)) in section m
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11.1 Entropy and Basic Properties

For notational convenience, we denote
h(z) = —xlog(x)

for € (0,00) and recall that h is concave. If A\ = )" p;d,, is a discrete probability

measure on GG, we define the Shannon entropy of A as
H(\) =Y h(ps).

On the other hand, given an absolutely continuous probability measure A on G with

density f) we define
) = [ b5 dme.

We extend the definition to finite positive measures A that are either absolutely

continuous or discrete by setting
H(A) = [[ALH A/]A]])-
In this subsection we collect some useful basic properties of entropy.
Lemma 11.1.1. Let Ay, ..., A\, be absolutely continuous finite measures on G. Then
HMA+ ...+ X)) > HMN)+ ...+ HA\).

Proof. 1t suffices to prove the claim for n = 2. Let f; and f5 be the densities of \;

and Xs. Then since h is concave

Ji+ fa )
H(Ax+ A2) = ([l + 1A /h( e
(A1 4 A2) = ([[Ml] + [[A2][1) Al + [[Azl]x ¢

[[Al[1 h
> (||A A h d
> (Il +1] 2”1)/||/\1||1+H>\2H1 Pl ) ¢

[l f2
+(IIA1|!1+||A2”1)/Hxlulﬂwulh Tl )
— HO) + HOw).

O

Lemma 11.1.2. Let p = (p1,p2,...) be a probability vector and let A\, Ag, ... be
probability measures on G either all absolutely continuous measures or all discrete

measures with finite entropy such that ||N;|| = p;. Then
H (Z Ai> < H(p)+) H(\).
i=1 i=1
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In particular, if p; = 0 for all i > k for some integer k > 1 then

k k
H (ZA) <loghk+ Y H(\
=1

i=1

Proof. Upon taking limits it suffices to prove the claim for n-dimensional probability
vectors p = (p1,...,p,) and we only consider the case of absolutely continuous mea-
sures as the proof is analogous in the discrete case. We prove the first line in the case
when the \; are absolutely continuous and denote their densities by f;. Note that
h(>7  a;i) < >F  h(a;) for any ay,...,a, > 0. Therefore

HOu+ o M) :/h (if) dme
< Z [ v dme
- Z [ (it logtvi £) = fi(o) og(po) dme
= Z [ pihto e + i)

= ZHO\Z) + H(p).
]

Lemma 11.1.3. Let A\ be a discrete and and Ay be continuous probability measures
on G. Then

Suppose further that Ay is supported on finitely many points with separation at least

2r and that the support of \o is contained in a ball of radius r. Then

Proof. Write Ay = > pidy, and let f be the density of Ao. Then the density of
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Ak A is given by Yo% pi fogr !t Ash(D a;) < Y0 h(a;) for any ay, ..., a, >0,
H()\l * )\2) = /h (szfogzl> de
i=1
< Z/h(pifogil)dmg
i=1

- Z/(pi fogih)(log(p:) +1log(f o git)) dmg
= };(Al) + H(A2).

If A1 is supported on finitely many points with separation at least 2r and that the
support of Ay is contained in a ball of radius r, then the support of the functions

fog;!is disjoint and the inequality in the second line is an equality. O]

11.2 Kullback-Leibler Divergence

If v < p are measures on GG, then we define the Kullback-Leibler divergence as

dv
DxL(v|lp) = —/log@dl/.

Observe that if v is absolutely continuous, then H(v) = Dk (v || mg). We collect

some basic results on the Kullback-Leibler divergence on G.

Lemma 11.2.1. Let v < p be measures on G and assume that v is a probability

measure supported on a set A of positive . measure. Then

Dxr (v 1) < log(u(A)).

Proof. For convenience write v = f, du. Then by Jensen’s inequality,

Drawllm = [ (f%) dn = [ DA A di+ Ton(u() < loglu())

O
Lemma 11.2.2. Assume that we can write X = X; X ... X X,,, as a product of
sub-manifolds X; C X and assume that mx = mx, X ... X my, for a measure my

on X and measures mx, on X;. Let p be a probability measure on X with p < mg.
Denote by m; the projection from X to X; and by m;u the pushforward of p under ;.
Then

Dxr(p||mx) < Dxu(mp||mx,) + ...+ Dxo(mmp || mx,,).
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Proof. Tt suffices to prove the claim for m = 2. Denote by f, the density of yu with

respect to m¢g and write

fi(.Z'Q)—/f“<xl,flf2>de1(l’1) and fi(]ﬁl)—/fﬂ(,fl,l’g)deQ(l’Q).

Therefore,

Dy (pllme) = / / W (a1, 22)) dmx, (1) dmx, (22)
/ / (fﬂ ey 2<x1>> dmyx, (21)dmx, (s)

/ / (f“ L )fg(xl)dmxl(xl)deQ(xQ)

i / / —108(F2(2)) fulr, 22) dimx, () dimx, (22)
< / B(f1 () dinx, (2) + / B(f2(2)) din, (1)

= Dxr(mip || mx,) + Dxu(map || mx,),

having used that h is concave and Jensen’s inequality in the penultimate line. [

Lemma 11.2.3. Let (X,my) and (Y, my) be manifolds endowed with Radon mea-
sures of full support, and let ® : X — Y be a diffeomorphism with ®,mx = my.

Then for a measure v < mx on X it holds that
Dy (@.v|lmy) = Dxi(v||mx).

Proof. Let f:Y — R be a continuous compactly supported function. Then

/qu)*z/:/(foq))dyz/(foq))dil:xdmx
as well as

/quw—/fd@” Ydmy

/qu)” )dd mX_/(focp) (?%@) dmy.

dmy my

Therefore, as ® is a diffeomorphism and since mx has full support,

dd,.v dv
od =
dmy de
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and thus

DKL((I) l/Hmy /

- s ( )
= [0 ( )dy_DKL@HmX)

Lemma 11.2.4. Let Ay be a probability measure on G and let Ay and A3 be measures
on G such that \y < Ag, A\ < A3 and Ay < A3. Let U C E and suppose that the

]

support of A1 s contained in U. Then

dAs
log —

| DkrL(A1 || A2) — Dxr(Ar || As)] < sup
dXs |

zeU

Proof. We calculate

|DkL(A1]] A2) — Dxp(Ar || As)] =

d>\1 d>\1
IOg d_)\Q d)\l /U IOg d_)\?) d)\l
d\ log Ay
dXy d/\

lo @
& s

L o
S|

log =L A\

)

/

< sup
zelU

11.3 Entropy and Trace

In this subsection we prove ((11.0.2). Recall that given gy € G and a random variable
g on G we define

trg,(9) = tr(log(go '9)).
whenever log(gy'g) is defined.

Proposition 11.3.1. Let G be a Lie group of dimension £. Let € > 0 and suppose
that g is a continuous random variable taking values in B.(go) for some gy € G. If e

1s sufficiently small depending on G,

H(g) < élog (226 trgo(g)) + O¢(e).
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Proof. We first note that if X is an ¢-dimensional random vector, then
1 2
H(X) < 5 log (E : tr(X)> (11.3.1)

Indeed, it follows from the 1-dimensional case that H(X) < Lllog((2me)’ -
|Var(X)|), where |Var(X)| is the determinant of the covariance matrix. Note that by
the AM-GM inequality |Var(X)| < tr(X)“*, which implies (11.3.1).

Since H(gy'g) = H(g) and try,(g) = trc(gy'g), we may assume without loss of

generality that gy = e. The density d(iﬁ?og) is smooth and for € > 0 sufficiently

small is 1 + Og(e) on B.(e) and therefore supg_(, |logdmg—olog’ < €. Thus by
Lemma [11.2.4]

|Dxw(g || ma) — Dkr(g || mg olog)| <¢ .

The claim follows since by ((11.3.1])

Dr(g 1y 0108) = D (lows) | mg) = Hlos(a)) < 5106 (2t (9) ).

11.4 Conditional Entropy and Conditional Trace

The aim of this subsection is to prove an abstract result relating entropy between
scales and the trace. To do so, we first discuss conditional entropy and conditional
trace. Let Y be a random variable on a probability space (2,.%,P) and &/ C F#
be a g-algebra. Denote by (Y'|.<7) the regular conditional distribution as defined in
section Assuming that (Y'].27) is almost surely absolutely continuous, we define

H((Y |.o))(w) = H((Y|«)(w)).

Recall that if X; and X, are two random variables then entropy of X; given X,
is H(X1|Xs) = H(Xy, Xo) — H(X,). If X; and X, have finite entropy and finite joint
entropy, then by [Vig21],

H(X)|Xs) = E[H((X,]Xa))]- (11.4.1)

We next give an abstract definition of the entropy at a scale and for a smoothing
functions s. Indeed, let g and s be random variables on G and assume that s is

absolutely continuous. Then the entropy at scale s is defined as
H(g;s1) = H(gs1) — H(s1)
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Moreover, if s; and sy are absolutely continuous smoothing functions we define the

entropy between scales s; and sy as
H(g; s1|s2) = H(g;s1) — H(g; s2).
The following basic result on the growth of conditional entropy holds.

Lemma 11.4.1. Let g, s1,S2 be independent random variables taking values in G.
Assume that s; and sy are absolutely continuous with finite differential entropy and

assume that gs, and gss also have finite differential entropy. Then
H(gsilgsz) = H(g; s1]s2) + H(s1).

Proof. Note that

H(952’951) > H(952’9731) = H(g52|g) = H(Sz)

and so
H(gs2, 9s1) = H(gsalgs1) + H(gs1) > H(gs1) + H(s2).

Therefore

H(gs1]gs2) = H(gs2, 951) — H(gs2)
> H(gs1) — H(gsa) + H(s2)
H

> H(g; s1|s2) + H(s1). L

We next define the conditional trace of a random variable on G and relate it to

the entropy between scales.

Definition 11.4.2. Let g be a random variable defined on a probability space (0, F ,P)
and taking values in G. Let o C % be a o-algebra let gy be a < -measurable ran-
dom variable taking values on G. Then we denote by try,(g| /) the o7 -measurable
function given for w € Q by

tro (9 [ ) (W) = trgo() (9| &) (W))-

We note here that the variance of a measure p is defined as the variance of a
random variable with law p. It follows from Proposition [11.3.1] that

— -trgo(g|£7)) + O (e). (11.4.2)



Theorem 11.4.3. Let g,s, and sy be independent absolutely continuous random
variables taking values in G and suppose that that s1 and so are supported on B,
for some sufficiently small ¢ > 0 and have finite differential entropy. Write ¢ =
Llog Ztr,(s1) — H(s1) and suppose that tr.(s1) > Ae* for some positive constant A.
Then

N

E[trgs,(glgs2)] >

where C' is some positive constant depending only on A and £.

(H(g; s1]82) — ¢ — Ce)tre(sy),

We first prove some basic result on the trace of the product of two random vari-

ables.

Lemma 11.4.4. Let € > 0 be sufficiently small and let a,b be random variables and
o/ a o-algebra. Suppose that b is independent from a and <7 and let gy be an < -

measurable random variable. Suppose that gy'a and b are almost surely contained in
B.. Then
try, (abl?) = try, (al o) + tro(b) + O(e?).

Note that under the assumptions of Lemma it holds by Lemma that
labl.o/] = [a|][b] /] = |a]o/b.
Therefore the claim follows from the following unconditional version.

Lemma 11.4.5. Let ¢ > 0 be sufficiently small and let g and h be independent random
variables taking values in G. Suppose that the image of g is contained in B. and the

image of h is contained in B.(hg) for some hy € G. Then
trny (hg) = trag (h) + tre(g) + O(E?).

Proof. Let X = log(hy'h) and let Y = log(g). Then |X|,|Y| < ¢ almost surely and
by Taylor’s theorem there is a random variable F with |E| < ? almost surely such
that

log(exp(X)exp(Y)) =X +Y + E.

Therefore
try, (hg) =E[|X +Y + E)?] — [E[X + Y + E]?
= E[X +Y|*] — [E[X + Y]]
+2E[(X +Y) - E] + E[|EY] - 2E[X + Y]E[E] — [E[E]]?
= Var[X + Y]+ O(&*) = Var[X] + Var[Y] + O(&?).
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Proof. (of Theorem [11.4.3) We note that by [11.4.1] and Lemma [11.4.1} it holds that
E[H((gs1]gs2))] = H(g; s1|s2) + H(s1)

and so by (|11.4.2)),

¢ 2me
E {5 log %trg@(gsﬂgsﬁ} + O(e) > H(g; s1|s2) + H(s1).

Note that (gsy)~'g = s5*, which is contained in B.(e). Therefore by Lemmal11.4.4]

trgs, (951]952) < trys,(glgsa) + tre(s1) + O(€?)

and so

H(g;si1|s2) + H(s1) <E {g log ? (trgs, (glgs2) + tre(s1) + 0(83))} + O(e).

Thus
% (H (g 51]s2) — ¢) < E {k)g (1 + % + OA(e)ﬂ .

Using that log(1 + z) < x for > 0, we conclude the claim. O

11.5 Entropy Between Scales

In this subsection we prove an explicit result relating the entropy between scales and
tr(g). To do so, we construct a suitable family of smoothing functions. Indeed for
given r > 0 and @ > 1, denote by 7,, a random variable on g with density function

fra: 98— R given by

||
fr,a(x) = {CNIG_QTQ if |‘T| < ar,

0 otherwise,

where (), is a normalizing constant to ensure that f, , integrates to 1. We further-

more define
Sr,a = exp(nr,a)-
We then define the entropy at scale r as
Hu(g;7) = H(g; $r.a) = H(gSr.a) — H(5ra)

and the entropy between scales r1,ry > 0 as

Ha(g; T1|T2) = H(gv 3r1,a‘£r2,a> = Ha(g; 701) - Ha(g; TQ)
= (H(98r1.a) = H(Sr1.a)) = (H(gSr30) = H(Sr5.0))-
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Recall that tr(g;r) is defined to be the supremum of all ¢ > 0 such that we can
find some o-algebra & and some .@7-measurable random variable h taking values in
G such that

|log(h'g)| <7 and Eltry(g|e/)] > tr’.

Proposition 11.5.1. Let g be a random variable taking values in G, let a > 1 and
r > 0 be such that ar is sufficiently small in terms of G and assume that g, s,, and

Sor.q are independent random variables. Then
tr(g; 2ar) > a *(H,(g;r|2r) — Og(€_a2/4) — O¢a(r)),
for the implied constants depending on G.
Proposition [L1.5.1] relies on the following lemma.
Lemma 11.5.2. The following properties hold for r >0 and a > 1:

(i) 0r* < tr(n..) < 0r* and
l 2 —a?/4
H(nya) = B log 2mer< + Oy(e ).
(ii) If ar is sufficiently small, (r* < tr.(s,,) < r® and
H(s.) = glog omer? + Og(e_“2/4) + Oga(r).

Proof. We note that (ii) follows from (i) and the claim ¢r? < tr(n, ) < ¢r? is obvious.
To complete the proof of (i), we deal with r = 1 case first. Note first that

J4
/ el?/2 g < / e W2 gy = / 32 4y — (27)2
z€R! |z|<a zeR? i—1 YR

and by using spherical coordinates

o
a2 1 a2
/ e x'”dmz@/ u' e 2 du
2€RE |z|>a a

&° 2 & 3 2 2
<<g/ e /3du§/ "B dy = Ze 3« eV,
a
a a

Thus we conclude

/ e 172 o = (27)1% — / e I/ dye > (2m) 42 — Oy(e= 14
z€RL |z|<a

z€RL |z|>a

137



and therefore Cy, = (27)7%% + Oy(e=**/*). We are now in a suitable position to
calculate H(n;,). Indeed,

H(nl,a) — / _Cl’ae_‘$|2/2 log <017a6_‘$|2/2> dm
z|<a

|z —|z|2/2
= / Cl,a 7 - 10g Cl,a e l=I*/ dx
|z|<a

We calculate

l
= (27}0201@ <§ — log Cl,a)
—a2/4 14 ¢ —a?/4
= (1+0g(6 )) §loge+§log27r+04(e )
= g log 2me + Oy~ /1),

and again using spherical coordinates,

|z —|%|2/2
. Cia 7—10g01,a e dx
z|>a

OO u? -1 _—u2/2
= c@/ Cia 5 logChq ) u e /2 dx
a

<o Oy /).

Thus the claimed bound on H(n; ) follows. Since f,q(z) = r*Ci o f1.q(z/7) it follows
that H(n,,) = log(r*) + H(n1,) and hence the proof is complete. O

Proof. (of Proposition [11.5.1)) We apply Theorem [11.4.3[to s; = s,, and sy = So,4
and we set ¢ = far. By Lemma [11.5.2] (ii) we have that tr.(s;) > ¢r* >,, €2 and

¢ = Llog Zetr.(s1) — H(s1) < Ou(e=%*/*) + O, 4(r). Applying Theorem [11.4.3
Eltrgs, (glgs2)] > er®(H (g:r[2r) — Ocle™/) = Oga(r))

for some absolute constant ¢ depending on G. On the other hand, we have that

|log((gs2)~tg)| = |log s3] < 2ar and therefore

tr(g; 2ar) > (2ar) *Eltrys, (glgs2)] > a 2(H(g;7[2r) — O(e™*/*) — Oga(r)).
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Chapter 12

Entropy Gap and Variance Growth
on Sim(R%)

In this section we return to G = Sim(R?) with dimension ¢ = @ + 1. For p a

probability measure on G we denote by 71,7, ... independent p-distributed samples
of u and write

For k > 0 be denote by 7, the stopping time
7. = inf{n : p(q,) < K}.

The goal of this section is to give bounds for 30 | tr(g,,, s;) for suitable scales s;.
Towards the proof of our main theorem as discussed in section [8.2] it would be ideal
to give a bound roughly of the form

. ‘ hy -1 : = N s
Ztr(qm, 2'ar) > ——log Kk with  ra gkl and 277r & K2l
i—1 Xl
(12.0.1)

for sufficiently small k. As we explain below, we can’t quite achieve (12.0.1)) and the

bound we arrive at will also depend on the separation rate S,. To estimate the left

hand side of (12.0.1) we apply Proposition [11.5.1| to each of the terms tr(q,,_, 2'ar)
which gives

N
> t1(gr,, 2'ar) > a2 (Hy(gr,7[287) + Og(Ne™*/%) + Oy(r)) (12.0.2)

i=1

having used that by a telescoping sum

Halgrn;r[2"r) = Z H,o(gr; 2 17 |20).



The main contribution from ((12.0.1]) comes from suitable estimates for H,(q.;7[2"7).
Indeed, we will show in Proposition [12.1.1] that, up to negligible error terms,

h
H,(gr;7|2r) > ﬁ log k™t (12.0.3)
I

To show this, we recall that
Ha(Q‘m; T‘ZNT) = Ha(QTN; 7“) - Ha(qt{; 2Nr)

and therefore we need to estimate the terms H,(q, ;) and H,(q,.; 2V7). To bound the
first term, as we explain after the statement of Lemma [12.1.2] we use that with high
probability 7, ~ log(k™!)/|x,| and so the points in the support of ¢, are separated
by distance r ~ /il;% ~ exp(—S,7,). For the second term we use the large deviation
principle and the polynomial decay of our self-similar measure.

Combining with would lead to would it not be for the
error term Og(Ne~*/%). Indeed, to not cancel out the lower bound from (12.0.3) we

require that
h

Ne @/t < o log k™!
Xl
for a sufficiently small constant ¢. By our choice of N it holds that N = % log k™!

and therefore
A cﬂ.
o

a’ = cmax{l,log&}.
hH

Applying then ((12.0.2)), since the error term Oy4(r) is negligible, we conclude that

So we have to set

N | b gL
Ztr(qm,Tar) > logk! max{l,logh—“} . (12.0.4)
n

i=1 [Xu

We will give a precise proof of the latter bound in Proposition [12.2.2]

12.1 Entropy Gap of Stopped Random Walk

In this subsection we show that the entropy between scales is large for a suitable

stopped random walk on G = Sim(R%). Indeed, we establish the following more

precise version of ((12.0.3]).
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Proposition 12.1.1. Let p be a finitely supported, contracting on average proba-
bility measure on G. Suppose that S, < oo and that h,/|x,| is sufficiently large.
Let S > S, kK > 0 and a > 1 and suppose that 0 < r < 19 < a~ ' with ry <

exp(—=Slog(k™)/|xul). Then as k — 0,

hy,
Ha(gr, i m1]r2) > (_ - d) log k™" + H(srp.0) + 0pasa(logr™).

X

Proposition [12.1.1] directly follows from Lemma [12.1.2] and Lemma [12.1.3]

Lemma 12.1.2. Under the assumptions of Proposition|12.1.1], as k — 0,

Hu(qr ;1) > log k™! + 0p.d.5.0(10g ﬁ_l).

Xl ul

Recall that H,(¢r.;m) = H(¢r.Sr.0) — H(sr ). To give the proof idea, note
that with high probability 7,, ~ log(x™')/|x.|- Also, by definition of h,, we have
that H (qlog(x-1)/jx,|) = hulog(k7")/|xul- On the other hand, s,, , is mostly contained
in a ball around the identity with radius O(exp(—Slog(k™')/|x.|)), and therefore

by Lemma [11.1.3| we have H(Giog(x—1)/x,| * Sri,a) = H(Qog—1)/1xu]) + H(5r1,0), Which
implies the claim. We proceed with a more rigorous proof.

Proof. For ease of notation we write in this proof 7 = 7. Fix some ¢ > 0 which is

sufficiently small in terms of S and p. Let m = [log(x™")/|x,|] and define 7’ as

[(L+e)m] if 7> [(1+e)m],
7= |(1-e)m| ifr<[(1—e)m],

T otherwise.

For a random variable X denote by £(X) its law. Furthermore, given an event A, we
will denote by £(X)|4 the measure given by the push forward of the restriction of P
to A under the random variable X. Note that ||£(X)|4 || = P[A].

By applying Lemma [11.1.1],

H(qrSr.a) = H(L(gr) * L(8ry.0))
> H(L(qr)|r=r * L(8r1,0)) + H(L(Gr) |77 * L(Sr1,0))
> H(L(@ e * L(5na) + Plr £ 7 (E(spa)), (1211)

having used that

H(L(gr) |7z * ﬁ(sm,a)) > H(L(qr) |7 % L(5r1,0)l47)
Plr # 7TH(L(sr1.0))-
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We next apply that s, , has small support. Set 6 = };(S —S,). Write D, =
U, supp(p*) for all m > 1. Then for every N sufficiently large, exp(—(S,+0)N) <
d(z,y) for all x,y € Dy. Therefore for € and « sufficiently small, exp(—(S,+20)m) <
d(z,y) for all 2,y € Diteym]. As d(Sr,a,€) K¢ 10 it follows that if & is sufficiently

small in terms of p,a and S,

1
d(Syy.0,1d) < O(aexp(—Sm)) < = min d(x,y).

2 z,yesupp(q,),ay

In particular, by Lemma [11.1.3]
HL() rrr * £(50,.)) = HE@) ) + Pl = PV H(E(5000)). (12.1.2)

Combining ((12.1.2) with (12.1.1)),
H(q’T’STl,a) Z H(£(q7’)’7':7—) + H(STl,G)'

It remains to estimate H(L(q;)|;=.). Consider the random variable

X' = <Q|_(1—5)mj » V(A —e)m]+15 V| (1—e)ym]+25 - - - 77[(1+a)m]+1)-

As g, is completely determined by X', we have H(X'|q) = H(X') — H(q).
Let K be the number of points in the support of p. Note that if

Y (1—e)m|+15 V| (1—&)m|+25 - -+ » V[(14€)m)]

and 7' are fixed, then for any possible value of ¢, there is at most one choice of
q|(1—)m| Which would lead to this value of g,.. Therefore for each y in the image
of ¢ there are at most (2em + 2) K?*™2 elements z in the image of X’ such that

PX" = xNg = y] > 0. Therefore (X’'|g,/) is almost surely supported on less than
(2em + 2) K**™*2 points and hence by (11.4.1)),

2elog K

™ logk™ +0,-(logk™).
o

H(X"qn—/) < log ((2677’1, —+ 2)K26m+2) <

On the other hand,

h
H(X") > H(gn) > hgw - m > |RV[|/ logk™ —o,(logr™") (12.1.3)
Xu
and therefore h o log K
H(g) > 2 =08 log k™ — 0,.(log k™).

X4l
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To continue, we note that by Lemma [11.1.2
H(q) < H(L(qr)|r=r) + H(L(qr) |7 ) + log 2. (12.1.4)

We wish to bound H(L(g,/)|r=.) from below. By the large deviation principle, P[T #
7'l < o™ for a € (0, 1) only depending on € and p. We also know that conditional on

T # 7', there are at most 2K0+9)™] possible values for ¢, and therefore
H(L(g:)]rpr) < o™ log (2[({(1“)”‘1) = 0,-(logr™).

This implies

hrw — 2clog K
H(L(ge)|rer) > B2 982 106 571 — 0, (log 7).
‘Xu|
Since € can be made arbitrarily small, the claim follows. m

Lemma 12.1.3. Under the assumptions of Proposition|12.1.1], as k — 0,
H(Gr, 8rp0) < dlogr™" + Opd,a(log K.

Proof. As in the proof of Lemma [12.1.2] write 7 = 7, and K = [supp(u)|. We use
the product structure on GG combined with Lemma [11.2.2] Indeed, note that a choice

of Haar measure on G is given as

/ fdmeg = / f(pU +b) p~ D dpdUdb,

for dr, db the Lebesgue measure and dU the Haar probability measure on O(d). There-

fore by Lemma [11.2.2) H(¢;8r.4) <
DKL(p<qT3r2,a) 1 pi(dﬂ)dp) + DKL<U(QT5r2,a) | dU) + DKL(b<qT5r2,a) || db).

We give suitable bounds for each these terms. As dU is a probability measure

Dxr.(U(gr8ry0) || dU) <0 by Lemma [11.2.1}
We next deal with Dkr,(b(grSr,.q) || db). Denote by v, the distribution of b(g;s,,.q)-

We claim that there is v = (i, d, a) such that
v.(By) < R (12.1.5)
for all sufficiently small £ and sufficiently large R. Note that

|b(q787’27a)‘ = |p(QT)U(QT)b<Sr2,a) + b(QT>| S K|b(5r2,a)| + ‘b(QT)|
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and therefore it suffices to show (12.1.5)) for the distribution of b(g,), which we denote
by .. For z € RY,

0(¢-) — a-(2)] < |g-(0) — ¢-(2)] < p(g-)|2| < K|z]

and so |b(¢q;)| < |g-(z)| + k|z|. Therefore if R < |b(g,)| then either R/2 < |¢,(x)| or
R/2 < I{|I| Also note that if x is sampled from v independently from ~;,7s,..., so

is ¢-(z). By (7.0.2] - ) this implies that

v (BR) < v(Byyy) + v(Bhyy,) < R72% (145717,

showing ([12.1.5]).
To conclude we deduce from ((12.1.5)) that Dk (v, || db) is bounded by a constant

depending on p,d and a and therefore is < 0, 4,(logx™1). Indeed denote by f, the
density of v, such that

Dic (v | db) = [ = 10g f- dmse.

Also let L > 1 be a constant and for ¢ = 0,1,2,... write p; = v, (Bri+1\Bri) such
that p; < v, (B¢,) < L. Thus it holds by Jensen’s inequality for h(z) = —zlog,

Diu(vs || db) = 3 / —fr1og fr dmga
i>0 Y Bri+1\Bpi
= Z/ —f-log (prl) dmpa
i>0 Y Bri+1\Bp pi
i>0 pi
<Y h(p) < D h(p)+ Y h(L
i>0 0<i<I i>1

having used in the last line that log(p;) < 0 and that h(x) is monotonically decreasing
for small z and therefore h(p;) < h(L~*) for i > I with I sufficiently large.

Finally, we estimate Dkp(p(¢r, Srp.0) || p~ @ Vdp). Fix ¢ > 0 and let A be the event
that p(q,) > k('*+9). By Lemma there is & > 0 only depending on p and e such

that P[A] < k°. By Lemma[11.2.1

Dt (L(p(¢r,.8r3,0)) |4 | p_(d+1)dp) < log ( 1+ _(d+1 >

=log (d"'x ~AH)) < d(14¢)log k.
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To bound H (L(¢rSry.a)|ac), we note that as in Lemma |11.1.3]it suffices to bound the

Shannon entropy of H(L(¢;)|ac). If 7 < 21°g"|71, the contribution can be bounded

|
by /{Mng”' log K. By the large deviation principle, when n > 285 it holds

X
that P[7 = n] < o™ for some a € (0,1). Therefore the contribution in this case is

< a"nlog K where o € (0,1) is some constant depending on p. Summing over all

n > 2% and using Lemma [11.1.2) we conclude that H(L(qrSry.q)|ac) is bounded
and therefore o, .(log k™). As ¢ > 0 was arbitrary the claim follows. O

12.2 Trace Bounds for Stopped Random Walk

In this subsection we give a precise proof of (12.0.4)) following the sketch given at the

beginning of this section. We first convert Proposition [12.1.1|into an integral bound.

Proposition 12.2.1. Let p be a finitely supported, contracting on average probability
measure on G = Sim(R?) and write { = dim G = d(dH +1. Suppose that S,, < 0o and
that h,/|x,| is sufficiently large. Let S > S, and suppose that S is chosen sufficiently
large such that h, < S. Then for sufficiently small k,

hy

200x —1

" 1 hy, S
/S —tr(q,,;u) du > ( )max{l log — } log k'
e Ixul Uu ‘X,u| | Hl

Proof. Let 7 = 7, and let a > 1 to be determined. Let

s S
ro=a 'kl =a texp (—— log /€_1>

X
and 1
N o {( S h ) log k J B
’Xu‘ 2€|Xu’ log 2
Note that
hy __5_ S h

1  20xa] 1 k Txal 1 k~ Txal 1  20xa]

1 =-— << —— ==

4 ary 4R—T;{‘#| 2/{ v 2 ar

Given u € [1,2) and an integer 0 <i < N — 1 let
ki(u) = Hy(gr; 2" tury |2ury).

Then by Proposition [11.5.1} there is some constant ¢ = ¢(d) > 0 depending only on
d such that

[

a

tr(g,; a2ur) > ca”*(ky(w) — Oule™ ) = Oga(2'r)). (12.2.1)
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Thus

Ztr ¢r; a2'ury) > ca” Zk — O4(Ne 5 a2) = Oy a(N2Vr).

hy s
Note that for u € [1,2) we have a2V ur; < k¥l and aur; > x&ul. Therefore

h

2‘3\;:u|
® 1
/ S Fol (QTJ ) du

a2l+1url
/ _tr QTa )d
2iury

| V

| V

r(qy; a2'ury) du

N
% (Z kl Od(Ne T ) — Odﬂ(NQNT’l)) du.

:I>—‘

Observe that S| ki(u) = H, (g, ; uri|2Vur,) and therefore by Proposition |12.1.1
and Lemma [11.5.2]

Zk (——d

ol ) log k™t + ¢ -log 2Nur, + Op.d,8,0(10g )
X

(12.2.2)

h, h, )
—— —d—- log k' + 0,454(logr™). (12.2.3)
(|Xu| 2|Xu| 8

a2
Let C' = C(d) be chosen such that the error term O(Ne’Ta_2) in ((12.2.2) can be
bounded above by CNe™Ta~2. Note that this is at most C'—5>—

e “ e_aTa*Q log k1.
Let ¢ be as in ((12.2.1)). We take our value of a to be

a=24/lo 1C E
N & clog2h, )

2 5 h
CNe 70 % <ca*—F£

Then

We also note that N2¥r; < 0, 4.5(log x™1). Therefore combining (12.2.2)) and (12.2.3),

h

e h h h,
“tr(gr;u) du > ca™? (—“ —d— —*~ ) log k™' +0,45(logr™).
/H|Xsu U ( ) |Xu| 2|Xu| 4|Xu| ! ( )
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Note further that a? <; max{1,log %} Thus we have for all sufficiently small &
(depending on p and M),

hy

28 x| —1
* 1 h S
/ s —tr(gru) du >y (—#) max {1,log —} log k.
WPl U Xl P

Finally we prove the following more precise version of ((12.2.2)). We show fur-

]

ther that s;;; > x3s; in order to apply Proposition [11.5.2] to concatenate proper

decompositions as defined and discussed in section

Proposition 12.2.2. Let p be a finitely supported, contracting on average probability
measure on G = Sim(R?) and write { = dim G = d+1) + 1. Suppose that S, < 0o
and that h,/|x,| is sufficiently large. Let S > S,, be ch036n large enough that S > h,,.
Suppose that k is sufficiently small (depending on p and S) and let m = [m]

Then there exist sy, g, ..., Sz > 0 such that for each i € [m],
S hu

S; S (’{WW‘QW)

and for each i € [m — 1] s;41 > k7 3s; and

m -1
Ztr(qm;si) >4 < iz ) max{l log — 5 } )
i=1 | u| h

b s s
Proof. Let A = xxul " 2mlul | Define aq, as, . . ., asme1 by a; = el A1 Therefore
a; = kPl and agpmy1 = w¥Pel. Furthermore, provided h,/|x,| is sufficiently large,
we have k2 < A < k7. In particular a;1, > Kk 3a;.

Let U and V' be defined by

[a2i717a21‘) and VZU[G%CL%H)-

1 i=1

U:

=

(2

Without loss of generality, upon replacing U with V', by Proposition [12.2.1
1 h S\
/ —tr(gr,;u) du >4 (—“) max {1 log — } log k™ *
U U Xl Xl
For ¢ € [m] let s; € (ag_1,a9;) be chosen such that

sup  tr(gr,; u).

u€(agi—1,a2;)

tr(QTH; Si) 2

DO | —
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In particular,

Summing over ¢ gives

& 1 1
t Twy Si > —t Ti s d

c h s\
> —“) max{l,log—} log k.
2log A (Ixy\ Xl

As log A < log k! it follows that, provided that & is sufficiently small depending on
M? d7 S7

m -1
Ztr(qm; 8i) >4 <&> max {l,logi} .
i=1

|Xu | Xul

Finally we note that as A > k=3 we have that s;;.; > k= 3s;. O
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Chapter 13

Decomposition of Stopped
Random Walk

In this section Theorem is proved. We construct samples from v in a suitable
way in order to bound the order k detail of v. Given a probability measure p on
G = Sim(R?) we denote by 71,7, ... independent p-distributed random variables
and write ¢, = 71 - - - 7,. Recall that if = is distributed like v and 7 is a stopping time,
then by Lemma 2.24 from [Kit23] the random variable ¢, is distributed like v.

As discussed in the outline of proofs, one uses Proposition to make a de-
composition

¢ = g1 exp(Uy) gz exp(Us) - - - gn exp(Uy ) x (13.0.1)

with a suitable k > 0 and integer n > 1 that satisfies for 1 <17 < n,
Uil < p(g1-+-g;)"'r and Z tr(p(gr -+ g:)U;) > Cr? (13.0.2)
i=1

for a sufficiently large constant C' and a given scale r > 0. The definition of tr(q.,, s;)
requires us to work with a g-algebra o/ and with the conditional trace in (13.0.2)).
As stated in (8.2.9)), we need to have at O(loglogr~') many suitable times
K.

Indeed, in order to deduce from Proposition we need to combine all
the information at the scales si,..., ;. One also needs to ensure that the assump-
tions from the Taylor-approximation result Proposition are satisfied for each
scale s; and that we can apply our (¢, T')-well-mixing and («g, #, A)-non-degeneracy

conditions to deduce that

Var(Gi(Us)) = ertr(p(gr -+~ 9:)Ui) 1
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for ¢; a constant depending on d,c, T, ag,0 and A. We will achieve the latter by
ensuring that each g; is a product of sufficiently many ~; so that g;z is in distribution
sufficiently close to v.

To combine the trace bounds at the various scales while ensuring that the above
conditions are satisfied, a theory of decompositions of the form (|13.0.1)) will be devel-
oped. We call decompositions satisfying suitable properties proper decompo-
sitions. It is important for our purposes to track the amount of variance we can gain
from a given proper decomposition, which is a quantity we will call the variance sum
and denote by V(u,n, K, k, A;r) (see definition for the various parameters).

In section we will show that there exist proper decompositions that allow us
to compare the variance sum V' and tr. Proper decompositions can be concatenated
in such a way that the variance sum is additive, as is shown in section [13.3] We
establish how to convert an estimate on the variance sum V' into an estimate for detail
in section [13.4] The proof of Theorem culminates in section [13.5] combining the

previous results. Finally, we establish Theorem [8.1.5|in section |13.6|

13.1 Proper Decompositions

Definition 13.1.1. Let p be a probability measure on G, let n, K € Zso and let
A,r > 0 and r € (0,1). Then a proper decomposition of (u,n, K, A) at scale r

consists of the following data
(i) f=(f)i, and h = (h;), random variables taking values in G,
(i) U = (U;)P_, random variables taking values in g,

(iii) “y C o/ C ... C o, a nested sequence of o-algebras,

(v) v = (7)2, be i.i.d. samples from p and let F = (F;)2, be a filtration for ~y
with ;11 being independent from %; fori > 1,

(v) stopping times S = (S;)*, and T = (T;)1, for the filtration F,
(vi) m = (m;)I, non-negative real numbers,
satisfying the following properties:
A1 The stopping times satisfy
S < <5 <T,<...<85, <T,,

S1> K aswellas S; > Ty 1+ K and T; > S; + K fori € [n],
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A2 We have frexp(U)) = v ...7s and for 2 < i < n we have f;exp(U;) =

Vo417, . Furthermore for each i we have that f; is <7;-measurable,
A3 h; =7s,41 -y, and h; is of;-measurable,
A4 p(fi) <1 foralll <i<n,
A5 Whenever |b(h;)| > A, we have U; = 0,

A6 For each 1 <i<n we have

\Uil < p(fihafaha - hiafi) "',

A7 For each 1 <1 < n, we have that U; is conditionally independent of <, given
;

A8 The U; are conditionally independent given <y,

A9 For each 1 < i <mn, it holds

Var(p(f;)U(fi)Usb(h:)| <)
,O(f1h1f2h2 e fz'—lhi—1)_27“2

| iy | > m,l.

Note that in [A9] by Var we mean the covariance matrix and we are using the
ordering given by positive semi-definiteness (8.3.1)) and we denote, as in section ,
by Uib(hi) = l/)b(hi)(Ui)-

A proper decomposition as above gives us

Y1 m, = frexp(Un)h f2exp(Uz)hs - - - o fo exp(Un ) hny (13.1.1)

We briefly comment on the various properties of proper decompositions. We
use parameter K and to ensure that each of the fiz and h,x for x € R? are
close in distribution to v. Properties [A4] [A5| and [A6] are needed in order to apply
Proposition [9.1.4 We require so that we have Var(U;|.«,) = Var(U;|.<%) and
in particular the latter is a .-measurable random variable. is needed so that

[Ur|e,], ..., [Un|9,] are independent random variables and therefore we can apply

Proposition [10.4.1]
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One works with two sequences of random variables f and h instead of one in order
to be able to concatenate proper decompositions as in Proposition [13.3.1] Indeed, if

we had proper decompositions of the form

Y1 VT, = 91 eXp(Ul)QQ eXp(Uz)gs “On eXp(Un>gn+1

we could show a variant of and all other results on proper decompositions.
However we could not prove anything like Proposition whose flexible choice of
the parameter M is necessary to apply Proposition [12.2.2]

We next define the V' function mentioned above. The additional parameter x > 0

is introduced in order to be able to concatenate the decompositions in a suitable way

(Proposition (13.3.1)).
Definition 13.1.2. Given (u,n, K, A) and k,r > 0 we denote by
Vipn, Kk, A7)

the variance sum defined as the supremum for k = 0,1,2,...,n of all possible values

of
k
> m
i=1

for a proper decomposition of (u, k, K, A) at scale r with p(fihy - frhx) > K almost

surely.

It is clear that for any ' > 0 with " < k we have

V(p,n, K, k', A;r) > Vg, n, K, K, A;7r). (13.1.2)

13.2 Existence of Proper Decompositions

We show that for a suitable dependence of the involved parameters, we can construct

proper decompositions comparing the variance sum and the trace.

Proposition 13.2.1. Let d € Zs; and ¢, T, 00,0, A, R > 0 with ¢,ap € (0,1) and
T > 1. Then there exists ¢; = ¢1(d, R, ¢, T, ,0,A) > 0 such that the following
is true. Let p be a contracting on average, (c,T)-well-mixing and (ag,0, A)-non-
degenerate probability measure on G such that p(g) € [R™Y, R] for all g € supp(u).

Let k,s > 0 with k and s sufficiently small (in terms of p and R). Let K be
sufficiently large in terms of u, R, and T'. Then

V(p, 1, K, Rk, A; R ks) > citr(gr.; 5).
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Proof. We construct a proper decomposition with n = 1. Let F' be uniform on
[0,7] N Z and independent of . Let S be defined as

S=inf{n: plg,) <R E N+ F
and let
Sp=inf{n > 5 : p(ys+1-++7m) < K}
Denote
f=m-s and g = Ys+175+2 " Vs -

By the definition of tr(q,,,s) there is some c-algebra 27, some random variable
V taking values in g, some 7-measurable random variable f taking values in G such
that g = fexp(V) with [V| < s and

Eftr(V| /)] > %s%r(qm,s). (13.2.1)

We define 77 = 57 + K and set

hi = Ys, 417842 V11 -

Denote

Ulz{V ifp(h)l <A, flz{ﬁ if |b(hy)| < A,

0 otherwise fg otherwise.
Furthermore we set &/ = o(f, f1,h1, ).
We have
R ESBR TR < p(fg) < R E-1RT k.

In particular, we note that |U;| < s and so providing x and s are sufficiently small
in terms of R, we have R™X™41R"Tr < p(f1) < RT"Kk < 1 for K sufficiently large in
terms of 7. This means that |U;] < s < p(f1) ' RT Kks.

Now let 2 € R? be a unit vector. We wish to show that

E [Var(z - p(f)U (f1)Urb(h)|4)] > ertr(gr, s s) R w25,

Let f' = z_l f1 and let P,..., P; be orthogonal eigenvectors of the covariance
matrix of (U;b(h)|</) with eigenvalues A; > --- > X\;. We have

Var(z - p(f1)U(f1)Urb(h1)|)
>R SRTR2 Var(z - U(HU(f)Ub(h)| <)

d
=R SRETR2N o UHUF) B N
=1

>RKSR2T 2 o U(NHU(F) P tr(Unb(h) |4 /d. (13.2.2)

153



By Proposition we know that when b(hy) € Ep(V) and |b(hq)| < A we have
tr(Uyb(hy)|ety) > 0 - tr(Uy|4).

By our (ag, 8, A)-non-degeneracy condition and since p*" * §, converges to v expo-
nentially fast (see for example [KK25d, Lemma 2.2]) we know that providing K is
sufficiently large this happens, conditional on <7, with probability at least %(1 — ).

Therefore by ((13.2.1)
1
Ef[tr(U1b(hy)|<%)] > 1(1 — a)dtr(qy, ; 3)52.

By our (¢, T')-well-mixing condition we have that providing K is sufficiently large
in terms of p,

E |- UOUPL o, )] >
Clearly Var(U,b(hy)|4) is o(hy, o/)-measurable. Therefore, by (13.2.2]) and condi-
tioning by o(hq, .</),
E [Var(z - p(f1)U(f1)Urb(h1)]24)]
>RESR2T 20 (|2 U(HU(F) P tr(Ulb(h1)|M)]

> R2K—8 R=2T, 21 :E [‘x . U(i)U(f’)Plftr(Ulb(hl)ldl) ‘ U(h17£{)”

> RS [ (o UDUG) P [ o(hn, )] tr(U3b(h)|4)]
ZR—2K7811:372T/£2d*16 K [tr(Ulb(]h)’oQ{l)]
>RK-8R=2T 1. %(1 — a)0tr(gr,; $)K°S>

=c1tr(qy,; s) R K25

where ¢; = R8R™2Td"1(1 — a)dc/4. Since this is true for any unit vector z € R? we

have
Var(p(f1)U(f1)Urb(h1)|.2)

I R2K 242

> citr(gy,; )1

as required. Finally note that
p(flhl) Z Rflp(ighl) Z R*lRfo?nyTH . RfK — HR72K747T Z RisK:‘i

providing K is sufficiently large in terms of 1" and R. O
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13.3 Concatenating Decompositions

We note that it is straightforward to show that for any measure p and any admissible

choice of coefficients, the variance sum is additive

V(luvnl +n27K7 "{1'%2"4; ’f’)
2 V(:ua ny, K7 K1, A> T) + V(Man% K7 K'QvA; Hflr)' (1331)

However, in order to use Proposition [12.2.2|it is necessary to work with different

scales r; and ro and therefore we show the following proposition.

Proposition 13.3.1. Let u be a probability measure on G. Let R > 1 be such that
p(g) € [R7', R] for every g € supp(u). Let ny,ny, K € Zso with ng, K > 0 and let
K1, ke, € (0,1). Let A >0 and let M > R. Then

V(p,my +ng, K, R M ™ kyka, Asr)
Z V(M7n17K7 I{lvA;T) + V(/L,’le, K) "{27"4; MKJI_IT)‘

Proof. For j € {1,2} let v\, 487 ... be a sequence of i.i.d. samples from p defined on
the probability space (Q(j), (j),]P(j)). Let 41,792, ... be a sequence of i.i.d. samples
from p defined on the probability space (Q, Z, I@D) Consider the product probability
space

(Q,Q,IP’): (QlXQXQ2,§1X(¢X§2,PIXPXP2).

at scale r defined on the probability space ( W Z® PW) such that S mgl) ap-
proaches V' (u,ny, K, k1, A;r) and

p(FORY - R > ey

Given w; € Q; and w € Q, let 7 = 7(wy,w) be given by

Let (751), Si(l), Tz-(l), f( U; 1), hz(l), ,sz ) be a proper decomposition for (p, k1, K, k1, A)

T =min{k € Zso : p(f{VBY OB AV A k) < M7}
and let p = p(fVRY VRS RMA0A, L 4,) such that
pEIM IRk, M k).

1 ) [ )

Now given w; € Q) and & € €, let (712) SZ l- ,f ) U@ 42% (2)> be a
proper decomposition for (u, ks, K, Ko, A) at scale Mk 'r defined on the probability
space (Q@),ﬁ 2) P ) such that Z approaches V(p,ng, K, ko, A; MKy 'r) and

1 1 1 1
p(fnY - f,igh;b > K.
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We now concatenate the two decompositions as follows. Let 71,72,... be the

sequence of random variables on the probability space (2,.%#,P) defined by

3D if i < T(l)
v = ’yT<1) 1fz>T andz<T()
KA kl

%—T,i?—r if ¢ > T,El) + 7.

Clearly these are i.i.d. samples from u. For i =1,2,... ki + ky we define S; by

G s if i < ky
SH 4TV 4 ik
k1 k1 1

11—

and we define T; analogously. We define f; by

F ifi <k
fi=S A A f? ifi=k 41
2, it >k + 1.

We define U; by

g Ju i<k
O UE, i k.

and define h; and m; analogously. Finally we define <7 by
o gV xQAxQ®  ifi<k
e éka(ll) X .F X gff,; if > k.
It is easy to check that (;, S, T;, fi, Us, hi, %, m;) is a proper decomposition for
(p, R, ky + ko, K, R"YM 'k ko, A) at scale r and it holds that

k1+ko

Z m; = Zm —l—Zm(Q)

Indeed, we note that for ¢ > ko we have that since ]\4/{1_1 <pt

2 2),(2) £(2)1.(2 9 9 B
Ui = |UZ,| < p(f2RP B0 -2 &) Mk b
0l RN S MY e
= p(fihyfoho - hi1fi) ™"

IA
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Similarly, for i > ko + 1 and using that p>M?k;% < 1,

Var(p(f)U(f)Uib(h:)| %)
P(f1h1f2h2 s fi—lhi—1)_27‘2
Var(p(f2 U (fE UL, b(hE, )| ) »
2p(fPRD [P @ Y2

1—R1

E

| ;1

=E

>E

Var(p(f12,) U (F21,) U2, b(h 2y, |)
Ao e(2)7(2) £(2)1(2) @) \ 221722 2 | iy
_p p(fl hl f2 h’2 “.h’i—kl) pM/ﬁ}l r

> mg)kll .
The remainder of the properties are straightforward to check. n

Corollary 13.3.2. Let pu be a probability measure on G. Let R > 1 be such that
p(g) € [R7Y, R] for every g € supp(u). Let n, K € Zwq and let k,r € (0,1). Let
C,A>0 and let M > R. Then

Vip,n, K, R-'M 'k, Ay M) > V(p,n, K, x, A;r)
Proof. By Proposition [13.3.1| we have

Vip,n, K, R-'M 'k, A; M~ 1r)
>V (0, K, 1, A; M) +V(p,n, K, Kk, A;r).

and simply note that V(u,0, K, 1, A; M~'r) = 0. O

13.4 From Variance Sum to Bounding Detail

Proposition 13.4.1. For every d > 1 and A,a > 0 there is a constants C =
C(d,A,a) > 0 such that the following is true. Suppose that p is a contracting on
average probability measure on G. Then there is some ¢ = c(u) > 0 such that when-
ever kK < 1 and k, K,n € Z~y with K and n sufficiently large (in terms of A, a and
w) and r > 0 is sufficiently small (in terms of A, and p) and

V(p,n, Kk, A;r) > Ck

we have

s (1) < o® + nexp(—cK) + C"s 17

r
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Proof. Suppose that (f,h,U, o7, ~, #,S,T, m)is a proper decomposition of (u, n, K, A)
at scale r such that > m; > Ck/2 and let v be an independent sample from v. Let

I[={ie[l,n]NZ:|b(h)| < A}

and let m = |I|. Enumerate [ as iy < iy < -+ < i, and define g,...,gm by g1 =
f1h1 e fil and g; = hij—lfij—1+1 Ce fij for 2 S j S m. Deﬁne@by@ = himfim—l—l Ce hn’U
and let V; = U;,. Let = be defined by

z=grexp(Vi)...gmexp(V,,)v.

Note that z is a sample from v. Let o be the o-algebra generated by .7, and v.
Note that the g; and v are o/ -measurable.

We will bound the order k detail of x by showing that with high probability we
can apply Proposition[9.1.4]to g1, ..., gm, Vi, ..., Vi, and T and then bound the order
k detail of this using Proposition [10.4.1]

Let E be the event that |[v] < 24 and that for each j = 1,...,m we have |b(g;)| <
2A, p(g;) < 1 and |V;] < p(g1...g;)"'r. By Corollary 9.3.3| we know that P[E¢] <
exp(—c1 K) for some ¢; = ¢;(u, A) > 0.

For j =1,...,m define (; by

¢ = Dulgr -~ g5 exp(u)gjs1 - - Gn)u=o-

By Proposition [9.1.4f on F we have

r—g- gmv_ZCJ

for some C; = C1(A) > 0. Clearly the right hand side is at most C'x~'r?. By Lemma
[10.3.1] this means that on E we have

®) (z]af) < s (ZCJ )—i—C?Gdli_lT

where e is Euler’s number.
Let C5 = C5(, d) be the constant C' from Proposition [10.4.1| with the same values
of o and d and let F' be the event that

<Oy ( 'gm)717'2

> Var (Vi) > kCsl.

j=1
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By Proposition |10.4.1) using that by the [Vi|«/],...,[Viu|</] are independent
almost surely, we have that on F'

(600 ) <ot
j=1
Therefore
sW(z|f) < o + Cedk™r + Igeype
and so by the convexity of order k detail we have
s (z) < of + Cleds 12 + P[EC] + P[FC].

We already have that P[E°] < exp(—c;K) so it only remains to bound P[F].

For i =1,...,n define

~

G = Du(flhl chica fi eXp<u>b(hi>>’u:O

and let F' be the event that

< 1.

> Var(Uile) = > Var (V| o)
i=1 Jj=1

Recall that C3 = C5(a, d) is the constant C from Proposition [10.4.1] with the same
values of & and d and let F be the &/-measurable event that Sy Var(G(U;)| /) >
(Cs 4+ 1)kIr?. Clearly F U F C F so it suffices to bound P[F“] and IP[FC].

Since g1, .. ., gm and T are o measurable, by Lemmawe havefor j=1,...,m
that Var(Cj(Vj)]sz) is equal to

p(g1--95)* - Ulgr - g, r.guw © Var(Vi ) ol Ulgy...g;)"
and that
Var(Gy, (Us,)|7) = plgr -+~ 9;)° - Ulgr - 45)bin, ) © Var(Vile/) o iy, \Ulga - g;)"

We also have that |V}] < p(g; -+ - g;)~'r almost surely and so consequently || Var V|| <
p(g1 -+ g;)2r?. Therefore by Lemma [9.1.1] (iii),

| Var G(Vil.o/) — Var G, (Uy,| )| <a [b(hy) = g1 - - - guD[*r®.

Furthermore we have that whenever i ¢ I that Var(G(U;)|«/) = 0. We may assume
without loss of generality that nexp(—Kyx,/10) < 1. This means that, providing K
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is sufficiently large (in terms of d), in order for F to occur it is sufficient that for each

j=1,...,m we have
1b(h;) — gj41 - - - gmU| < exp(—Kx,/10) < 1/n.

By Corollary this occurs with probability at least 1 — mexp(—cyK) for some
o = co(it) > 0 and therefore P[F°] < mexp(—cyK) < nexp(—cyK).
Finally we wish to bound IP[FC]. Let

£ = 172 Var(G(Uy)|#) = 72 Var(Gi(U;) | )
=172 Var(p(fihy - i f)U (fuba - - hioa i) Uib(hi) | 7,))
By construction we know that
E[X]%, ..., 8] > myl.

We also know that ||3;|| < A2 since |[¢yn,)]] < |b(hi)] < A. This means that we can
apply Lemma [9.3.5] By Lemma [9.3.5] we know that providing C is sufficiently large

>1—exp (—cngmi)

i=1

we have

P | %> (Cy+ kI
i=1

for some absolute c3 > 0. Providing we choose C' to be sufficiently large, we therefore
have IP’[FC] < exp(—c3kC) < oF this is less than oF.

Putting everything together we have

st (x) < 20% + nexp(—c3K) + edCls1r.

r

Replacing a be a slightly smaller value gives the required result. O

13.5 Conclusion of Proof of Theorem [8.1.4

We finally show a decay in detail under the assumption of Theorem What
follows is a rather intricate calculation and we refer the reader to the outline of proofs
in section for intuition and a sketch of the argument.

Proposition 13.5.1. Let d € Z>; and ¢, T, 0,0, A, R > 0 with ¢, € (0,1) and
T > 1. Then there exists C = C(d,R,c,T,ap,0,A) > 0 such that the following
is true. Let p be a contracting on average, (c,T)-well-mizing and (o, 0, A)-non-

degenerate probability measure on G with p(g) € [R™', R] for all g € supp(u) and

2
. > C'max < 1, (log i) .
Xl hy,
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Then for all sufficiently small r > 0 and all integers k € [loglogr=t,21loglogr!] we
have that
s (1) < (logr=1) =104,

r

Proof. We prove this by repeatedly applying Proposition and Proposition|13.3.1
and then applying Proposition [13.4.1. First let C' be as in Proposition with
a = exp(—20d).

Now let 7 > 0 be sufficiently small and let K = exp(y/loglogr—1). This value of K
is chosen so that K grows more slowly than (logr~!)¢ but faster than any polynomial
in loglogr~t as r — 0. Let S = 2max{h,,S,}.

Note that <landfori=1,2,... let

1 -1 h =t Xp ©o\i—1
ki = exp (_!Xu|205g7“ <3ZS> ) _ el

with ¢ = dim G. Then

2€S

by

X
by 3¢5

K1 =12 and  Kij41 =K,
and let m be chosen as large as possible such that
K < min{ R~10% 710Ky

—10K

We require k,, < R7'%F later in the proof and assume &,,, < 2 so that k,, is surely

sufficiently small when r is small enough so that we can apply Proposition|12.2.2] Note
that this gives

hy
loglog R + /loglog r—! < loglogr™! + mlog —= 203 +log 25

which is equivalent to

2
m log (4€max {1, %}) =mlog # <4 loglogr™t
m

I

S 71
m = (max{l,log —“}) loglogr™*
hu

and therefore we have

Now as in Proposition (12.2.2| let m = L100| ‘j For each « = 1,2,....m let
sgl), sg), - sﬁi > 0 be the s; from Proposition |12.2.2 with x; in the role of k. So
S _hp

ng) e (k) k2™ By Proposition [13.2.1| we have for each j € [1h),

2 » "

V(i 1, K R ki, A R rs)) > ente(gy,,5)))
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for some constant ¢; = ¢1(¢, T, ap, 0, A, R,d) > 0. Therefore by Proposition [13.3.1
with M = R_l{zz}(j)R—?’K/eisﬁl/sgi), where we denote 1;>9(j) = 1 whenever j > 2,
we can prove inductively for j = 2,3,...,m that
. . . j o
Vi, j, K, R_IR_3KI€1'S§Z)/S§~Z), A; R_Kmisgz)) > Z tr(qm;sy)).
a=1

We have used here that 35'21 /séi) > k% and so M > R™%Kk2 > RI°K > R since
k; < R By Proposition [12.2.2| and ([13.1.2)) we conclude that

D). ; h A
V(,LL, ﬁ’L, K7 R_4K"{’i8§ )/8£h)7 Aa R_K’%’isg )) > CQﬁ max {17 IOg h_ﬂ}
Xp 1

for some constant ¢y > 0 depending on all of the parameters.

Note that for i =1,2,...,m — 1 when h,/|x,| is sufficiently large we have

S h
R4K . (i+1)/ @) - R4K ol T 3]
hy

— 3¢ -
Z R 4K/{i Ixpl

h h
_hy b
T0xp] T 365

Z R_4K'%i_1 Z R6K Z R.

h

as Kjy1 = Hf’T’g and k; < R71°K and so we may repeatedly apply Proposition [13.3.1
with

M = R_l{ZQ}(i)R_4Kﬁi+13§i+1)/3%),
where we denote 1{>2(i) = 1 whenever i > 2, to inductively show for i = 2,3,...,m
that

V(,im, K, R R K516 /50 A RK iy ()

h _1
ZCQi—“max{l,log&} .
|Xu| hu

This means using ([13.1.2))
V(p, mm, K, R‘5Kms§”/sf$), A; R_K/ﬁsgl))

h S\
>cq— max{l,log —”} loglog 7!
|Xu| hu

for some constant c3 > 0 depending on all of the parameters. Since

S
- 1 - +1 K g bl o W
R K/flsg) > R K = R Epaths > REpata >

162



for r sufficiently small by Corollary |13.3.2[ with M = R*Kﬁlsgl)r*1 >R

. h S
V (j, mi, K, R_5K7‘/37(% ),A;r) > c3—— max{l,log—“} loglog .
|Xu| hy
oy

Note that 1 /si:bn ) > k™! and so in particular providing hy/|xul is sufficiently
large we have R_5K7’/sgln) > REr. By Proposition |13.4.1| provided

h S\
—“max{l,log—“} > 2c;'C
X hys
we deduce

st (1) < exp(—20dk) + min exp(—cyK) + R-KC™m™
for some constant ¢, = ¢4(p) > 0 and k € [loglogr™, 2loglogr~!]. Since mm <,
log logr~1! it is easy to see that

mimexp(—cK) + R5C™" < (log 7"_1)720(1

whenever r > 0 is sufficiently small (in terms of u). Since k > loglog r~! we have that
exp(—20dk) < (logr=1) """, Overall this means that provided r > 0 is sufficiently

small (in terms of i) we have

sM(v) < (log r_l)_md. O

r

We deduce the main theorem from Proposition [13.5.1}

Proof. (of Theorem [8.1.4) We combine Proposition [13.5.1 with Lemma [10.2.3, Given
r > 0 sufficiently small, let k = glog logr=!, a = r/\/E and b = rk*.

Suppose that s € [a,b] and note that then k& € [loglogs™, 2loglogs™!] and
slogr~! <logs™! for r sufficiently small and therefore by Proposition [13.5.1

sgk)(l/) < (log 3_1)_10d < 210d(log r_l)_md.
By Lemma [10.2.3] it follows that
5 (1) < Q) (2™ (o5 ™)™ 4 k),

which is easily shown to be < (logr~')~2 for r sufficiently small. Indeed, recall that
Q'(d) < ed™'/? < e for all d > 1 and therefore Q'(d)* < (log(r~—1))e.
This concludes the proof of the main theorem of Part II of this thesis. O
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13.6 Proof of Theorem [8.1.5

In this section we show how to work with the entropy and separation rate on O(d)
instead of the one on G. Recall that for a measure p on G the measure U(u) on
O(d) is the pushforward of p under the map g — U(g). We then denote for a
finitely supported p by hyy(,) and Sy, the analogously defined Shannon entropy and
separation rate of U(p). As we show in section [15.2] when all of the coefficients of
the matrices in supp(U(u)) lie in the number field K and have logarithmic height at
most L > 1, then
Sv(y <a LK : Q).

Therefore Theorem [8.1.5 follows from Theorem [13.6.1]

Theorem 13.6.1. Let d > 3 and R, ¢, T, g, 0, A > 0 with ¢, € (0,1) and T > 1.
Then there is a constant C = C(d, R, ¢, T, ap, 0, A) such that the following holds. Let
W be a finitely supported, contracting on average, (c,T)-well-mixing and (ap, 0, A)-
non-degenerate probability measure on G with supp(u) C {g € G : p(g) € [R™', R]}.

Then v is absolutely continuous if

h S ?
MZC’maX{l,log <M)} )
pen hor ()

The proof of Theorem is analogous to the proof of Theorem 8.1.4, The only
point where a slightly different argument is needed is the following version of Propo-
sition [12.1.1} The remainder of the proof is verbatim to the proof of Theorem [8.1.4]
with only changing the notation of h, to hy(, and S, to Sy().

Proposition 13.6.2. Let p be a finitely supported, contracting on average probability

measure on G. Suppose that Sy, < oo and that hy/|xul is sufficiently large.

1

Let S > Sy, & > 0 and a > 1 and suppose that 0 < r; < ry < a™ with ry <

exp(—=Slog(k™1)/|xul). Then as k — 0,

h
Ha(QTNQ 7”1‘7“2) Z ( ‘i(l]) —d— 1) IOg ’%71 + H(Sm,a) + OM,d,S,a(log ’%71)'
m

Proof. The proof is similar to the one of Proposition [12.1.1| thus we only provide a
sketch. Lemma [12.1.3[still holds and therefore we only need to show that

h
Ho(Gr,;m1) > (‘U—(“’) — 1) log k™" + 044.54(log 1), (13.6.1)
Xu

where H,(q-,;71) = H(¢r,.Sr,.0) — H(Sr,.a). To show (13.6.1]) we apply Lemma|11.2.3
with X = Ry x O(d) x R and @ : G — X, g — (p(9),U(g),b(g)) and mx the
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product measure on X as used in Lemma [12.1.3| Indeed, as ®,mqg = my, it follows
by Lemma |11.2.3| that H(qr, Sr.0) = Dkr(¢r.Sr.a |l ma) = Dkn(®igr. S0 || mx) and

therefore, since myx is a product measure,

H(‘Jmsrl,a) = DKL(U(quh,a) | dU) + DKL(p(qmsm,a> 1 l)i(dﬂ)dp)
+ DKL(b<qm3r1,a) || db)

As in Proposition [12.1.1] one shows that

h
D (U(¢r50.0) || dU) > &‘j’ log &~ + Dip,(U(51,,0) | dU) + 0p4.50(log 571).
12

On the other hand,

DKL(p(qusrl,a) || p_(d+1)dp) > DKL(p(Sm,a) || p_(d+1)dp)

and
DKL(b(qmsn,a) || db) > DKL(b<3r1,a) || db)

and note that by [KK25b, Lemma 2.5],
Dxr,(U(8r1,6) I14U) + D (p(5r1,0) | o~V dp) + Dicr.(b(571,0) | db) = H(51,.0).

All these estimates combined imply the claim. O
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Chapter 14

Well-Mixing and Non-Degeneracy

In this section we study (¢, T')-well mixing as well as (ag, 0, A)-non-degeneracy. The
goal of this section is prove Proposition and Proposition We treat (c, T)-
well-mixing in section and show that we have uniform results as long as U(u) is
fixed. In section[14.2]we conclude the proofs of Proposition[8.1.2]and Proposition[8.1.3]

by proving strong results on non-degeneracy.

14.1 (¢, T)-well-mixing

In this subsection we establish in Lemma that we have uniform (¢, T')-well-
mixing whenever U () is fixed and show that (¢, T") can taken to be uniform when we
know a lower bound on the spectral gap of U(u). We start with a preliminary lemma
that will also be used in section [I4.2] Throughout this section and next we denote
by mpy the Haar probability measure on H and by I € O(d) the identity matrix.

Lemma 14.1.1. (Schur-type Lemma) Suppose that d > 1 and that H is an irreducible
subgroup of O(d) and let V' be a uniform random variable on H. Let B be a random
variable independent from V taking values in RY. Then VB has mean zero and

covariance matriz of the form A\ for some A > 0.

Proof. For h € H the random variables hV' B and V' B have the same law. This means
that the mean of V B is invariant under H and so since H is irreducible it must be
zero. Moreover the covariance matrix M of VB is invariant under conjugation by
elements of H. Since M is symmetric positive definite, it has an eigenvector v and
therefore Mv = Av and Mhv = hMv = Mhv for some A > 0 and all h € H. Since H
is irreducible it therefore follows that M = AI as claimed. m

Lemma 14.1.2. Let uy be a finitely supported probability measure on O(d) such
that supp(uy) acts irreducibly on R Then there exists T = T(uy) only depending
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on py such that every finitely supported probability measure p on G with U(p) is

(95, T)-well-mizing.

Proof. Let H C O(d) be the closure of the group generated by supp(uy). Then H
is compact and let my be the Haar probablility measure on G and denote by V a
uniform random variable on H. We first claim that for all unit vectors z and y in R¢

we have
1

Indeed, we can view y as a random variable independent from V' and therefore, by
Lemma [14.1.1} the random variable Vy has mean zero and covariance matrix A/.
Moreover, since E[|[Vy|?] = d\ = 1 it follows that A = % and therefore (14.1.1)) holds.

Let F' be a uniform random variable on [0,7]. Then F is distributed as

E[lz - Vy|’] (14.1.1)

L > (14.1.2)

We claim that converges as I' — 0o to my in the weak*-topology. Indeed,
we note that any weak*-limit m of is py-stationary and, upon performing
an ergodic decomposition, we may assume without loss of generality that m is in
addition ergodic. As this is equivalent to the measure being extremal, we conclude
that m is invariant under the group generated by supp(uy) and therefore also by H,
implying that m = my.

Finally, we just choose ¢ = %z and T sufficiently large depending on uy such that
(14.1.2) is sufficiently close in distribution to my and therefore E[|z - U(qr)y|*] > 55
for all unit vectors x,y € R, implying the claim. O

For a closed subgroup H C O(d) and a probability measure uy supported on H we
denote, as defined in (8.3.4)), by gapy (uur) the L*-spectral gap of py on L*(H). We aim
to show uniform well-mixing as long as gapy (uy) > ¢ independent of the subgroup
H. To do so, we first show that we have uniform convergence in the Wasserstein

distance with a rate only depending on ¢ and d.

Lemma 14.1.3. Let d > 1, € (0,1) and let uy be a probability measure on O(d).
Assume that gapy (uy) > € for H the subgroup generated by the support of py. Then
form >1

Wi (pg's mu) <a (1—)*"

for a = (1+ 1dimO(d))™".
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Proof. We consider the metric d(g1,92) = ||g1 — ¢2|| on O(d) for || o || the operator
norm and note that it is bi-invariant and restricts to H. Denote by B (h) for h € H
and 6 > 0 the d-ball around h € H and denote

L (e

b = (B @)

For 6 € (0, 1) we note that my (B (e)) >4 69 @ for an implied constant depending

only on d and therefore || P;||o <4 0~ (@mO@)/2 Also we note that for h € H we have
*n H
(™ Ps)(h) = L; (?H(feb)

) : : :
(B ()" By the triangle inequality,

Wl(ﬂ*n,m[—]) S Wl<,u*n”u*n *Pﬁ) +Wl<u*n % Pg,mH).
Note Wi (u*", ;"™ * Ps) <4 6 and since H is compact,

Wi (™« Ps,mp) <q || * Ps — 1|1
< |l * Ps — 1]
S (1 — 5)”||P§||2 <<d (1 — 8)"5_(dimo(d))/2.

To conclude, if follows
Wl(,u*n;mH) <y 5+ (1 . 5)n5—(dim0(d))/2.
Therefore setting § = (1 — )" for a = (14 3 dim O(d)) ™" implies the claim. O

Lemma 14.1.4. Let d > 1, € (0,1) and let py be a probability measure on O(d).
Assume that gapy (uy) > € for H the subgroup generated by the support of py. Then
there exists T'= T(d,e) only depending on d and € such every probability measure p

on G with U(p) = pu is (33, T)-well-mizing.

Proof. The proof is similar to the one of Lemma [14.1.2| and recall the notation used
in it. Consider a list of tuples of unit vectors (z1,v1), ..., (Tm, Ym) such that for every

two unit vectors  and y in R? there is some i € [m] such that

1
sup ||z - Uyl® — | - inIQ‘ <1
Ueo(d)

Such a list of tuples exists as the action of O(d) on S*~* C R? is uniformly continuous.

We claim that for T large enough depending only on € we have for all i € [m] that

3
E[|z, - 12> =
;- Ugr)yil?] > ¥
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Indeed, we note that for Ay, hy € H we have
| as - hngysl® = [as- hoysl* | < | |2 hayal i hawal | | |25 hagil = [as - hoil | < 2|1 = ho|.
Thus it follows that

Ellzi - Vyil* — |2 - Ulgn)yl?] < 2Wi (0™ mar)

and the claim follows by Lemma [14.1.3] This concludes the proof as for all x and y

we have

El|z - Ulgr)yl*] > sup E[|z; - U(gr)yil*] —

1
— >
iclm] 4d

1
2d’
[l

Another direction to show uniform well-mixing would be to study the stopped
random walk U(g,,) and to show that U(q,,) — mpg. We do not pursue this direction
further and just note that the results by Kesten [Kes74| can be applied to this problem.

14.2  («, 0, A)-non-degeneracy

In order to state our results on («pg, 8, A)-non-degeneracy it is useful to understand
that we can translate and rescale our generating measures, without changing any of
the fundamental properties. It is also beneficial to replace p by %56 + % w1 and we show
in the following lemma that these changes do not change our self-similar measure or

any of the relevant constants in a fundamental way.

Lemma 14.2.1. Let p =Y. p;d,, be a contracting on average probability measure on

G with self-measure v. Let h € G and consider the measures

1

1
Mh = zi:piéhgihl and  py = 556 + SHh:

Then the following properties hold:
(1) hy = hy, = 2hy;

(i1) Xy = Xpin = 2Xpi,

(i) Sy = Sy, = Sy

(i) gapy(p) = gapU(h)HU(h)—l(ﬂh) = anpU(h)HU(h)—l(M/h)’
(v) pn and pyy have hv as self-similar measure.
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Proof. As conjugation is a bijection on G and by using [HS17, Lemma 6.8], (i) follows.
Moreover, (ii) follows since p(hg;h™') = p(g;) and (iv) follows similarly. To show (iii)
note S, = S, since by the triangle inequality d(g,h) < d(g,e) + d(e, h) for all
g,h € G. To show that S, =S, , set

A= min d(g1, 92)

91,92€supp(1),91 792

and note that there is a constant C} depending on h such that d(hgih™, hgoh™t) <
Cyd(g1,92) for d(gi1, g2) < A. Thus it holds that

1
S, = limsup ——logd(hgih™" hgah )

h
91,92€5n,91792

1
< limsup ——logChd(g1,92) = S,
91,92€5n,91792
Applying the same argument to conjugation by A~! implies the claim. Finally, we

note that u, and pj, have the same self-similar measure and it holds that
hy = thigiy = Zpihgih_lhl/

and therefore hv is the self-similar measure of p, and pj,. m

In particular, it follows that the self-similar measure of p is absolutely continuous
if and only if the one of u, or py is and all of the relevant quantities are the same up
to a factor of 2.

To give an idea of the proof of the main results in this subsection, we first dis-
cuss how to show that real Bernoulli convolutions v, are uniformly non-degenerate.
Indeed, we distinguish between A > Ay and A < Ay for some \g sufficiently close to
1. Note that vy is supported on [—(1 — A)7L, (1 — A\)7!] and thus when A < )\ one
easily shows uniform non-degeneracy depending only on Ay by compactness of the
support. In the case A > )\ it follows from the Berry-Essen Theorem that
Wi (va, N (0, —2=)) =~ 2/3. The latter then implies then the claim by Lemma [14.2.5

VI-A2
and by rescaling v, to have variance 1.

Our results will be deduced from suitable results in the case when p has a uniform
contraction ratio and then in the general case from comparing our given measure
with a self-similar measure with uniform contraction ratio. We now state the main

proposition of this section.
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Proposition 14.2.2. Letd > 1, ¢ > 0 and let puy be an irreducible probability measure
on O(d). Then there is p € (0,1) and some (ay,0, A) depending on d,e and py such
that the following is true. Let p = Zle pidy, be a contracting on average probability
measure on G satisfying U(u) = py and p; > ¢ for 1 < i < k. Suppose further that
there is some p € (p, 1) such that

Eypulp — p(7)]
1 —Eyplp(v)]

Then there is some h € G with U(h) = I such that the conjugate measure p), =

<1l-—e.

%56 + % > i PiOngin—1 1s (ayp, 0, A)-non-degenerate.
Moreover, if in addition gapy(p) > €, for H the closure of the subgroup generated
by supp(u), then p and (o, 0, A) can be made uniform in d and .

We first show how to deduce from Proposition [14.2.2] the two propositions [8.1.2]
and from section [8.1} To do so we first state the following lemma.

Lemma 14.2.3. Suppose x1 < x9 and let X be a real-valued random variable such
that X < xo almost surely and P[X < x1] > 1/2 + p for some p > 0. Then

B[ X — 2|] S E[|X — 2] — 2p(z2 — z1).

Proof. Let X; and X, have the same law as X and be coupled such that at least one
of them is at most x; almost surely. Let A be the event that both X; and X, are at
most z1. Noting that A has probability at least 2p we compute

B[ X1 — 1] + [Xo — aa[] = E[(| X1 — 21| + [ X2 — 31])Lac]

+ E[(| X1 — z1| + | Xa — x1|)14]

< E[(| X1 — @] + [ X2 — 22]) 4]

+E[(1X1 — 22| 4+ [ X2 — 22| = 2(22 — 21))14]

S EHXI - $2| + |X2 — $2|] — 4]9(1‘2 — 371).

The result follows. m
We now prove Proposition [8.1.2| and Proposition [8.1.3|

Proof of Proposition[8.1.3. Let 41,7,... be i.i.d. samples from p. Let pyy, be the
smallest of the pq,...,pr and let pnin be the smallest of the p(g1), ..., p(gr). Clearly

P[p(/yl .. 771) S pmin] Z 1 - (1 _pmin)n-
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In particular there is some n depending only on & such that this is at least 3/4. Note
that by Lemma [14.2.3| with 21 = ppi, and 2o =1 and p = }L we have

Ellp(vi =) = pminl] _ 1= Elp(y1 - - 9n)] = (1 = pruin) /2

L=Epp(r--- )] 1=E[p(v1-..7)]
o 1-— Pmin
2(1 =E[p(7 ... m)))
< 1 - pn;llin
2(1 - pmin)
1
<1l-——.
- 2n
The result now follows by applying Proposition[14.2.2] Lemmall4.1.2land Lemma(14.1.4
to ™. O

Proof of Proposition[8.1.3. This follows directly by Proposition[14.2.2] Lemma[14.1.2
and Lemma 14.1.4 O

Now we prove Proposition [14.2.2] We use the following definition.

Definition 14.2.4. Given two measures A\, Ay on R? we define

PWi(A1, Ag) := _inf Sup/lp:r—pyldv(w,y)

YEL(A1,A2) pe P(d)

where P(d) is the set of orthogonal projections onto one dimensional subspaces of R?

and ['(A1, \y) is the set of couplings between A and As.

We use this to show that if a measure is sufficiently close to a spherical normal

distribution then it is (ap, 6, A)-non-degenerate.

Lemma 14.2.5. Let I be the d x d identity matriz. Then given any p € P(d) we

2
B ovionlpel] = /2

Moreover, for any € > 0 there exists oy € (0,1) and 0, A > 0 such that if v is a

PWi(v,N(0,1)) < \/g—s

then v is (o, 0, A)-non-degenerate.

have

measure on R and
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Proof. The first part follows since if X ~ A(0,1) and v € R? is a unit vector, then
(X, u) is distributed as N'(0,1). The second part follows from the first part, the fact
that the y € R such that E,.n(,1)| — /| is minimal is y = 0 and Markov’s inequality.

More precisely, we aim to estimate for all 3, € R? and all proper subspaces W C R?
v({z € R : |z — (yo + W)| < 0 or |z| > A}),

which is bounded by v({z € R? : |z — (yo + W)| < 0}) + v({z € R? : |z| > A}).
To deal with the second term we note that by Markov’s inequality for a coupling ~
between v and N(0,1) we have

v({z e R : |z| > A}) < A1/\xldu(x)

<4 ([ wavo.nm+ [le-sarew).

In order to apply our bound for PW; (v, N(0, I)) we consider the projections py, ..., pq
to the coordinate axes. Then |z — y| < 2%, [piz — piy| and therefore by choosing a
suitable coupling, it follows that for A sufficiently large only depending on d and ¢
we have that v({z € R? : |z| > A}) < ¢/16.

To deal with the first term v({z € R? : |z — (yo + W)| < 0}), we assume without
loss of generality that W has dimension d—1 and we let p be the orthogonal projection
to the orthogonal complement of W. Then it holds that |x — (yo + W)| = |px — pyo

and therefore
v({z €R? : |z — (yo + W)| < 0}) =v({z € R? : |pr — pyo| < 0}).

In the following we identify pR? as the real line. Let « be any coupling between v
and N(0, 7). Then it holds that

/Ipx—pyldv(fmy) Z/!px—py!1|px—py0|<e(:r,y) dy(z,y)

> u({z € R : (lpe — pyol < 6}) / 1Dy — pyol — 6) AN'(0, T)(»)

> v({a € R : (Jpr — pyol < 6}) <\/§—e> ,

having used in the last line that y € R such that E, n@1)|r — y| is minimal is

y = 0. By choosing a suitable coupling and setting 6 = ¢/4 it therefore follows for &

. \/2—6/2

v({z € R? : (|pz — pyo| < 0}) < *—=——— < 1—¢/8.
p pYy \/2_6/4

sufficiently small that
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The claim follows by combining the above two estimates. [l

To make this useful we need to show that our self-similar measures are close to
spherical normal distributions. We prove this in the case where all of the p; are equal

with the following proposition.

Proposition 14.2.6. Given any € > 0 and any irreducible probability measure py =
Zle pidy, on O(d) there is some p € (0,1) depending on € and py such that the
following is true. Let = Zle pidg, be a probability measure on G without a common
fized point and with U(u) = py as well as p; > € for all 1 <i < k. Assume there is
p € (p,1) such that p(g;) = p for all 1 < i < k. Then there exists some h € G with

U(h) = I such that the self similar measure v, generated by the conjugate measure

[y = 30c + 5>, Pibhgin—1 satisfies
Wi (v, N(0,1)) < e.
If moreover gapy () > € then p is uniform in d and ¢.
We then extend to the general case using the following lemma.

Lemma 14.2.7. Lety and 7 be contracting on average random variables taking values
in G such that U(vy) = U(¥) and z(y) = z(¥) almost surely. Let v and v be the self

similar measures generated by the laws of v and 7 respectively. Then

Ellp(v) = p(9)] o
L=Ep()] ob, Be~rlpel

We now have all the ingredients needed to prove Proposition [14.2.2]

PWl (V, D) <

Proof of Proposition [I7.2.3. Without loss of generality we replace p by £0.+ 2. Let
Gi » x — pUix +b; and let 1 = > p;id5 with self-similar measure 7. Then by
Proposition [14.2.6| there is some h € G with U(h) = I such that

Wg(ﬁh,N(O,[)) < 5/10

Clearly this implies W, (7, N(0,1)) < €/10 and therefore PW; (o3, N(0,1)) < /10
and so by Lemma if we define u;, = Zle DiOng;n—1 and let vy, be the self similar
measure generated by p, we have PWy (v, N(0,1)) < /5 —£/2. The result follows
by Lemma, [14.2.5] O

Now we just need to prove Lemma and Proposition [I4.2.6] We start with
Lemma [14.2.71
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Proof of Lemma[1{.2.7. Let z be a sample from v and & be a sample from o such
that (z, ) is independent from (v, 7). Note that this means that v is a sample from

v and 47 is a sample from ©. Let p € P(d). We have

[lpy(z — 2)[] + E[lp(y — )]

Ellpye — pyz|] <E
E[p(MIE[pU(v)(z — 2)|] + E[|p(v) — p(DE[[pU (7)(2)]].

Therefore by taking a series of couplings such that sup,c p(4) El|[pr —pZ|] = PWh(v, D)
we get
PWh(v,7) < E[p(y)]PWi (v, 7) + E[[p(7) = p(3)[[Esns[p(2)]].

Now we wish to prove Proposition [14.2.6] First we need the following result.

Lemma 14.2.8. Let puy be a probability measure on O(d) and let H be the closure
of the group generated by the support of py and let V' be a uniform random variable
on H. Let vy,7,... be independent samples from %56 + %/LU. Then for every e > 0
there exists N € Z~q depending on d, H and £ such that whenever n > N we have

Wiy v, V) < e.

Furthermore, if in addition gapy(uy) > €, then N can be made uniform d and e.

Proof. This follows similarly to the arguments given in section [14.1|since the measure

1y = 30e + 1y satisfies that (uf,)*™ — my as n — oo. In the presence of a spectral

gap we apply Lemma [14.1.3] and use that by compactness of H the L3-Wasserstein

distance is comparable with the L!-Wasserstein distance. O
It is convenient to work with measures which are appropriately translated.

Definition 14.2.9. We say that a probability measure v on G is centred at zero if
Eynulr(0)] = 0.

Lemma 14.2.10. Suppose that p is a probability measure on G which is centred at
zero and has uniform contraction ratio p € (0,1). Then if y1,72, ... are i.i.d. samples

from p and n € Z~y we have

and




Proof. Both of these follow by an induction argument left to the reader. m

In order to prove Proposition [14.2.6, we need the following theorem of Sakhanenko
from [Sak85].

Theorem 14.2.11. For every p,d > 1 there is some constant C' = C(p,d) > 0 such
that the following holds. Suppose that X1, ..., X, are independent random variables
taking values in R with mean 0. Let ¥; = Var X;, suppose that Y ;| %; = I and let
L, = (S0, EI|Xi|7) V7. Then

W, (Z Xi,N(O,I)> < CL,.
=1

This is enough to deduce the following estimate. We note that we work with Ws
norm in order to establish the decaying (n/)~'/¢ term in (14.2.2).

Lemma 14.2.12. Let (p1,...,px) be a probability vector, Uy, ..., Uy € O(d) generate
an irreducible subgroup, by, ..., by € R? and let p € (0,1). Let u be the probability
measure on G given by pu = Zle pidy, where g; : x — pUix + b;. Suppose that p is
centred at zero and that all of the b; have modulus at most 1. Let ~v1,7s, ... be i.i.d.
samples from p. Let e € (0,1).

Given { € Ly we define Sy :=E[|71 ...7(0)[?] and

Wy = Wy (@25, (0), N (0, 1) )

Suppose that there exist m,n € Z~q such that for V a uniform random variable

on the closure of the subgroup generated by the Uy, ..., U, we have

m
Gl/2

Wi(U(y1...9m), V) <e and <e.

Then for n' € Z~y,
Wontmyn <a (T7¢ + TYV2e) (W, + 1) (14.2.1)

where T := Zf;gl P In particular if pM Y > 1/2 then n//2 < T < n/ and
therefore
Wianne <a (1) + () 26) (W, 4 1) (14.2.2)

Proof. Fori=1,...,n let
Xi 1= V1) (ntm)+1 - - - V(i-1)(nt+m)+m
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and
Y := Y(-1)(n4m)+m+1 - - - Vi(n+m)
such that
Zi = XiY5 = Yi—1)(ntm)+1 - - - Vi(ntm)-

Furthermore consider Vi, ...,V independent random variables which are uniform on
H (the closure of the subgroup generated by the U;), independent of the Y; and are
such that

E[|U(X;) - VilI’] <&’

Note that

Zy ... Zw(0) = Z,(0) + p"™ U (Z,) Z5(0)+
o PN (7 2 1) Z (0).

Also note that

Wi (00 (24 Zi20) Z:(0), p VYD)
= p"EDWy (U(Zy - Zim1) (07U (X)) Yi(0) + Xi(0)), p"ViYi(0))
< pmED (4 ep™E [|Yi(0)]°])?)
<y g’O(m—i-n)(i—l)511/2(1/1/-11 + 1)7
having used the triangle inequality in the second line and that |X;(0)] < m as
sup; |b;| <1 as well as that
Wi (U(Z1 ... Z;-1)U(X)Y;(0), ViY;(0))

as V; is distributed like the Haar measure on H.
Note that by Lemma [14.1.1] the covariance matrix of V;Y;(0) is d~1S,,I. Therefore

by Theorem [14.2.11|letting A = d~1/? ( primt )> St/% we have that

1— p2(m+n)

Ws (f“ (Z p<’"+"><"—”m<0>> ,N<o,1>)

=1

1/3
< (ZE | A7t plmmG-Dy; (0)|3}>

B 1 — 3(m~+n)n’
<<dA 1 <1_p—

1/3
) (kD)

g T Y5(W, 4+ 1),
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where we exploited that

Lo 1= g L

1 — p2(m+n) - 1— p(m—i-n) 1+ p(m—i—n)

. . . 17p3(m+n)n’ 1/3
and a similar estimate for | =55
1—p

Therefore we may deduce that
WB (Ailﬁ)/l s 7(m+n)n’(o)7 N(07 I)) <q Tﬁl/ﬁ(Wn + 1) + ng/Z(Wn + 1)

By Lemma [14.2.10| we have that

d-1/2g M? m
= 14+0(0) =1+ 0().

We conclude

W(ern)n/ <4 T_l/G(Wn -+ 1) + ETl/Q(Wn + ].) + e
Lg T VW, +1) + eTV2(W, 4+ 1)

as required. 0
From this we can deduce the following.

Corollary 14.2.13. For every € > 0 and every irreducible probability measure pgy on
O(d) there is C > 0 and p € (0,1) such that the following is true. Let p = Zlepﬁgi
be a probability measure on G such that U(p) = py and p; > ¢ for all 1 < i < k.
Assume further that maxy<;<i |b(g;)| = 1 and for some p € (p,1) we have p(g;) = p
for all 1 <1 < k. Suppose that p is centred at zero and let vy, s, ... be i.i.d. samples
from p. Then for every k € Zsqo such that C*+1 <
that

c ‘
157 there is some n € Z~q such

1

k k+1
T e [Cr,C"

and
Ws(d2S1 %, . ~4,(0), N(0,1)) < C.

Moreover, if gapy(p) > €, then C and p can be made uniform d and €.
Proof. Let ¢’ > 0 be sufficiently small. Choose m = m(uy,¢’) such that
Wg(U(’)/l .. .")/m), V) <

and choose ng = ny(e,€’, p) such that

1/2
ng
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Note that this is possible by Lemma as € < E[]71(0)[*] <1 and providing we
choose p to be sufficiently close to 1 in terms of /. Now inductively chose n} such
that Zﬁgl plmtme)i ¢ [¢/=3/2 2¢'73/2) and define ny,; = nf(ny +m). Repeat this
process until we find some k such that Y oo, p(m+m)i < £/=3/2 and let k* denote this
value of k. By Lemma this means that for i = 1,..., k* we have

W; <q Y4 (Wil + 1).

Providing we take p to be sufficiently close to 1 we can bound ny and W,,, from above

purely in terms of € and &’. This means that, providing we choose €’ to be sufficiently

small, there is some C = C4(g,&’) such that for each i = 1,... k* we have
W, < Ch.
We also have that
—_ i1
1 _ pm L

and so providing we choose p to be sufficiently large we have

1 i pni+1

< 47302,
1—pm =

The result follows. When we have a spectral gap, all of these constants can be chosen

to be uniform. 0
Now we have enough to prove Proposition [14.2.6]

Proof of Proposition |14.2.6. Without loss of generality we may assume that p is cen-
tred at zero and that max?_, [b;| = 1.
Let ¢ > 0. By Lemma there is some m € Z-, depending only on ¢ and &’
such that
Wi(U(y1 ... 9m(0)), V) < €.

By Lemma [14.2.10| there is some N depending only on uy and &' such that for

any n > N we have
/

W <e€.
Let C' be as in Corollary [14.2.13| and choose n such that
1 —1_r-3/2 1—3/2
m S [C 9 ,Ce’i ]
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Providing we choose p sufficiently close to 1 we will also have n > N. By letting
n’ — oo in Lemma [14.2.12] we deduce that

Ws (A7, N(0,1)) <4 Ce™/*

where A = d'/?(1 — p*)'/? = limy_,, d1/251;1/2. In the presence of a spectral gap, all

of these bounds are easily seen to be uniform. O
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Chapter 15

Construction of Examples

Throughout this section we denote as usual by G = Sim(R%). We first study ran-
dom walk entropy in section [I5.1] and then the separation rate in section [15.2] We
prove Corollary on real Bernoulli convolutions in section [15.5] as well as treat
complex Bernoulli convolutions in section proving Corollary [7.0.12] Finally, we

discuss examples in R? in section and show Corollary Corollary and
Corollary [7.0.10

15.1 Bounding Random Walk Entropy

The techniques from |[HS17, Section 6.3] or [Kit23, Section 9.2] follow through to our

setting. In particular we have the following using Breuillard’s strong Tits alternative.

Proposition 15.1.1. (JHS17, Section 6.3]) Let d > 1. Then for every py > 0 there
exists p = p(po,d) such that if p = Zlepﬁgi is a finitely supported probability
measure on G with p; > po and supp(p) generates a non-virtually solvable subgroup,
then h, > p.

We will also use the following version of the ping-pong lemma for which we provide

a full proof for the convenience of the reader.

Lemma 15.1.2. (Ping-Pong) Let G be a group acting on a set X and let g1, g2 € G.

Assume there exist disjoint non-empty sets Ay, Ay C X such
91(141 U Az) C Al and g2<A1 U AQ) C AQ.
Then g1 and go generate a free semigroup.

When this happens we say that ¢g; and go play ping pong.
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Proof. Let wy = hihgy---hy and wy = fifa--- fi, with distinct sequences h;, f; €
{g1,92}. Assume without loss of generality that ¢; < f5. First assume that there is
some 1 < k < ¢; such that hy # fi. Choose the smallest such k£ and note that it
suffices to show that hy---hy # fi--- fe,, which follows by applying the resulting
maps to any x € A; U Ay and noting that hy---hgx # fr--- fe,x. On the other
hand assume that h; = f; for all 1 < ¢ < #;, in which case we need to show that
w' = fo, 41 fr, is not the identity. Without loss of generality assume that f;, 1 = ¢g1.
Then for x € Ay we have that w'z € A; and thus w’ is not the identity. We note that

in particular it follows by the assumptions that ¢g; and ¢, have infinite order. O

Lemma 15.1.3. Let p be a finitely supported probability measure on G such that
g1, go € supp(p) generate a free semigroup. Then

hy > min{pu(g1), u(g2)}-

Proof. Denote p/ = 16, + 1y Then by [HS17, Lemma 6.8] we have h, = h,/2.
Thus the claim follows from [Kit23| Proposition 9.7] (generalised to G and applied to

K = min{u(g1), u(g2)}/2). u

15.1.1 p-adic Ping-Pong

We first use ping-pong in a p-adic setting. For a number field K with ring of integers
Og. Let p C Ok be a prime ideal and we denote by R, the localization of Ok at P
defined as

Rp:{%:aEOK,bEOK\p}.

Lemma 15.1.4. (p-adic Ping-Pong) Let K be a number field and let Ok be its ring
of integers. Let p C Ok be a prime ideal and let M, be the ideal of R, defined by

a

Mp:{g:aep,beOK\p}.

Let g1, 92 € G be such that all of the entries of p(91)U(g1) and p(g2)U(ga) are in M,

and all components of by and by are in R,. Suppose that
My x - X My+by # M, X -+ x M, + bs.
Then g1 and go generate a free semigroup.

Proof. This follows immediately from Lemma [15.1.2) with X = R, x --- x R, and
Ai:MpX"'XMp—I—bifOI'Z':LQ. O
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15.1.2 Ping-Pong under a Galois transform

We can also apply the ping-pong lemma using field automorphisms. Recall that given
a number field K, the automorphism group Aut(K/Q) consists of field automorphisms
that fix Q.

Lemma 15.1.5. (Galois Ping-Pong) Let g1 and go be two elements in G whose
coefficients lie in a real number field K and without a common fized point. Let

¢ € Aut(K/Q) be such that for i =1,2 we have

|p(®(g:))] < 1/3.

Then g1 and go generate a free semigroup.

Proof. For i = 1,2 write h; = ®(g;) and let p; be the fixed point of h;, which has
coefficients in K since it arises from a linear equation over K. Then h; # hs as g; and
g2 have no common fixed point. Consider A; = By, rs)/2(hs) (the open ball around h;
of radius d(hq, h2)/2) and note further that hy(A; U Ag) C Ay and ho(A; U Ay) C As.
So the claim follows by Lemma [I5.1.2] O

15.1.3 Height Entropy Bound in Dimension One

In dimension one we also have the following tool for bounding the random walk

entropy. We use the absolute height H(«) and the logarithmic heigh h(a) of an

algebraic number « as defined in ([7.0.4]) and (7.0.5)).

Proposition 15.1.6. Suppose that p is a finitely supported probability measure on
G and that there exist f,g € supp(u) which are of the form f : x +— Mz + 1 and

g x — Aoz with \y and X\o real algebraic and Ny # 1. Let n = (mw + 2.
Then

>~ min{u( ), 1(9))"

This is a simple consequence of the following lemma.

Lemma 15.1.7. Suppose that X is algebraic and in some number field K. Let f,g € G
be defined by f :x— ANz —a)+a and g : x — Nax —b) + b for some a,b € K with
a # b. Suppose that H(\) > 3. Then f and g freely generate a free semi-group.

Proof. First note that

HOA) =HA ) = [[ min(L,[Al,) w9

veEMK
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This means that either there is some Archimedean place v such that |\, < 1/3 or
there is some non-Archimedean place v such that |A|, < 1.

In the Archimedean case there is some Galois transform p such that [p(\)| < 1/3
and the result follows from Lemmal[I5.1.5l In the non-Archimedean case there is some

prime ideal p C Ok with A € p and Lemma [15.1.4] applies. O
We now deduce Proposition [15.1.6]

Proof of Proposition[15.1.6. For n = fmw +2, using that h(a™) = |n|h(«)

and h(afB) > h(a) — h(B) for all o, B algebraic and n € Z, there exists f', ¢’ € {f,g}"
satisfying the conditions of Lemma [15.1.7. Therefore by Lemma [15.1.3| we deduce
that

hypn > min{p(f), p(g)}" and so hy, > %min{u(f),,u(g)}"

as required. O

15.2 Heights and Separation

In this subsection we will review some techniques for bounding S, using heights as
defined in (7.0.4) and ((7.0.5)). We wish to bound the size of polynomials of algebraic

numbers. To do this we need the following way of measuring the complexity of a

polynomial.

Definition 15.2.1. Given some polynomial P € Z[X1, Xs, ..., X,] we define the
length of P, which we denote by L(P), to be the sum of the absolute values of the
coefficients of P.

We recall the following basic facts about heights.
Lemma 15.2.2. The following properties hold:
(i) H(a™t) = H(a) for any non-zero algebraic number «.
(i) If a is a non-zero algebraic number of degree d,

H(a)™ < |a| < H(a)

(i1i) Given P € Z[X1, Xa, ..., X,| of degree at most Ly > 0 in Xy, ..., L, > 0 in

X, and algebraic numbers &1, &s, ..., &, we have
H(P(€1, 62, &) < LIPYH(E)™ . H (&)™
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Proof. (i) and (ii) are well-known and (iii) is [Mas16| Proposition 14.7]. O

Proposition 15.2.3. Suppose that p is a finitely supported measure on G = Sim(R?).
Let S be the set of coefficients of p(g),U(g) and b(g) with g € supp(u) supported on
a finite set of points. Suppose that all of the elements of S are algebraic and let K be
the number field generated by S. Then

S, <a [K : Qmax(h(y) : y € S}U{1}).
Proof. We let m,n € Z~y and we consider an expression of the from

1

-1,—1 -1
ay; ay ...a, biby... by

for aq,...,a, and by,...,b,, elements in the support of . We wish to show that
this is either the identity or at least some distance away from the identity. Let
C :=max{H(y) : y € S}. First note that

platayt ... a;tbiby.. . by) —1

is a polynomial in elements of S and their inverses with length 2 and total degree at
most n + m. Therefore by Lemma [15.2.2

H(p(aytayt ... a; by ... by) — 1) < 20™H"
and so either p(aj'ay’...a; biby...by) =1 or
Ip(artayt. . a;tbiby .. . byy,) — 1] > 27 Ao (mn)E:Q]

By a similar argument, using that the coefficients of the inverse matrix of a matrix

are polynomial in the coefficients of the given matrix, we see that either
Uatay'. . a'biby. . .by) =1

or
U (a7 ayt .. a; biby .. by) — I|| > (d™F" 4 1)~ K@~ Calmin)[K:Q)

and that either b(a;'ay* ... a; biby...b,) =0 or
b(aTrazt. . atbiby .. by)| > (A 4 1) QO Oalmtn)K:Q]
Overall this means that either a;*a;'...a;'biby... b, =1Id or
logd(aitay’ ... a; biby. . by, 1d) >4 —(m +n)(log C + 1)[K : Q].
The result follows. O
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15.3 Inhomogeneous examples in R

In this section we prove Corollary which we recall for convenience of the reader.

Corollary (Restatement of Corollary [7.0.7)). For every ¢ > 0 there exists a small
constant ¢ = ¢(e) > 0 such that the following holds. Let K be a number field and
A, A2 € KN(0,1) and write (A1, A2) = max{h(\1), h(X2)}. Consider the similarities

gwen for x € R as
g1(x) = Mz and go(x) = Ao + 1.
Then the self-similar measure of %591 + %592 is absolutely continuous if
h(A1,Ag) > € and x| max{1,log([K : Q]h(A1, \2))}* < c.

Proof. (of Corollary|7.0.7)) Write 1 = 364, +1,, By Proposition |15.1.6/for every € > 0
there exists a 6 > 0 such that if (A1, \2) > ¢ then it follows that h, > 0. Therefore

by Theorem and using that S, < h(A1, A2)[K : Q] it follows that p is absolutely

continuous if for absolute constants C', Cs it holds that

o
|X_ > Oy max{1,log(Co0'h(A, X\2)[K : Q))}2,
“w
which easily implies the claim. O]

15.4 Examples in R?

In this section we prove Corollary [7.0.8, Corollary and Corollary on

general examples with absolutely continuous self-similar measures, which we all again

recall for convenience of the reader.

Corollary (Restatement of Corollary . Letd > 1 ande > 0, let uy = Zlepi&]i
be an irreducible probability measure on O(d) with p; > ¢ and let by, ..., by € R® with

by # by. Assume that Uy, ..., Uy and by, ..., by have algebraic coefficients. Let q be a

prime number and for 1 <1 < k consider

q . 1—e
i(r) = Uiz +b; or any integer a;q € |1, )
9i() P~ for any integ iq € [1,¢ 7]
Assume that gy, . . ., g do not have a common fized point and consider . = Zle Didg, -

Then the self-similar measure of pu is absolutely continuous for q a sufficiently large

prime depending on d,e,Uy, ..., Uy and by, ..., by.
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Proof of Corollary[7.0.8. We first show that g; and g» generate a free semigroup for
sufficiently large ¢ by using Lemma [15.1.4. For simplicity we first treat the case when
all of the entries are rational. Then consider the g-adic numbers QQ, and the g-adic
integers Z,. Asthe Uy,..., Uy and the by, ..., by are fixed, for a sufficiently large prime
q all of their entries are in Z,\gZ,. On the other hand, by construction p(g;) € ¢Z,
for 1 <i <k and as ¢Z, is an ideal therefore also all of the entries of p(g;)U; are in
qZ,. By Lemma it therefore suffices to check that (¢Z,)* + by # (qZ4)* + by or
equivalently by — by & (qZ,)?, which is clearly the case for sufficiently large ¢. Thus g,
and gy generate a free semigroup. The same argument applies in the general case for
K the number field generated by the coefficients of the entries of g; and by choosing
any prime ideal that factors (q).

Thus it follows by Lemma that h, > e and note that by Lemma
it holds that S, <4 logq. Hence there exists a constant C' depending on all the
relevant parameters such that the self-similar measure of i is absolutely continuous
if

C’Xu‘ < m-
Therefore it remains to estimate the Lyapunov exponent. Indeed, note that

. 1—¢
log( a )zlog(l—&)210g<l—q )>>—q_5.
Q+ai,q Q+ Q; q q

Therefore |x,| < ¢~ and the claim follows for sufficiently large g. O]

Corollary (Restatement of Corollary [7.0.9)). Let d,e and uy = Zlepiém as well
as by, ..., b, be as in Proposition [7.0.8, Let q be a prime number and consider for
1<i<k-1

gix) = q%gUia: b and gle) = - Ui + by
Assume that gy, ..., gr do not have a common fixed point and further that
<L
— 3
Then the self-similar measure of p = Zle pidg, is absolutely continuous for q a

sufficiently large prime depending on d,e, Uy, ..., U, and by, ..., by.

Proof of Corollary[7.0.9. As in the proof of Corollary [7.0.8] g and go generate a free
semigroup for sufficiently large ¢ and therefore h, > e. Write oy = p1 + ... + pr—1
and as = pi. Then we have as o + ay = 1,

¢ _ ¢+ (ax—1)g
¢g—1  (¢+3)(¢—1)

Equulp(7)] = aa + Q2

q
qg+3
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and thus
(q+3)(g—1) = (" + 4oy — 1)q) (3 —4ay)qg—3

1-E.. — _ .
rulp(7) G+ 1) G+3-1
On the other hand, choosing p = qTqS we have
R q q 4qory
E ~ - - —_— = .
o =0l = aa (A - )

Thus it follows that

i Boelle =PI _ Ay
oo 1=Eqyulp(v)] 3 —day

<1 (15.4.1)

provided that as = pp < g. If we assume that p, < % then we have that the
limit in (15.4.1) is uniformly away from 1. As in Corollary [7.0.8] we have that
S, <k.,d loggq. Therefore by Theorem there exists a constant C' depending on
all of the parameters such that u is absolutely continuous if

Wl = Gogiog g
As in Corollary it follows that |x,| < ¢~! and hence the claim follows. ]

We next prove Corollary and first show the following basic lemma.

Lemma 15.4.1. Let K be a real algebraic number field satisfying Q(\/q) C K for a
prime q. Then there exists a field automorphism ® € Aut(K/Q) such that ®(,/q) =
—/3.

Proof. Write Ky = Q(,/q) and assume that K = Ky(ay, ..., a) for some oy, ..., a4 €
K. Denote by © € Aut(K,/Q) the automorphism with ©(,/q) = —/¢. When ¢ =1
we consider the surjective map Ko[X] — Ko(a) with P — O(P)(cy) for O(P) the
polynomial to which all coefficients we have applied ©. This map induces a field
automorphism of Ky(«) with the required properties and our proof is concluded by

an induction on ¢ with the same argument. m

Corollary (Restatement of Corollary [7.0.10). Let d > 1 and € € (0,1) and py =
S pidy, an irreducible probability measure on O(d) with p; > ¢ for all 1 < i <
k. Assume furthermore that Uy, ..., Uy have algebraic entries. Let p € (0,1) be
sufficiently close to 1 in terms of d,e and py and let C' > 1 be sufficiently large
depending on the same parameters.

Suppose that g;(x) = WUM + d; with a;,b;,c; € Z and d; € Z2 for 1 <
1 < k and a prime number q do not have a common fixed point. Then the self-
similar measure associated to p = Zle pidg, 15 absolutely continuous if the following

properties are satisfied:
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(i) 220 € (5,1) for 1 <i <k,

(ii) for 7 =1 and for j =2 we have

aj—bj\/@’<}’
Cj 3

(iii) For L = max(.\/q, |a;|,|bi, |ci], |di|s) we have
1

< ———.

Pl = Tiogiog 1)

Proof of Corollary|7.0.10, By Theorem there exists p € (0,1) and C' > 1 de-

pending on d,e and py such that p is absolutely continuous if p; > ¢ as well as
W e (5,1) for all 1 < i < k as well as

2
i > C <max{1,logi}> )
|Xu| hu

Let K be the number field generated by all the coefficients of elements in supp(u).
Then by Lemma there is a field automorphism ® € Aut(K/Q) such that
®(\/q) = —/q and therefore we have that [p(®(g;))| < 3 for j = 1,2. Thus by
Lemma and Lemma we have that h, > e. We also have h, < loge '
On the other hand, it follows by Lemma (iii) and Proposition that
S, Lapuy log L, which readily implied the claim upon changing the constant C. [

Lemma 15.4.2. In the setting of Corollary|7.0.10, for € > 0 choose

a; = [ql —mig,  bi=2 i =3[/q]
form, , an integer satisfying m; , € [0,q*/*¢] and any d; € Z¢ with |d;|» < exp(exp(¢=/?)).
Then p is absolutely continuous for sufficiently large q depending on d,py,e and
Uy, ..., U, provided g1, ..., g, does not have a common fixed point.
Proof. Tt holds that M € (0,1) converges to 1 as ¢ — oo and that |W| <3

We next estimate the Lyapunov exponent of u. Indeed, note that for ¢ large enough,

log (_ai +:i\/g) > log (f\/ﬂ — g7+ 2\/5)

3[V/4]
EMG_Mﬂ%wmwﬂ7>ﬁ%

()

3[4l

and therefore |y,| < ¢~¢. In our case, for large ¢ we have L = |d;|», = exp(exp(¢®/?))

€/3

and therefore log(log L) = ¢*/°. Thus for sufficiently large ¢ we have that C|x,| <

(loglog L)~% = ¢~%/% and the claim follows. O
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15.5 Real Bernoulli Convolutions

In this section we prove Corollary [7.0.11]

Corollary (Restatement of Corollary [7.0.11)). There is an absolute constant C' > 1
such that the following holds. Let A € (1/2,1) be a real algebraic number. Then the

Bernoulli convolution vy s absolutely continuous on R if
A > 1 — O 'min{log My, (loglog M) ?}. (15.5.1)

Proof of Corollary[7.0.11. As in the paragraph before Proposition [14.2.2] Bernoulli
convolutions are uniformly non-degenerate. Since we are in d = 1 they are (1,0)-
well-mixing and therefore Theorem applies. For convenience write n = log M,
and hy = h,,. We don’t keep track of possible enlargements of C'. That Bernoulli
convolutions are uniformly non-degenerate follows from Proposition|8.1.2l Then The-

orem [8.1.4] implies that if
(1 —A)"thy > C (max {1,logn/hy})?, (15.5.2)

then v, is absolutely continuous. Recall that by [BV20, Theorem 5] (which is stated
with logarithms base 2) there is an absolute ¢y € (0, 1) such that ¢ymin(log2,n) <
hy < min(log2,7n).

We proceed with a case distinction. First assume that n < log2. Then c;' >
n/hy > 1 and therefore by the condition (1 — A\)~'e¢en > C' is sufficient for

absolute continuity, which is equivalent to
A>1-C 'y (15.5.3)
Next assume that n > log2. Then cylog2 < hy <log2 and so (15.5.2)) gives
(1 — A)max{1,logn + log(colog2)*}* < C~ .

Note that max{1,logn + log(cylog2)™'} < 2log(cylog?2) ! max{1,logn}. Therefore

we get the condition
A>1—C'max{l,logn} 2 =1-C 'min{1, (logn)2}. (15.5.4)

To deduce (15.5.1)), we note that there is a unique ’ > 0 with ¥ = (logn’)~?
and this 7’ satisfies 2 < 1/ < 5/2. Moreover logn < (logn)™ for 0 < n < 7' and

logn > (logn)~2 for n > 7. Therefore (15.5.1)) holds for n < log(2) and 1 > 21’ by
(15.5.3) and (15.5.4). In the range log(2) < n < 27/, we enlarge C' to ensure that

(15.5.1)) holds. O]
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We note that if A is algebraic and not the root of any non-zero polynomial with
coefficients 0,£1, then hy = 2 and also as mentioned in Remark 5.10 of |Kit21],

M, > 2. Therefore for such a A, v, is absolutely continuous if

A > 1—C 'min{1, (loglog M,)?}. (15.5.5)

15.6 Complex Bernoulli Convolutions

Corollary (Restatement of Corollary . For every ¢ > 0 there is a constant
C > 1 such that the following holds. Let A € C be a complex algebraic number such
that |\ € (27Y/2,1) and

[Im(\)| > e. (15.6.1)

Then the Bernoulli convolution vy is absolutely continuous on C if
I\ > 1 — C~ " min{log My, (loglog My)~?}.

Proof of Corollary[7.0.19. We can’t directly apply Proposition [8.1.2] so we give a di-
rect proof of mixing and non-degeneracy. First note that ensures that there is
some ¢ > 0 and T' > 1 depending only on ¢ such that the (¢, T')-well-mixing property
is satisfied.

To deal with non-degeneracy, we distinguish the case when |\| < A\ and |A| > Ao
for some )\, sufficiently close to 1. As in the case of real Bernoulli convolution, for
any given \g, the family of Bernoulli convolutions with |A| < Ay are easily seen to be
uniformly non-degenerate depending on \y. To deal with the case A > g, we rescale
our measure to the one given by the law of By = m Yooy £A" and denote
the resulting measure by 4. Now let ¥ be the covariance matrix of »4 under the
natural identification of C with R?. Note that the trace of ¥ is 1 and we claim that
the smallest eigenvalue of ¥ is >, 1. Indeed, for a unit vector z € R? we want to

estimate 27 Yx, which is by identifying C with R? equal to
E[|By-z] = (1= )Y IV -2 > 1,
i=0

which follows as |\* - z|> > |A|? unless A" and x are almost colinear, which is only the

case for a very small proportion of ¢’s. It follows that

inf E,. 1
Janty N, [[pr]] >
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for p ranging in the orthogonal projections of R? as in section [14.2 By for example
Lemma [10.4.3[ we know that W, (14, N(0,%)) < /1 — |A|?2. Therefore for Ay suffi-

ciently close to 1 in terms of ¢, uniform non-degeneracy follows as in Lemma [14.2.5]
Having establish uniform well-mixing and non-degeneracy, Corollary [7.0.12is estab-
lished by the same argument as the proof of Corollary [7.0.11] m
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