On Dimension and Absolute Continuity of Self-Similar Measures

Constantin Kogler Institute for Advanced Study

Joint work with Samuel Kittle (UCL)

One World Fractals 15th December 2025

Plan for talk:

- 1. Introduction
- 2. Dimension Results
- 3. Results on Absolute Continuity

• A **similarity** is a map $g: \mathbb{R}^d \to \mathbb{R}^d$ such that $\exists \rho > 0$ satisfying

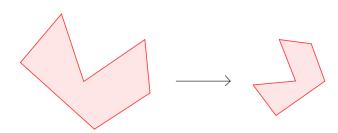
$$||g(x) - g(y)||_2 = \rho \cdot ||x - y||_2$$

for all $x, y \in \mathbb{R}^d$.

• Every similarity $g: \mathbb{R}^d \to \mathbb{R}^d$ can be written as

$$g(x) = \rho Ux + b$$

for all $x \in \mathbb{R}^d$ with $\rho \in \mathbb{R}_{>0}$, $U \in O(d)$ and $b \in \mathbb{R}^d$.



Fix a probability measure supported on finitely many similarities

$$\mu = \sum_{i=1}^{\ell} p_i \delta_{g_i}$$
 for $g_i(x) = \rho_i U_i x + b_i$

with $\rho_i \in \mathbb{R}_{>0}$, $U_i \in O(d)$ and $b_i \in \mathbb{R}^d$.

▶ The **Lyapunov exponent** of μ is defined as

$$\chi_{\mu} = \mathbb{E}_{g \sim \mu}[\log \rho(g)] = \sum_{i=1}^{\ell} p_i \log \rho_i.$$

- μ contracting on average if $\chi_{\mu} < 0$.
- μ contracting if $\rho_i \in (0,1)$ for all i

• If $\chi_{\mu} <$ 0, then there exists a probability measure ν on \mathbb{R}^d such that

$$\mu^{*n} * \delta_{x_0} \rightarrow \nu$$

for all $x_0 \in \mathbb{R}^d$.

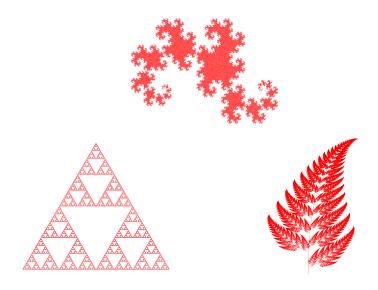
- ν is called the **self-similar measure** of μ .
- ightharpoonup
 u is also the unique μ -stationary probability measure on \mathbb{R}^d , that is

$$\mu * \nu = \sum_{i=1}^{\ell} p_i g_i \nu = \nu.$$

• When μ is contracting, $K = \operatorname{supp}(\nu)$ is compact and it holds that

$$K = \bigcup_{g \in \text{supp}(\mu)} g(K). \tag{1}$$

Images of Self-Similar Sets



Main questions in the area:

• What is the dim ν ? It is known by Feng-Hu 2009 and Feng 2023 that

$$\nu(B_r(x)) = r^{\dim \nu + o_{\nu,x}(1)}$$

for ν -almost all $x \in \mathbb{R}^d$.

Is ν absolutely continuous, i.e. is there $f \in L^1(\mathbb{R}^d)$ such that

$$d\nu=f\,d\mathrm{vol}_{\mathbb{R}^d}$$

The random walk entropy is defined as

$$h_{\mu} = \lim_{n \to \infty} \frac{1}{n} H(\mu^{*n}) = \inf_{n \ge 1} \frac{1}{n} H(\mu^{*n}),$$

where $H(\cdot)$ is the Shannon entropy.

lacktriangle When the support of μ generates a free semi-group, then

$$h_{\mu} = H(\mu) = -\sum_{i=1}^{\ell} p_i \log p_i.$$

Fact:

$$\dim
u \leqslant \min \left\{ d, rac{h_{\mu}}{|\chi_{\mu}|}
ight\}.$$

Recall that $\rho_i \in \mathbb{R}_{>0}, U_i \in O(d)$ and $b_i \in \mathbb{R}^d$ and

$$\mu = \sum_{i=1}^\ell p_i \delta_{g_i}$$
 with $g_i(x) = \rho_i U_i x + b_i.$

For the remainder of this talk assume:

- 1. U_1, \ldots, U_ℓ acts irreducibly on \mathbb{R}^d , i.e. there are no invariant subspaces other than $\{0\}$ and \mathbb{R}^d .
- 2. The g_i do not have a common fixed point.

Conjecture (Generalised exact overlaps conjecture)

Under these assumptions,

$$\dim \nu = \min \left\{ d, \frac{h_{\mu}}{|\chi_{\mu}|} \right\}. \tag{2}$$

Write

$$M_n = \min \left\{ d(g,h) \, : \, \text{for } g,h \in \bigcup_{i=1}^n \operatorname{supp}(\mu^{*i}) \text{ with } g \neq h
ight\}.$$

for d a natural metric on the group of similarities.

Fact: If ρ_i , U_i and b_i all have algebraic coefficients, then for some c > 0 we have

$$M_n \geqslant e^{-cn}$$
 for all $n \geqslant 1$

Theorem (Hochman 2014, 2017)

Assume μ is contracting. Then $\dim \nu = \min \left\{ d, \frac{h_{\mu}}{|\chi_{\mu}|} \right\}$ holds if there exists c > 0 such that

$$M_n \geqslant e^{-cn}$$

for infinitely many n.

Theorem (Kittle-Kogler 2025)

Assume $\chi_{\mu} < 0$. Then $\dim \nu = \min \left\{ d, \frac{h_{\mu}}{|\chi_{\mu}|} \right\}$ holds if either:

- 1. There exists c > 0 such that $M_n \ge e^{-cn}$ for infinitely many n.
- 2. For all sufficiently large n,

$$\log M_n \geqslant -n \exp(\log(n)^{1/4}).$$

Application: Complex Bernoulli Convolutions

- ▶ Let $\lambda \in \mathbb{C}$ with $|\lambda| < 1$.
- Consider

$$Y_{\lambda} = \sum_{i=0}^{\infty} \lambda^{i} X_{i} = X_{0} + \lambda X_{1} + \lambda^{2} X_{2} + \dots,$$

where X_0, X_1, X_2, \ldots are independent random variables satisfying for all $i \ge 0$,

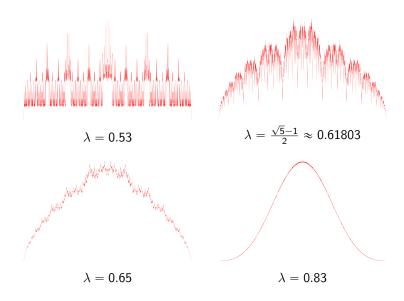
$$\mathbb{P}[X_i = 1] = \mathbb{P}[X_i = -1] = \frac{1}{2}.$$

▶ The **Bernoulli convolution** ν_{λ} of parameter λ is the law of Y_{λ} , i.e. for $A \subset \mathbb{C}$,

$$\nu_{\lambda}(A) = \mathbb{P}[Y_{\lambda} \in A].$$

▶ When $\lambda \in \mathbb{R}$, then ν_{λ} is a probability measure on \mathbb{R} .

Images of Real Bernoulli Convolutions



Application: Complex Bernoulli Convolutions

Theorem (Hochman 2014 + Varjú 2019)

The generalised exact overlaps conjecture holds for real Bernoulli convolutions.

Theorem (Kittle-Kogler 2026)

The generalised exact overlaps conjecture holds for complex Bernoulli convolutions.

In particular, if $\lambda \in \mathbb{C}\backslash \mathbb{R}$ is a transcendental number with $|\lambda| < 1$. Then

$$\dim \nu_{\lambda} = \min \left\{ 2, \frac{\log 2}{\log |\lambda|^{-1}} \right\}.$$

In particular, dim $\nu_{\lambda}=2$ when additionally $|\lambda|\in[2^{-1/2},1)$.

Results on Absolute Continuity

Conjecture

u is absolutely continuous if $\frac{h_{\mu}}{|\chi_{\mu}|} > d$.

• Write $S_n = -\frac{1}{n} \log M_n$ and $S_\mu = \limsup_{n \to \infty} S_n$.

Theorem (Kittle-Kogler 2024)

Fix (U_1, \ldots, U_ℓ) and (p_1, \ldots, p_ℓ) and assume $\rho_i \in (0, 1)$ for all i. Then there exists a constant C such that ν is absolutely continuous if

$$\left| rac{h_{\mu}}{|\chi_{\mu}|} > C \left(\max \left\{ 1, \log rac{\mathcal{S}_{\mu}}{h_{\mu}}
ight\}
ight)^2.$$

- ▶ Fact: If all of the coefficients of ρ_i , U_i , b_i lie in a number field K and have logarithmic height $\leq L$, then $S_\mu \ll_d L \cdot [K : \mathbb{Q}]$.
- C can be made uniform for perturbations of the U_i .

Results on Absolute Continuity

• Corollary: Let $d \geqslant 1$ and fix U_i and b_i with algebraic entries. Then ν is absolutely continuous if for sufficiently large primes q and

$$g_i(x) = \frac{q}{q+i}U_ix + b_i.$$

We get a similar result when $\chi_{\mu} < 0$ under some additional assumption. For example, we can show that in d=1 that when

$$g_1(x) = \frac{n}{n+1}x$$
 and $g_2(x) = \frac{n+1}{n}x + 1$,

then the self-similar measure of $\frac{4}{5}\delta_{g_1}+\frac{1}{5}\delta_{g_2}$ is absolutely continuous for sufficiently large $n\geqslant 1$.

▶ Corollary: Strengthening of Varjú's result for Bernoulli convolutions. For example, there is an absolute constant c>0 such that ν is absolutely continuous if

$$\lambda = 1 - \frac{p}{q}$$
 and $p \leqslant c \frac{q}{(\log \log q)^2}$.

Analogous result for complex Bernoulli convolutions.

Results on Absolute Continuity

Our theorem also implies the following version of the main result of Lindenstrauss-Varjú:

Theorem (Lindenstrauss-Varjú 2016)

Let $d\geqslant 3$ and fix (U_1,\ldots,U_ℓ) and (p_1,\ldots,p_ℓ) . Assume that U_1,\ldots,U_ℓ generates a dense subgroup of $\mathrm{SO}(d)$ and all entries are algebraic. Then there exists $\tilde{\rho}\in(0,1)$ depending on U_i and p_i such that ν is absolutely continuous if

$$\rho_i \in (\tilde{\rho}, 1) \quad \text{for all} \quad 1 \leqslant i \leqslant \ell.$$

- ▶ In Lindenstrauss-Varjú, $\tilde{\rho}$ depends on the $L^2(SO(d))$ spectral gap of the U_i .
- Our methods are softer: We get uniformity on perturbations of the U_i and do not require that the U_i generate a dense subgroup, but only a non virtually solvable one.

Some comments on the proofs

Two methods, first introduced by Kittle in his work on absolutely continuous Furstenberg measures:

1. Variance Summation Method: Decomposing

$$\mu^{*n} * \delta_{x_0}$$
 into $x_0 + X_1 \dots + X_n$

and summing up variance contributions at various scales.

- 2. Detail of a Measure $s_r(\nu)$ (introduced by Kittle in 2021):
 - 2.1 Tool to prove absolute continuity.
 - 2.2 Behaves well under convolutions of measures.

Thank you for your attention