Stationary Measures for Random Walks on Lie Groups

Constantin Kogler

University of Oxford

4th July 2025

<ロト < 部ト < 書ト < 書ト 書 の Q (や 1/14

Goal of Talk

- Kyoshi Ito's first paper.
- Show pictures of random walks on Lie groups.

Context

- Markov chains on finite state spaces have often stationary distributions.
- SDEs too.
 For example the Ornstein-Uhlenbeck process

$$dX_t = -\theta X_t dt + \sigma dW_t$$

has stationary distribution $\mathcal{N}(0, \sigma^2/2\theta)$.

• But not always! $dX_t = dW_t$ is a pure Brownian motion.

Random Walks on Groups

• Consider group action $G \rightharpoonup X$.

• Let μ be a probability measure on G and let

$$Z_1, Z_2, Z_3, \ldots$$

be independent μ -distributed random variables on G.

For $x_0 \in X$ consider

$$Y_{n,x_0}=Z_1\cdots Z_n.x_0$$

We aim to understand

$$\mathbb{P}[Y_{n,x_0} \in B] = (\mu^{*n} * \delta_{x_0})(B)$$

for subsets $B \subset X$.

• Today: G Lie Group and μ finite support.

Ito's first paper

• *G* compact topological group such as

finite groups, $(\mathbb{R}/\mathbb{Z})^d$, $\operatorname{SO}(d)$, \mathbb{Z}_p , $\operatorname{SL}_n(\mathbb{Z}_p)$, $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

▶ Then \exists ! Haar probability measure vol_{G} , i.e.

$$g_* \operatorname{vol}_G = \operatorname{vol}_G$$

for all $g \in G$.

- Assume µ aperiodic probability measure on G, i.e. supp(µ) ∉ gH for g ∈ G and H ⊂ G a proper closed subgroup of G.
- Theorem (Ito-Kawada 1940) Then the Haar measure vol_G is the unique μ-stationary measure, i.e. satisfying μ * vol_G = vol_G. Moreover,

$$\mu^{*n} \to \operatorname{vol}_{G}$$

as $n \to \infty$ in the vague topology.

イロト 不得 トイヨト イヨト ニヨー

- G compact simple Lie group with Haar probability measure vol_G.
- Example: $\mathrm{SO}(3) = \{g \in \mathrm{M}_3(\mathbb{R}) \ : \ g^{\mathsf{T}} = g^{-1} \And \det(g) = 1\}.$
- Conjecture: If $\operatorname{supp}(\mu)$ generates a dense subgroup then

$$\mu^{*n}(B) = \operatorname{vol}_G(B) + O_{\mu,B}(e^{-cn})$$

- G compact simple Lie group with Haar probability measure vol_G.
- Example: $\mathrm{SO}(3) = \{g \in \mathrm{M}_3(\mathbb{R}) \ : \ g^{\mathsf{T}} = g^{-1} \And \det(g) = 1\}.$
- Conjecture: If $\operatorname{supp}(\mu)$ generates a dense subgroup then

$$\mu^{*n}(B) = \operatorname{vol}_G(B) + O_{\mu,B}(e^{-cn})$$

- G compact simple Lie group with Haar probability measure vol_G.
- Example: $\mathrm{SO}(3) = \{g \in \mathrm{M}_3(\mathbb{R}) \ : \ g^{\mathsf{T}} = g^{-1} \And \det(g) = 1\}.$
- Conjecture: If $\operatorname{supp}(\mu)$ generates a dense subgroup then

$$\mu^{*n}(B) = \operatorname{vol}_G(B) + O_{\mu,B}(e^{-cn})$$

- G compact simple Lie group with Haar probability measure vol_G.
- Example: $\mathrm{SO}(3) = \{g \in \mathrm{M}_3(\mathbb{R}) \ : \ g^{\mathsf{T}} = g^{-1} \And \det(g) = 1\}.$
- Conjecture: If $\operatorname{supp}(\mu)$ generates a dense subgroup then

$$\mu^{*n}(B) = \operatorname{vol}_G(B) + O_{\mu,B}(e^{-cn})$$

- G compact simple Lie group with Haar probability measure vol_G.
- Example: $\mathrm{SO}(3) = \{g \in \mathrm{M}_3(\mathbb{R}) \ : \ g^{\mathsf{T}} = g^{-1} \And \det(g) = 1\}.$
- Conjecture: If $\operatorname{supp}(\mu)$ generates a dense subgroup then

$$\mu^{*n}(B) = \operatorname{vol}_G(B) + O_{\mu,B}(e^{-cn})$$

- G compact simple Lie group with Haar probability measure vol_G.
- Example: $\mathrm{SO}(3) = \{g \in \mathrm{M}_3(\mathbb{R}) \ : \ g^{\mathsf{T}} = g^{-1} \And \det(g) = 1\}.$
- Conjecture: If $\operatorname{supp}(\mu)$ generates a dense subgroup then

$$\mu^{*n}(B) = \operatorname{vol}_G(B) + O_{\mu,B}(e^{-cn})$$

2) Self-Affine Measures

Self-Affine Measures

• Consider **contracting** affine maps, that is maps $g_i : \mathbb{R}^d \to \mathbb{R}^d$ for $1 \leq i \leq \ell$ given for $x \in \mathbb{R}^d$ by

$$g_i(x) = A_i x + b_i$$

with $A_i \in M_n(\mathbb{R}^d)$, $b_i \in \mathbb{R}^d$ and $||A_i|| < 1$.

Let

$$\mu = \sum_{i=1}^{\ell} p_i \delta_{g_i},$$

which is a probability measure on the Lie group of affine maps.

Then there exists a unique measure ν on R^d, called the self-affine measure such that on R^d

$$\mu * \nu = \nu.$$

• Moreover, for any $x_0 \in \mathbb{R}^d$,

$$\mu^{*n} * \delta_{x_0} \to \nu.$$

9/14

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Self-Affine Measures

- 1. What is dim ν ?
- 2. Is ν absolutely continuous, i.e. is there $f \in L^1(\mathbb{R}^d)$ such that

 $\nu = f \cdot d \mathrm{vol}_{\mathbb{R}^d}.$

3) Local Limit Theorem on Symmetric Spaces

Local Limit Theorem on Symmetric Spaces

• Context: Local limit theorem on \mathbb{R} . If $\text{Law}(Z_i)$ is non-lattice (i.e. not supported on $\alpha\mathbb{Z}$ for $\alpha \in \mathbb{R}$) and centered. Then $Y_n = Z_1 + \ldots + Z_n$ satisfies

$$\lim_{n\to\infty}\sqrt{n}\cdot\mathbb{P}[Y_n\in[a,b]]=c\cdot(b-a)$$

for c > 0 a constant depending only on $Law(Z_i)$.

- $SL_2(\mathbb{R}) = \{g \in M_2(\mathbb{R}) : det(g) = 1\}.$ $SL_2(\mathbb{R})$ is the isometry group of hyperbolic space.
- Open Problem: Does a local limit theorem hold for $SL_2(\mathbb{R})$?

Local Limit Theorem on Symmetric Spaces

- In some cases a local limit theorem is known: (Bougerol 1982, Kogler 2022)
- \blacktriangleright If $\mathrm{supp}(\mu)$ is a probability measure on $\mathrm{SL}_2(\mathbb{R})$ that satisfies some assumptions then

$$\lim_{n\to\infty}\frac{n^{3/2}}{\sigma^n}\mu^{*n}(B)=\nu_{\mu}(B)$$

for $\sigma = ||\lambda_{\mathcal{G}}(\mu)||_{\mathrm{op}} < 1$ and ν_{μ} a measure on $\mathcal{G}.$

The measure ν_μ is μ-stationary (μ * ν_μ = ν_μ) and not the Haar measure.

Thank you for your attention