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1. B8.1 Class 1

1.1. Motivation for Measure Theory. In integration theory, one usually first
learns the Riemann integral. While the Riemann integral is intuitive, it has several
disadvantages:

(1) 1Q∩[0,1] is not Riemann integrable. But we want this function to have
integral 0.

(2) It is desirable to have∫
lim
n→∞

fn dµ = lim
n→∞

∫
fn dµ

under suitable assumptions. No result like monotone convergence or dom-
inated convergence holds for the Riemann integral.

(3) Does not generalize easily to other spaces or ways of measuring the space.
(4) The space of Riemann integrable functions is not complete, i.e. not every

Cauchy sequence converges.

Integrating functions is related to measuring sets. Indeed if µ is a measure and
g is a simple function , i.e. g =

∑
i ai1Ai

is a finite sum of characteristic functions,
then we define ∫

f dµ =
∑
i

aiµ(Ai).

This allows us to define the integral of a positive function f as∫
f dµ := sup

{∫
g dµ : g simple and 0 ≤ g ≤ f

}
.

In an ideal world, we would be able to measure every set. But this is not possible
for R as the following example shows. Denote by P(R) the set of subsets of R.

Theorem 1.1. (Dystopia of Measure Theory) There is no function λ : P(R) →
[0,∞] satisfying the following properties:

(1) λ([a, b]) = b− a for all a < b.
(2) λ(A+ x) = λ(A) for all A ∈P(R) and x ∈ R.
(3) If A1, A2, . . . is a sequence of disjoint sets in P(R), then it holds that

λ

⋃
i≥1

Ai

 =
∑
i≥1

λ(Ai).

Proof. The proof is by contradiction. Assume that such a function exists and
consider the quotient R/Q. Then for every equivalence class c ∈ R/Q, using the
axiom of choice we choose an xc ∈ [0, 1] representing that class, i.e. such that
c = xc +Q. Denote V = {xc : c ∈ R/Q} ⊂ [0, 1].

Let q1, q2, . . . be an enumeration of the rational numbers in [−1, 1] and note that
the sets V +qi are all disjoint. Indeed assume that x ∈ (V +qi)∩(V +qj) for some i
and j. Then there are equivalence classes c, c′ ∈ R/Q such that x = xc+qi = xc′+qj .
It follows that c = c′ and thus xc = xc′ and therefore qi = qj .

Also it holds that [0, 1] ⊂
⋃

i≥1 V + qi ⊂ [−1, 2]. Therefore by (1) and (2)

1 ≤
∑
i≥1

λ(V + qi) =
∑
i≥1

λ(V ) ≤ 3.

This is a contradiction however as
∑

i≥1 λ(V ) is either 0 or ∞. □
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1.2. σ-algebras. By Theorem 1.1, if we want measure subsets of R, it only makes
sense to work with a subset of P(R). This leads to the definition of a σ-algebra.

Definition 1.2. Given a set Ω, a collection of subsets A ⊂ P(Ω) is called a
σ-algebra if the following properties hold:

(1) (Non trivial) ∅,Ω ∈ A
(2) (Complements) If A ∈ A then Ac ∈ A .
(3) (Countable unions) If A1, A2, . . . are in A then

⋃
i≥1Ai ∈ A .

We remark the following:

(1) As (
⋃
Ai)

c =
⋂
Ac

i , it follows that a σ-algebra is stable under countable
intersections.

(2) An arbitrary intersection of σ-algebras is again a σ-algebra.
(3) A union of σ-algebras is not necessarily a σ-algebra. Indeed, if Ω = {1, 2, 3},

Then consider the σ-algebras

A1 = {∅,Ω, {1}, {2, 3}} and A2 = {∅,Ω, {2}, {1, 3}}.

Then A1 ∪A2 is not a σ-algebra as {1, 2} = {1} ∪ {2} is not in A1 ∪A2.

We give the following list of important examples:

(1) {∅,Ω} and {∅,Ω, A,Ac} for any A ∈ Ω are basic examples of σ-algebras.
(2) On a topological space X, the Borel σ-algebra B(X) is the smallest σ-

algebra that contains all open sets of X.
(3) The set constructed in Theorem 1.1 is an example of a set not in B(R).
(4) The power set P(Ω) is a σ-algebra, but it is sometimes not useful.
(5) Let P = (Pj)j≥1 be a partition of a set Ω. Then the collection of sets U(P)

consisting of all possible unions of P is a σ-algebra.

Lemma 1.3. If Ω is countable, every σ-algebra arises from a partition.

Proof. Let A be a σ-algebra on Ω. For each x ∈ Ω, we define

[x]A =
⋂

A∈A ,x∈A

A.

We claim that [x]A ∈ A . Indeed for each element y ∈ Ω\[x]A there is some set
Ay ∈ A such that x ∈ Ay and y ̸∈ Ay. Therefore

[x]A =
⋂

y∈Ω\[x]A

Ay

and so [x]A is a countable intersection of elements in A and therefore itself in A .
Note that if for two elements x, y ∈ X we have that [x]A ⊂ [y]A , then [x]A =

[y]A as otherwise it holds that y ∈ A = [y]A \[x]A and therefore x ∈ Ac and [x]A
and [y]A are disjoint. The latter implies that [x]A is a partition of Ω. Indeed, if
[x]A ∩ [y]A is non-empty for some x, y ∈ Ω, then there is some z ∈ [x]A ∩ [y]A . It
follows that [z]A ⊂ [x]A as well as [z]A ⊂ [y]A and therefore [x]A = [z]A = [y]A .
Moreover, every set A ∈ F is a union

A =
⋃
x∈A

[x]A .

This concludes the proof that A arises from a partition. □
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1.3. Measures. Recall the following definition.

Definition 1.4. Let A be a collection of subsets of Ω containing the empty set
∅. A set function on A is a function µ : A with µ(∅) = 0. We say that µ is
countably additive, or σ-additive, if for all sequences (An)n≥1 of disjoint sets in A
with

⋃
n≥1An ∈ A we have

µ

⋃
n≥1

An

 =

∞∑
n=1

µ(An).

Lemma 1.5. Let µ : A → [0,∞) be an additive set function on an algebra A
taking only finite values. Show that µ is countably additive if and only if for every
sequence (An)n≥1 of sets in A with An ↓ ∅ we have limn→∞ µ(An) = 0.

Proof. If µ is countably additive, consider Bn = Ω\An and note Bn ↑ Ω. It follows
that limn→∞ µ(Bn) = µ(Ω) (which are all finite) and therefore limn→∞ µ(An) = 0.

On the other hand, if the claim holds, then let (An)n≥1 be a sequence of disjoint

sets in A with A =
⋃

n≥1An ∈ A . Then set Cn = A\
(⋃

1≤i≤nAi

)
and note that

Cn ↓ ∅. Thus the claim follows since µ is additive and therefore

µ(A) = µ

 ⋃
1≤i≤n

Ai

+ µ(Cn) =

n∑
i=1

µ(Ai) + µ(Cn),

implying the claim by sending n→∞ and using that µ(Cn)→ 0. □

1.4. π-λ systems Lemma. We first recall the following definitions.

Definition 1.6. A collection of sets A is called a π-system if it is stable under
intersections, i.e. A,B ∈ A implies A ∩B ∈ A .

Definition 1.7. A collection of sets M is called a λ-system if the following prop-
erties are satisfied:

(1) Ω ∈M ,
(2) If A,B ∈M with A ⊂ B then B\A ∈M ,
(3) If A1 ⊂ A2 ⊂ . . . is an increasing sequence of subsets of M , then

⋃
i≥1Ai ∈

M .

We note the following:

(1) A collection of subsets is a σ-algebra if and only if it is a π-system and a
λ-system.

(2) (π-λ systems Lemma) Let M be a λ-system and A be a π-system. Then
if A ⊂M it holds that σ(A ) ⊂M .

An example where the π-λ-systems lemma is useful, is the following lemma.

Lemma 1.8. Let µ1 and µ2 be finite measures on a measurable space (Ω,F ) with
µ1(Ω) = µ2(Ω). Then the collection of sets {A ∈ F : µ1(A) = µ2(A)} is a λ-
system. In particular, if µ1 and µ2 agree on a π-system A with σ(A ) = F then
they agree on the whole F .

Proof. The second claim follows from the first and the π-λ-systems lemma. To
show the first, denote by M = {A ∈ F : µ1(A) = µ2(A)}. Then by assumption
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Ω ∈ M . Next consider A,B ∈ M with A ⊂ B. As A and B\A are disjoint, it
follows that

µ1(A) + µ1(B\A) = µ1(B) = µ2(B) = µ2(A) + µ2(B\A).
As µ1(A) = µ2(A) by assumption, we conclude µ1(B\A) = µ2(B\A) and therefore
B\A ∈ M . Finally, if A1 ⊂ A2 ⊂ . . . is an increasing sequence of subsets of M ,
then writing A =

⋃
i≥1Ai by continuity from above,

µ1(A) = lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2(A).

This concludes the proof. □

We recall the monotone class theorem.

Theorem 1.9. (Monotone Class Theorem) Let H be a class of bounded functions
from Ω to R satisfying the following:

(1) H is a vector space.
(2) The constant function 1 is in H .
(3) If (fn)n≥1 is a sequence in H such that fn ↑ f for a bounded function f ,

then f ∈H .

If C ⊂ H is stable under pointwise multiplication, then H contains all bounded
σ(C )-measurable functions.

Theorem 1.10. On a measurable space (Ω,F ), let X1, . . . , Xk be random variables
and let G = σ(X1, . . . , Xk). Consider

A =

{
k⋂

i=1

X−1
i (Ai) : Ai ∈ B(R)

}
.

Then A is a π-system and σ(A ) = G .
Moreover, if Y is G -measurable, then Y = F (X1, . . . , Xk) for some measurable

function F : Rk → R.

Proof. The collection A is a π-system since if B1 =
⋂k

i=1X
−1
i (A1,i) and B2 =⋂k

i=1X
−1
i (A2,i) are in A for A1,i, A2,i ∈ B(R) for 1 ≤ i ≤ k, then

B1 ∩B2 =

k⋂
i=1

X−1
i (A1,i ∩A2,i).

Moreover, σ(A ) = G since A contains X−1
i (A) for every A ∈ B(R) and 1 ≤ i ≤ k

and therefore σ(A ) ⊃ G . Also A ⊂ G and so σ(A ) ⊂ σ(G ) = G , showing that
σ(A ) = G . We observe that we have not used the π − λ-systems lemma here.

Consider H to be the class of bounded function of the form F (X1, . . . , Xk) for
some measurable F : Rk → R. The class H satisfies the assumption of the Mono-
tone Class Theorem since if Yn = Fn(X1, . . . , Xk) with Yn ↑ Y for Y a bounded
function, then we can take F = lim supn≥1 Fn and check that Y = F (X1, . . . , Xk).
We furthermore define C = {1C : C ∈ A }. Then C ⊂ H since if C =⋂k

i=1X
−1
i (Ai) then 1C =

∏k
i=1 1Ai

◦Xi . As A is a π-system and 1A · 1B = 1A∩B ,
the set C is stable under pointwise multiplication and since σ(A ) = G it holds that
σ(C ) = G . Therefore by the Monotone Class Theorem, H contains all bounded
G = σ(C ) measurable functions. On the other hand, since every function in H is
G -measurable, the class H is exactly the set of G -measurable bounded functions.
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It remains to deal with the case of unbounded functions. Without loss of gen-
erality by writing Y = max(Y, 0) − max(−Y, 0), we can assume without loss of
generality that Y is positive. Given a G -measurable positive function Y : Ω → R,
we consider Yn = max(Y, n). Thus there is a measurable function Fn : Rk → R
such that Yn = Fn(X1, . . . , Xk). We set F = lim supn≥1 Fn. Then F is measurable
and we claim that Y = F (X1, . . . , Xk). Indeed if for given x ∈ Ω we have that
Y (x) ≤ n for some n ≥ 1 then Yℓ(x) = Y (x) for all ℓ ≥ n and hence

Y (x) = sup
ℓ≥n

Yℓ(x) = sup
ℓ≥n

Fℓ(X1(x), . . . , Xk(x)) = F (X1, . . . , Xn)

showing the claim. □

1.5. Product Algebras and Product Measures. Given probability spaces (Ωi,Fi)
for 1 ≤ i ≤ k be measurable spaces. Consider the space Ω = Ω1 × . . .× Ωk. Then
the product σ-algebra F = F1× . . .×Fk is the smallest σ-algebra on Ω containing
the sets

A1 × . . .×Ak

with Ai ∈ Fi for 1 ≤ i ≤ k. A few comments:

(1) Consider the projections πi : Ω → Ωi. Then F is the smallest σ-algebra
such that the maps πi are measurable.

(2) Warning: The notation F1× . . .×Fk is slightly confusing as not all sets are
of the form A1×. . .×Ak. Indeed, on R2 every open set is Borel measurable.

I also want to simplify a Lemma from the lecture notes and the exercise sheet.

Lemma 1.11. Let (Ω1,F1) and (Ω2,F2) be measurable spaces and consider (Ω,F ) =
(Ω1 × Ω2,F1 × F2). Let f : Ω → R be a measurable function and let ω1 ∈ Ω1.
Then the map

ω2 7→ f(ω1, ω2)

is measurable.

Proof. Consider the injection

ι1 : Ω2 → Ω, ω2 7→ (ω1, ω2).

Then ι1 is measurable since

ι−1
1 (A1 ×A2) =

{
A2, ω1 ∈ A1,

∅ ω1 ̸∈ A1.

Thus the map in question is the composition ι1 ◦ f and therefore measurable as the
composition of measurable maps is measurable. □

Given now probability spaces (Ωi,Fi,Pi) for 1 ≤ i ≤ k, there is a unique prob-
ability measure P on (Ω,F ) satisfying

P(A1 × . . .×Ak) = P(A1) · · ·P(Ak).
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1.6. Random Variables and Distributions. Let (Ω,F ,P) be a probability
space. A random variable is a measurable map X : (Ω,F ) → (R,B(R)). Each
random variable X determines a probability measure µX on (R,B(R)) defined by

µX(A) = P(X ∈ A) = P(X−1(A))

for A ∈ B(R). In other words, µX is the push forward of P under X. The measure
µX is called the distribution or the law of X. If two random variables X and Y
(not necessarily defined on the same probability space) have the same distribution,
then we write X ∼ Y .

So we arrive at a map

DΩ : {random variables on (Ω,F ,P)} → {probability measures on (R,B(R))},
X 7→ µX .

This map is highly non-injective and sometimes surjective. Indeed consider the
probability space ((0, 1),B((0, 1)),m(0,1)) and the random variables

Y1(ω) = 1(0,0.5)(ω)− 1[0.5,1)(ω),

Y2(ω) = 1(0,0.25)(ω) + 1[0.75,1)(ω)− 1[0.25,0.75)(ω).

Then the distribution of Y1 and Y2 are both (δ1 + δ−1)/2. Indeed, for example,

µY1(1) = m(0,1)((0, 0.5)) = 0.5 and µY1(−1) = m(0,1)([0.5, 1)) = 0.5.

A further thing to notice is that to each measure µ on R, we can define the
distribution function

Fµ(x) = µ((−∞, x]).

The function Fµ is increasing, right continuous and satisfies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

It was proved in the lecture that

{probability measures on (R,B(R))} ←→ {distribution functions},
µ←→ Fµ.

is a bijection. For a random variable, the cumulative distribution function
(CDF) is defined as the distribution function of µX , i.e.

FX(x) = µX((−∞, x]) = P[X ≤ x].

Consider now Φ : R → (0, 1) to be the cumulative distribution function (CDF)
of the standard normal random variable, i.e.

Φ(x) = P[N (0, 1) ≤ x] =
∫ x

−∞

1√
2π
e−

x2

2 dx.

Then Φ : R → (0, 1) is a bijection and consider Ψ = Φ−1. We define the random
variable X on ((0, 1),B((0, 1)),m(0,1)) as X(ω) = Ψ(ω). We have that X ∼ N (0, 1)
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since

FX(x) = m(0,1)(X ≤ x)
= m(0,1)(X

−1(−∞, x))
= m(0,1)(Φ(−∞, x))
= m(0,1)((Φ(−∞),Φ(x))

= Φ(x)

= P[N (0, 1) ≤ x].

Given two random variables X and Y that are defined on the same probability
space (Ω,F ,P) the joint distribution of X and Y is defined by

µ(X,Y )(A×B) = P[X ∈ A, Y ∈ B] = P(X−1(A) ∩ Y −1(B)).

As above, the joint distribution is determined by the joint cumulative distribution
function

F(X,Y )(x, y) = P[X ≤ x, Y ≤ y].

We observe that it is a well-known fact that

µ(X,Y ) = µX × µY if and only if F(X,Y )(x, y) = FX(x) · FY (y) ∀x, y ∈ R.
(1.1)

If the latter property holds, the random variablesX and Y are called independent,
an important topic discussed later on.

Returning to our concrete examples, we now want to study the joint distributions
(X,Y1) and (X,Y2). We could calculate the cumulative density function, but it is
a bit easier to calculate the measures directly. We note that if x < 0 then

µ(X,Y1)((−∞, x]× {1}) = m(0,1)(X ≤ x, Y1 = 1)

= m(0,1)({ω ∈ (0, 1) : X(ω) ≤ x, Y1(ω) = 1})
= m(0,1)({ω ∈ (0, 1/2) : X(ω) ≤ x})
= Φ(x).

Similarly if x ≥ 0,

µ(X,Y1)((−∞, x]× {−1}) = m(0,1)({ω ∈ (1/2, 1) : X(ω) ≤ x}) = Φ(x)− 1

2
.

Moreover, to calculate the distribution of (X,Y2) note that for x ≤ Ψ(1/4) or
x ≥ Ψ(3/4),

µ(X,Y2)((−∞, x]× {1}) =

{
Φ(x) for x ≤ Ψ(1/4),

Φ(x)−Ψ(3/4) + Ψ(1/4) for x ≥ Ψ(3/4).

One similarly shows that µ(X,Y2) is supported for y = −1 in the range Ψ(1/4) ≤
x ≤ Ψ(3/4). Indeed, for such an x,

µ(X,Y2)((−∞, x]× {−1}) = Φ(x)−Ψ(1/4).
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Finally we want to consider the random variable |X|. We note that for x ∈ R
F|X|(x) = µ|X|((−∞, x])

= m(0,1)(ω ∈ (0, 1) : |X(ω)| ≤ x)

=

{
0 if x ≤ 0,

2Φ(x)− 1 if x ≥ 0.

and furthermore for y ∈ R,

FY1
(y) =


0 if y < −1,
1/2 if − 1 ≤ y < 1,

1 if y ≥ 1.

We claim that the joint distribution of (|X|, Y1) is µ|X| × µY1
. To show the latter,

we prove F|X|,Y1
(x, y) = F|X|(x)FY1

(y) for all x, y ∈ R which is sufficient by (1.1).
For x ≥ 0, we note that

F(|X|,Y1)(x,−1) = m(0,1)({ω ∈ [1/2, 1) : |X(ω)| ≤ x})
= P[N (0, 1) ∈ [0, x)]

= Φ(x)− 1

2
= F|X|(x)FY1

(−1).

One checks the same observation in all the other relevant ranges, which implies the
claim.
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2. B8.1 Class 2

2.1. Borel-Cantelli Lemmas. First we recall the Borel-Cantelli Lemmas.

Theorem 2.1. (First Borel-Cantelli Lemma) Let A1, A2, A3, . . . be events in a
probability space (Ω,F ,P) and assume that

∞∑
i=1

P(Ai) <∞.

Then

P(lim supAi) = 0,

where

lim sup
i→∞

Ai = {ω : ω ∈ Ai for infinitely many i} =
⋂
i≥1

⋃
j≥i

Aj .

To state the second Borel-Cantelli Lemma recall that a sequence of events
A1, A2, A3, . . . in a probability space (Ω,F ,P) are called independent if

P[Ai1 ∩ . . . ∩Aij ] = P[Ai1 ] · · ·P[Aij ]

for all i1, . . . , ij ∈ N. It is important to note that it does not suffice to check
pairwise independence, meaning that P[Ai ∩ Aj ] = P[Ai]P[Aj ] for all i and j, to
conclude that (An)n≥1 are independent.

Theorem 2.2. (Second Borel-Cantelli Lemma) Let A1, A2, A3, . . . be independent
events in a probability space (Ω,F ,P) and assume that

∞∑
i=1

P(Ai) =∞.

Then

P(lim supAi) = 1.

First we study the records of independent uniform random variables.

Lemma 2.3. Let X1, X2, . . . be independent uniform [0, 1] random variables. Let
An for n ≥ 1 be event that Xn is the record among X1, . . . , Xn, i.e.

An = {Xn > max(X1, . . . , Xn−1)}.

Then almost surely infinitely many records occur, i.e. An happens infinitely many
often.

Also denote

Dn = {Xn > Xn−1 > max(X1, . . . , Xn−2)}
for n ≥ 2 the event that a double record occurs at n. Then with probability one only
finitely many double records occur.

Proof. Consider the sets An. We first want to calculate P[An]. We claim that for
each permutation σ : {1, . . . , n} → {1, . . . , n},

P[Xσ(1) > . . . > Xσ(n)] =
1

n!
.
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This follows as P[Xi = Xj ] = 0 for i ̸= j and as the probability density function of
(X1, . . . , Xn) is invariant by permutation since the variables are independent (see
Lemma 2.8 for more details). Therefore it follows that

P[An] =
#{σ : σ(n) = n}

n!
=

(n− 1)!

n!
=

1

n
,

and

P[Dn] =
#{σ : σ(n) = n, σ(n− 1) = n− 1}

n!
=

1

n(n− 1)
.

Thus it follows that
∑

n≥2 P[Dn] <∞ and hence by the first Borel-Cantelli Lemma,
with probability one, only finitely many double records occur.

On the other hand
∑

n≥1 P[An] =∞. Therefore to show that An occurs infinitely
often almost surely, by the second Borel-Cantelli Lemma, it suffices to show that the
sets An are independent. We give two proofs of this. First, we give the following
intuitive argument. Notice that given J ⊂ {1, . . . , n − 1}, consider the set A =⋂

j∈J Aj . Since a record happening at n, has no influence on records happening
before, it holds that

P[A|An] =
P[A ∩An]

P[An]
= P[A].

Therefore the claim follows by induction on n.
For the second proof we only treat the case An∩Am. The general case is similar

and left to the reader. We need to show that

P[An ∩Am] =
1

n ·m
for any n ̸= m. Without loss of generality we assume that n > m. By the above
observations, the claim reduces to counting the permutations σ : {1, . . . , n} →
{1, . . . , n} such that σ(n) = n and σ(m) > σ(1), . . . , σ(m−1). The condition σ(n) =
n reduces to counting permutations σ : {1, . . . , n − 1} → {1, . . . , n − 1} satisfying
σ(m) > σ(1), . . . , σ(m−1). We can first choose the elements σ(n−1), . . . , σ(m+1)
freely of which we have in total (n− 1) · · · (m+1) many choices. Then the element
σ(m) is determined and the remaining elements σ(m − 1), . . . , σ(1) can be chosen
freely resulting in (m − 1)! more choices. Therefore there are indeed (n − 1)!/m
many such permutations and hence

P[An ∩Am] =
1

n!
· (n− 1)!

m
=

1

n ·m
.

□

Next we show for the law of large numbers to hold, the variables need to have
the same variance.

Lemma 2.4. Let (Xn)n≥2 be a sequence of independent random variables such that

P[Xn = n] = P[Xn = −n] = 1

2n logn
and P[Xn = 0] = 1− 1

n logn
.

Denote Sn =
∑n

i=2Xi. Then
Sn

n converges to 0 in probability but not almost surely.

Proof. By Chebyschev’s inequality, since Sn has mean zero,

P[|Sn| ≥ εn] ≤
1

n2ε2
Var(Sn).
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Moreover, by independence

Var(Sn) = E

 n∑
i,j≥2

XiXj

 =

n∑
i,j≥2

E[XiXj ]

=

n∑
i=2

E[X2
i ] =

n∑
i=2

i2

i log i
=

n∑
i=2

i

log i
≤ n2

log n

since x
log x has derivative log x−1

(log x)2 and is therefore increasing for x > e.

Thus,

P[|Sn| ≥ εn] ≤
1

n2ε2
Var(Sn) ≤

1

ε2 log n
→ 0

and so Sn

n converges to zero in probability.

We now show that Sn

n does not converge to 0 almost surely. Indeed notice that

Sn+1

(n+ 1)
− Sn

n
=
Sn+1 − Sn + Sn

(n+ 1)
− Sn

n

=
Sn+1 − Sn

(n+ 1)
− Sn

n(n+ 1)
=

Xn+1

(n+ 1)
− Sn

n(n+ 1)
.

Thus if Sn

n → 0, then it follows that Xn

n → 0. However this is not the case as almost
surely, by the second Borel-Cantelli Lemma, Xn is ±n infinitely many often. Indeed
denote An = {Xn = ±n} and note that (An)n≥2 are independent as the (Xn)n≥2

are. Then ∑
n≥2

P[An] =
∑
n≥2

1

n logn
=∞

since by the integral criterion it suffices to show∫ ∞

2

1

x log x
dx =

∫ ∞

log 2

1

y
dy =∞

by substituting y = log x. □

2.2. Standard Random Walk on Z. We now give an extensive deduction that
the standard simple random walk on Z visits every point infinitely many often.
We first show that there exists a sequence of independent coinflips. This follows
abstractly from the following lemma.

Lemma 2.5. Let µ1, µ2, . . . be a sequence of probability measures on R. Then
there exists a sequence of independent random variables X1, X2, . . . such that Xi is
distributed as µi for all i ≥ 1.

Proof. Consider Ω = R⊗N endowed with the product σ-algebra and the product
measure µ =

⊗
i≥1 µi. Setting Xi to be the i-th coordinate map, the proof is

concluded. □

We can also give the following explicit construction.

Lemma 2.6. On ([0, 1],B([0, 1]),m[0,1]) denote

An = {ω ∈ [0, 1] : ⌊2nω⌋} is odd}.
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Then the sequence of random variables Xn = 1An
is independent identically dis-

tributed with

P[Xn = 1] = P[Xn = 0] =
1

2
.

Proof. Note that

An =

[
1

2n
,
2

2n

)
∪
[
3

2n
,
4

2n

)
∪ . . . ∪

[
2n − 1

2n
,
2n

2n

)
.

So these are 2n−1 many intervals of length 2−n. This implies that P[Xn = 1] =
P[Xn = 0] = 1/2. To show that the sequence of random variables is independent,
it suffices to show that the sets Ai are independent.

For simplicity, we first consider the case of An ∩Am. We note that

An ∩Am =
⋃

1≤k≤2n odd
k odd mod 2n−m+1

[
k

2n
,
k + 1

2n

)
,

which easily implies independence. □

Let now be (Xn)n≥1 be a sequence is independent identically distributed real
random variables such that

P[Xn = 1] = P[Xn = −1] = 1/2.

Let S0 = 0 and, for all n ≥ 1 denote Sn =
∑n

k=1Xk.
For x ∈ Z let

Ax = {Sn = x for infinitely many n},
B− = {lim inf

n→∞
Sn = −∞} and B+ = {lim sup

n→∞
Sn =∞}.

Let Tk = σ(Xk+1, Xk+2, . . .) and T =
⋂

k≥1 Tk, which is a σ-algebra since it is
the intersection of σ-algebras. We note that B± ∈ Tk for all k ≥ 1 since being in
B± only depends on the values of Xk+1, Xk+2, . . .. More formally,

B± = {lim inf
n→∞

Sn = ±∞} = {lim inf
n→∞

Sk+n = ±∞}

and the map

Φk : Ω→ R, ω 7→ lim inf
n→∞

Sk+n

is σ(Xk+1, . . .) measurable since each of Sk+n is. Thus B± = Φ−1
k (±1) and the

claim follows.
By Kolmogorov’s 0-1 law, we conclude P[B±] ∈ {0, 1}. By symmetry it follows

that P[B+] = P[B−]. More formally, {lim infn→∞(−Sn) = −∞} = {lim infn→∞ Sn =
∞}. Since (Xn) and (−Xn) have the same distribution, so do lim infn→∞(−Sn)
and lim infn→∞ Sn.

The event that Sn+k − Sn = k is equivalent to Xn+1 = . . . = Xn+k = 1, which
has probability 1

2k
. Denote by An = {Xn·k+1 = . . . = Xn·k+k = 1}. Then the

sets An are independent (since the Xi are independent) and all have probability
1
2k
. Thus it follows by the second Borel-Cantelli Lemma that An happens infinitely

many often and therefore for all k ≥ 1,

lim sup
n→∞

(Sn+k − Sn) = k

almost surely. This implies that P[Bc
− ∩ Bc

+] = 0 and hence P[B+] = P[B−] = 1.
Therefore for all x ∈ Z, P[Ax] = 1.
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Now we suppose that (Xn)n≥1 are i.i.d. random variables but with P[Xn] = p
and P[Xn = −1] = 1− p for some p ̸= 1/2. Then we claim that P[A0] = 0.

First note that {S2n+1 = 0} = ∅ for all n ≥ 0 since one needs an even number
of steps to return to 0. Observe further that

P[S2n = 0] =

(
2n

n

)
pn(1− p)n.

Note that since 4n = (1 + 1)2n =
∑2n

k=0

(
2n
k

)
and therefore

(
2n
n

)
≤ 4n. So P[S2n =

0] ≤ (4p(1 − p))n and as 4p(1 − p) < 1 if p ̸= 1/2 the quantity P[S2n = 0] decays
exponentially fast, showing that

∑∞
n=0 P[S2n = 0] <∞. Thus the claim follows by

the first Borel-Cantelli Lemma.

2.3. Hölder’s Inequality. Let (Ω,F ,P) be a probability space. Let X : Ω → R
be a random variable and denote for p ∈ [1,∞) by

||X||p = E[|X|p]
1
p =

(∫
|X(ω)|p dP(ω)

) 1
p

.

Recall that the Cauchy-Schwarz inequality states that for random variables X
and Y we have

||XY ||1 ≤ ||X||2||Y ||2.
Hölder’s inequality generalises the Cauchy-Schwarz inequality and states that for
p, q ∈ [1,∞) with 1

p + 1
q = 1 we have

||XY ||1 ≤ ||X||p||Y ||q.

Using the Hölder inequality, we can prove the following lemma.

Lemma 2.7. Let X and Y be two positive random variables such that for all x > 0,

xP[X ≥ x] ≤ E[Y 1X≥x].

Then it holds that ||X||p ≤ q||Y ||p for any p > 1 and q = p/(p− 1).

Proof. We assume that Y ∈ Lp as otherwise the claim is obvious. Notice that since
X is positive, using Fubini since X and Y are positive,

E[Xp] = E

[∫
(0,X]

pxp−1 dx

]

=

∫
Ω

∫ ∞

0

1{x≤X(ω)}px
p−1 dx dP(ω)

=

∫ ∞

0

P[X ≥ x]pxp−1 dx

≤
∫ ∞

0

E[Y 1X≥x]px
p−2 dx

= E

[
Y

∫ X

0

pxp−2 dx

]
=

p

p− 1
E[Xp−1Y ] = qE[Xp−1Y ].
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If ||X||p <∞, then note that ||Xp−1||q = E[Xp]
p−1
p = ||X||p−1

p is also finite and it

follows by Hölder’s inequality since 1
q + 1

p = (p−1)
p + 1

p = 1 that

E[Xp] ≤ qE[Xp−1Y ] ≤ q||Xp−1||q||Y ||p.

The claim of the lemma follows in this case since

E[Xp]

||Xp−1||q
=

E[Xp]

E[Xq(p−1)]
1
q

= E[Xp]1−
1
q = ||X||p.

For the general case, we use the standard trick of truncation. Indeed, consider
Xn = X ∧ n. Notice that the assumed inequality also holds for Xn and Y . Then
the claim follows as by monotone convergence, limn→∞ ||Xn||p = ||X||p. □

2.4. Interchangeability of Random Variables. A measure µ on R is called
absolutely continuous if there is a function p ∈ L1(R) (with respect to the Lebesgue
measure) such that

µ(A) =

∫
A

p(x) dmR(x).

The function p is called the density function of µ. By the Radon-Nikodym theorem
this is equivalent to µ(N) = 0 for every Lebesgue null set N . We say that a random
variable is absolutely continuous if its distribution is. For example, uniform random
variables and normal random variables are absolutely continuous.

Lemma 2.8. Let X1, X2, . . . be independent identically distributed absolutely con-
tinuous random variables. Then for any permutation σ : {1, . . . , n} → {1, . . . , n} it
holds that

P[Xσ(1) > . . . > Xσ(n)] =
1

n!

Proof. Let p be the density function of the Xi. Then by independence

pn(x1, . . . , xn) =

n∏
i=1

p(xi)

is the density function of X = (X1, . . . , Xn), which is permutation invariant.
Notice that the set {x ∈ Rd : xi = xj} with i ̸= j has Lebesgue measure zero.

Therefore P[Xi = Xj ] = 0 for all i ̸= j and it follows that

P

[⋃
σ

{Xσ(1) > . . . > Xσ(n)}

]
=
∑
σ

P
[
Xσ(1) > . . . > Xσ(n)

]
= 1.

Moreover,

P
[
Xσ(1) > . . . > Xσ(n)

]
=

∫ ∞

−∞

∫ xσ1

−∞
· · ·
∫ xσ(n−1)

−∞
pn(x1, . . . , xn) dxσ(1) · · · dxσ(n).

As pn is permutation invariant and since the map Φσ : Rd → Rd, x 7→ σ(x) preserves
the Lebesgue measure, the latter integral does not depend on σ. This concludes
the proof. □

Remark 2.9. In this proof we only used that pn is permutation invariant and that
P[Xi = Xj ] = 0. The former follows since the Xi are independent, while in the
latter we used that Xi is absolutely continuous.
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The following question remains: If the Xi are not absolutely continuous, is it
still the case that P[Xσ(1) > . . . > Xσ(n)] does not depend on σ? Indeed, does it
hold that

P[Xσ(1) > . . . > Xσ(n)] =
P[(X1, . . . , Xn) are distinct]

n!
.

We leave it as an exercise to the reader to prove this.
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3. B8.1 Class 3

3.1. Conditional Expectation.

Definition 3.1. Let X be an integrable random variable on (Ω,F ,P) and let A ⊂
F be a sub-σ-algebra. Then the conditional expectation of E[X|A ] ∈ L1(X,A ,P)
is uniquely characterized by

E [E[X|A ]1A] = E[X1A]

for all A ∈ A .

The conditional expectation is the expectation (or average) of X with the infor-
mation from F . We first discuss the following important example.

3.2. Properties of conditional expectation.

Lemma 3.2. Let (Ω,F ,P) be a probability space and let P = {A1, A2, . . .} be a
countable partition of Ω with P[Ai] > 0 for all i ≥ 1. Then for a random variable
X and A ∈P,

E[X|A ] =
∑
A∈P

E[X1A]

P[A]
1A.

Proof. We note that for any A ∈ A it holds that

E[E[X|A ]1A] = E[X1A].

Moreover, since E[X|A ] is A -measurable, it must be constant on the sets A .
Therefore for each A there is cA such that cA = E[X|A ]1A and hence

cA · P[A] = E[E[X|A ]1A] = E[X1A],

implying the claim. □

We can deduce the following corollary.

Corollary 3.3. Let X and Y be discrete random variables. Then for any y ∈ Im(Y )
and ω ∈ Ω,

E[X|Y ] =
∑

y∈Im(Y )

E[X1{Y=y}]

P[Y = y]
1{Y=y}.

In particular, for ω ∈ {Y = y},

E[X|Y ](ω) =
E[X1{Y=y}]

P[Y = y]
=

∑
x∈Im(x)

x · P[X = x, Y = y]

P[Y = y]
.

We note that one often uses the notation E[X|Y = y], which means the condi-
tional expectation E[X|Y ] evaluated on the set {Y = y}.

The following properties of conditional expectation were discussed in the lecture.

Lemma 3.4. Let X and Y be an integrable random variables on (Ω,F ,P) and let
A ⊂ F be a σ-algebra. The following properties hold:

(i) E[E[X|A ]] = E[X]
(ii) The conditional expectation is linear.
(iii) E[c · 1Ω|A ] = c · 1Ω.
(iv) If X is A -measurable, then E[X|A ] = X.
(v) If X is independent of A , then E[X|A ] = E[X].
(vi) If Y is A -measurable, E[XY |A ] = E[X|A ]Y .
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(vii) If X ≤ Y a.s., then E[X|A ] ≤ E[Y |A ] a.s.

Lemma 3.5. (Conditional Markov Inequality) Let X be an integrable random vari-
able, G ⊂ F be a σ-algebra and Z a strictly positive G -measurable random variable.
Then almost surely,

E[1|X|≥Z |G ] ≤ 1

Z
E[|X| |G ].

Proof. Note that Z · 1{|X|≥Z} ≤ |X| and hence using Lemma 3.4 (v) and (vi),

Z · E[1{|X|≥Z}|G ] = E[Z · 1{|X|≥Z}|G ] ≤ E[|X| |G ],

implying the claim by dividing by Z and using that Z is positive. □

3.3. Further explicit examples.

Lemma 3.6. Let X,Y be independent random variables. Then the following prop-
erties hold:

(i) E[X|X,Y ] = X.
(ii) E[h(X,Y )|X + Y,X − Y ] = h(X,Y ).
(iii) If X and Y moreover have the same distribution,

E[X|X + Y ] = E[Y |X + Y ] =
1

2
(X + Y ).

Proof. (i) follows since X is σ(X,Y )-measurable. (ii) follows since (X +Y )+ (X −
Y ) = 2X and so σ(X+Y,X−Y ) = σ(X,Y ) and hence E[h(X,Y )|X+Y,X−Y ] =
E[h(X,Y )|X,Y ] = h(X,Y ) as h(X,Y ) is σ(X,Y )-measurable.

Finally we prove (iii). We first give a heuristic deduction and then give a rigorous
proof that the claim holds. We recall from Theorem 1.27 of the notes there are
Borel measurable functions f1, f2 : R→ R such that E[X|X +Y ] = f1(X +Y ) and
E[Y |X + Y ] = f2(X + Y ). By symmetry E[X|X + Y ] and E[Y |X + Y ] must have
the same distribution. Therefore (heuristically) we have E[X|X+Y ] = E[Y |X+Y ]
almost surely and hence since

E[X|X + Y ] + E[Y |X + Y ] = E[X + Y |X + Y ] = X + Y

the claim follows.
We now give a rigorous argument that indeed E[X|X + Y ] = 1

2 (X + Y ). Since
the π-system {{X + Y ≤ c} : c ∈ R} generates σ(X + Y ), it suffices to show that

E[X1{X+Y≤c}] = E[Y 1{X+Y≤c}]. (3.1)

Indeed this shows that E[X1{X+Y≤c}] = E[X+Y
2 1{X+Y≤c}], which implies the

claim. To show (3.1), we apply Lemma 3.7 below to the function f(x, y) =
y1{x+y≤c}. □

Lemma 3.7. Let X and Y be independent identically distributed random variables
and let f : R2 → R be a measurable function such that ω 7→ f(Y (ω), X(ω)) and
ω 7→ f(X(ω), Y (ω)) are integrable random variables. Then

E[f(X,Y )] = E[f(Y,X)].

Proof. Consider f = 1A×B for A,B measurable sets in R. Then since X and Y are
independent and have the same distribution it follows that

E[f(X,Y )] = P[X ∈ A, Y ∈ B] = µX(A)µY (B)

= µY (A)µX(B) = P[Y ∈ A,X ∈ B] = E[f(Y,X)].
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By the π-λ-lemma, the claim follows for all characteristic functions f = 1C with
C a measurable set in R2. Moreover, by linearity, the claim holds for all positive
simple functions and hence by taking pointwise limits for all positive measurable
functions. Finally, writing f = f+ − f− the claim follows. □

3.4. Independence and conditional expectation.

Lemma 3.8. Let X and Y be bounded random variables on (Ω,F ,P). Then each
of the following statements implies the next:

(i) X and Y are independent.
(ii) E[X|Y ] = E[X]
(iii) E[XY ] = E[X]E[Y ].

All of the other implications fail in general.

Proof. That (i) implies (ii) is implied by Lemma 3.4 (iii). To show that (iii) follows
from (ii), we calculate

E[XY ] = E[E[XY |Y ]] = E[E[X|Y ]Y ] = E[E[X]Y ] = E[X]E[Y ],

where we have used (v) from Lemma 3.4.
To give counterexamples for the converse directions, we consider the probability

space Ω that has equal probability on three events. To give a counterexample of (iii)
implying (ii), consider (X,Y ) mapping to (0, 1), (1, 0) and (0,−1). Then E[XY ] = 0
and E[Y ] = 0 so (iii) holds but (ii) does not hold. Finally to give a counterexample
to (ii) implying (i) consider (X,Y ) mapping to (1, 1), (−1, 1) and (0, 0). Then it is
easy to check that (ii) holds, yet (i) doesn’t as

P[X = 0, Y = 0] =
1

3
̸= 1

9
= P[X = 0]P[Y = 0].

To give another example that (iii) does not imply (i) consider a Gaussian X with
mean zero and variance 1 and let Z be a coin flip (i.e. P[Z = 1] = P[Z = −1] = 0)
independent of X. Then consider Y = XZ. Then note that by independence
E[Y ] = E[X]E[Z] = 0 and E[XY ] = E[X2Z] = E[X2]E[Z] = 0. On the other hand,
X and Y are not independent since Y is also distributed like a standard Gaussian
and

P[X > 1, Y > 1] = P[X > 1, Z = 1] =
1

2
P[X > 1] ̸= P[X > 1]2 = P[X > 1, Y > 1].

□

Lemma 3.9. Let X and Y be integrable random variables on (Ω,F ,P) such that

E[X|Y ] = Y a.s. and E[Y |X] = X a.s.

Then P[X = Y ] = 1.

We first observe that if X and Y are in L2, then by Cauchy-Schwarz XY is
integrable and it holds that

E[XY ] = E[E[XY |X]] = E[X2]

and by symmetry E[XY ] = E[Y 2]. Thus it follows that

E[(X − Y )2] = E[X2] + E[Y 2]− 2E[XY ] = 0,

which implies the claim. For general X and Y we offer the following argument.
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Proof. First note that

E[Xf(Y )] = E[E[Xf(Y )|Y ]] = E[Y f(Y )]

and likewise E[Y f(X)] = E[Xf(X)]. Now let f(x) = 1x≥c, which gives

E[(X − Y )1Y≥c] = 0 = E[(X − Y )1X≥c].

Writing out the first term, we have

0 = E[(X − Y )1Y≥c] = E[(X − Y )1Y≥c>X ] + E[(X − Y )1Y≥c,X≥c].

Note that the first term is non-positive the second one has to be non-negative. But
we also have

0 = E[(X − Y )1X≥c] = E[(X − Y )1X≥c>Y ] + E[(X − Y )1Y≥c,X≥c]

and now we conclude that the second term on the right has to be non-positive.
This means that

E[(X − Y )1Y≥c,X≥c] = 0

and hence also E[(X − Y )1Y≥c>X ] so that in particular P(Y ≥ c > X) = 0 for any
c ∈ R and hence also

P(Y > X) = P

(⋃
c∈R
{Y ≥ c > X}

)
= 0.

We conclude, by symmetry, that Y = X a.s. □

Lemma 3.10. Let (Ω,F ,P) be a probability space and consider three σ-algebras
G1,G2,G3 ⊂ F . Assume that σ(G1,G3) is independent from G2 and let X be a
G3-measurable random variable. Then

E[X|σ(G1,G2)] = E[X|G1] (3.2)

Proof. We need to show that if A ∈ σ(G1,G2), then

E[E[X|σ(G1,G2)]1A] = E[X1A] = E[E[X|G1]1A].

Consider the π-system, A = {A1 ∩ A2 : A1 ∈ G1 and G2}. Since the collection of
sets that satisfy the above are a λ-system, it suffices to check the claim on A (by
the π-λ lemma). So consider A1 ∈ G1 and A2 ∈ G2. Then

E[E[X|G1]1A1∩A2
] = E[E[X|G1]1A1

1A2
]

= E[E[X1A1
|G1]1A2

]

= E[E[X1A1
|G1]] · E[1A2

]

= E[X1A1 ] · E[1A2 ]

= E[X1A1
1A2

]

= E[X1A1∩A2
]

= E[E[X|σ(G1,G2)]1A1∩A2
]

□
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We now want to give an example showing that assuming that G2 and G3 are
independent is not sufficient to conclude the claim. To see this, consider two inde-
pendent random variables ξ and η with exponential distribution with parameter 1,
i.e. their cumulative distribution function is

P[ξ ≤ x] =

{
1− e−x if x ≥ 0,

0 if x ≤ 0.

Let X1 = ξ, X2 = ξ
ξ+η and X3 = ξ + η.

Note that

E[X3|X1] = E[ξ + η|ξ] = E[η] + ξ = 1 + ξ

whereas

E[X3|σ(X1, X2)] = E[X3|σ(ξ, η)] = X3 = ξ + η.

It remains to show that X2 and X3 are independent. Indeed to show this consider
the map

f(x, y) =

(
x

x+ y
, x+ y

)
so that (X2, X3) = f(ξ, η). The map (x, y) 7→ f(x, y) = (u, v) takes (0,∞)2 →
(0, 1)× (0,∞). The inverse is given by x = uv and y = v(1− u) and therefore the
Jacobian is J(u, v) = v. Therefore for all (u, v) ∈ (0, 1)× (0,∞) we have

fX2,X3(u, v) = fη,ξ(x, y)|J(u, v)| = e−(x(u,v)+y(u,v))|J(u, v)| = ve−v.

So the joint density factories and it follows that X2 ∼ U [0, 1] and X3 ∼ Γ(2, 3)
independently of each other.

3.5. Stopping Times.

Definition 3.11. Let (Ω,F ,P) be a probability space and let (Fn)n≥1 be a filtra-
tion. A stopping time is a map τ : Ω→ N such that {τ = n} ∈ Fn.

We remark that in the definition of a stopping time we could also equivalently
require that {τ ≤ n} ∈ Fn.

Recall that for a stopping time τ we define

Fτ = {A ∈ F∞ : A ∩ {τ = n} ∈ Fn for all n ≥ 0}.

Lemma 3.12. For a stopping time τ , the collection of sets Fτ is a σ-algebra.

Proof. It is clear that Fτ contains ∅ and Ω. If A ∈ Fτ , then

A ∩ {τ ≤ n} =
⋃
k≤n

A ∩ {τ = k} ∈ Fn

and therefore Ac ∪ {τ > n} = (A ∩ {τ ≤ n})c ∈ Fn. Let B1 = Ac ∪ {τ > n} and
B2 = A∪{τ > n}, Then B1∪B2 = Ω and B1∩B2 = {τ > n}, so both of these sets
are in Fn. Since B1 is also in Fτ , it follows that B2 = Ω\(B1\(B1 ∩ B2)) ∈ Fn.
Therefore Ac ∈ Fn as Ac ∩ {τ ≤ n} = (A ∪ {τ > n})c = Bc

2 ∈ Fn.
Finally if (Ak)k≥1 is a collection of events in Fτ , then so is A =

⋂
k≥1Ak since

A ∩ {τ = n} =
⋂

k≥1Ak{τ = n} ∈ Fn as Fn is a σ-algebra. □

Lemma 3.13. If τ ≤ ρ are two stopping times, then Fτ ⊂ Fρ.
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Proof. Let A ∈ Fτ . Note that {ρ ≤ n} = {τ ≤ n, ρ ≤ n} = {τ ≤ n} ∩ {ρ ≤ n}.
Therefore for n ≥ 0,

A ∩ {ρ ≤ n} = A ∩ {τ ≤ n} ∩ {ρ ≤ n} ∈ Fn

as by assumption A ∩ {τ ≤ n} ∈ Fn and {ρ ≤ n} ∈ Fn. So A ∈ Fρ and the claim
follows. □

Lemma 3.14. Let τ be a stopping time such that for some K ≥ 1 and ε > 0 we
have for every n ≥ 0, almost surely

P[τ ≤ n+K |Fn] = E[1{τ≤n+K} |Fn] ≥ ε.
Then it holds that E[τ ] <∞.

Proof. The assumed condition is equivalent to P[τ > n+K |Fn] = E[1{τ>n+K} |Fn] ≤
(1−ε) almost surely. For m = 0, the claim is obvious since P[τ > 0] ≤ 1 = (1−ε)0.
For the inductive step we calculate,

P[τ > mK] = E[1{τ>mK}]

= E[1{τ>mK}1{τ>(m−1)K}]

= E[E[1{τ>mK}1{τ>(m−1)K}|F(m−1)K ]]

= E[1{τ>(m−1)K}E[1{τ>(m−1)K+K}|F(m−1)K ]]

≤ (1− ε)E[1{τ>(m−1)K}] = (1− ε)P[τ > (m− 1)K] ≤ (1− ε)m.
We finally deduce that E[τ ] <∞. Indeed,

E[τ ] =
∞∑
ℓ=0

ℓ · P[τ = ℓ]

=

∞∑
m=0

(m+1)K∑
ℓ=mK+1

ℓ · P[τ = ℓ]

≤
∞∑

m=0

(m+1)K∑
ℓ=mK+1

ℓ · P[τ > mK]

≤
∞∑

m=0

(m+ 1)K2(1− ε)m <∞.

□
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4. B8.1 Class 4

4.1. Martingales.

Definition 4.1. An adapted and integrable stochastic process (Mn)n≥1 is called a
martingale if

E[Mn+1|Fn] =Mn

for n ≥ 1.

4.1.1. Bellman’s Optimality Principle. Consider (εn)n≥1 i.i.d. random variables
with distribution

P[εn = 1] = p and P[εn = −1] = q = 1− p
with p ∈ (1/2, 1). We now want to create an investment strategy by betting on the
outcome of εn. Denote Fn = σ(ε1, . . . , εn). Let Z0 > 1 and consider

Zn = Zn−1 + εnVn,

where Vn is Fn−1-measurable and strictly between 0 and Zn−1.

The goal of this example is to maximise the interest rate E[log
(

Zn

Z0

)
]. We note

that

E
[
log

(
Zn+1

Zn

)
|Fn

]
= p log

(
1 +

Vn+1

Zn

)
+ q log

(
1− Vn+1

Zn

)
= f

(
Vn+1

Zn

)
,

where f(x) = p log(1 + x) + q log(1− x). We note that

f ′(x) =
p

1 + x
− q

1− x
.

A straightforward calculation shows that f(x) is increasing on (0, p − q] and is
decreasing on [p−q, 1]. The function f has its maximum at p−q and α = f(p−q) =
p log(2p) + q log(2q) is its maximum. Therefore it follows that

E
[
log

(
Zn+1

Zn

)
|Fn

]
≤ α.

Thus Mn = logZn − nα is a submartingale and

E
[
log

(
Zn

Z0

)]
≤ nα.

Thus to maximise the interest rate we want Mn to be a martingale. In order for

this to be the case, we need f(Vn+1

Zn
) = α, which holds if and only if Vn+1

Zn
= (p− q).

Thus we require Vn+1 = (p− q)Zn, which then maximises the interest.

4.1.2. Random Walks and Harmonic Functions. Let A ⊂ Z2 be a finite set of points
in a square lattice and let B (the boundary) be the sets of points in Zn\A with at
least one (horizontal or vertical) neighbour in A. Denote by τB the hitting time of
the boundary.

Given any function g : B → R, we consider the function

f(v) = Ev[g(XτB )],

defined on A ∪ B, where X is a standard random walk on Z2 starting on v. Then
it holds for every v ∈ A, that

f(v) =
1

4

∑
w∼v

f(w).
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Indeed, this follows since

f(v) =
1

4

∑
w∼v

Ev[g(XτB )|X1 = w] =
1

4

∑
w∼v

Ew[g(XτB )] =
1

4

∑
w∼v

f(w).

Now we consider a simple symmetric random walk (Xn)n≥1 on Z2 and X0 ∈ A.
Then we claim that Mn = f(Xn∧τB ) is a martingale with respect to the natural
filtration Fn = σ(X1, . . . , Xn).

Notice that if Xn ∈ A, then

f(Xn) =
1

4

∑
w∼Xn

f(w) = E[f(Xn+1)|Xn] = E[f(Xn+1)|Fn].

We give a more formal argument for a similar equality in the discussion after (4.1).
Therefore it follows that,

E[f(Xn+1∧τB )|Fn] = E[f(Xn+1∧τB )1{τB>n}|Fn] + E[f(Xn+1∧τB )1{τB≤n}|Fn]

= 1{τB>n}f(Xn) + 1{τB≤n}f(XτB )

= f(Xn∧τB ).

4.2. Martingale Convergence Theorems. The following results were proved in
the lecture.

Theorem 4.2. (Doob’s Forward Convergence Theorem) Let (Mn)n≥1 be a sub
or super-martingale that is bounded in L1, i.e. supn≥1 E[|Mn|] < ∞. Then Mn

converges almost surely to a limit M∞ and M∞ ∈ L1.

Theorem 4.3. Let (Mn)n≥1 be a martingale. The following properties are equiv-
alent:

(1) (Mn)n≥1 is uniformly integrable.
(2) There is some F∞-measurable random variable M∞ such that Mn →M∞

almost surely and in L1.
(3) There is an F∞-measurable random variableM∞ such thatMn = E[M∞|Fn]

almost surely for all n.

Furthermore, under these conditions, if M∞ ∈ Lp for p > 0 then the convergence
Mn →M∞ also holds in Lp.

We can deduce the following Lp-convergence theorem.

Corollary 4.4. (Lp-convergence theorem) Let (Mn)n≥1 be a martingale that is
bounded in Lp for p > 1, i.e. supn≥1 E[|Mn|p] < ∞. Then then Mn converges
almost surely and in Lp to a random variable M∞ ∈ Lp.

Proof. Let q = p
p−1 such that 1

p + 1
q = 1. Then by Hölder’s inequality ||Mn||1 =

E[|Mn|] ≤ ||Mn||p||1||q = ||Mn||p = E[|Mn|p]1/p. Thus Mn is bounded in L1. We
claim that Mn is uniformly integrable. Indeed, notice that by Hölder’s inequality

E[|Mn|1A] ≤ ||Mn||p||1A||q = ||Mn||pP[A]1/q → 0

as P[A] → 0. Thus by Proposition 5.22 from the lecture notes, it follows that Mn

is uniformly integrable.
We furthermore notice as Mn →M∞ almost surely, it follows by Fatou’s lemma

that
E[|M∞|p] = E[lim inf

n→∞
|Mn|p] ≤ lim inf

n→∞
E[|Mn|p] <∞.

Therefore M∞ ∈ Lp and the claim follows by Theorem 4.3. □
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4.3. Consistency of Likelihood ratio. Consider a sequence of i.i.d. tosses of a
coin with Xi denoting the outcome of the ith toss. These random variables are
defined on some (Ω,F ) on which we have two probability measures PA and PB

and we assume that the Xi are i.i.d. under both measures. Under hypothesis A,
PA is the true measure, and the probability of a head on any toss is p = a. Under
hypothesis B, the measure is PB and p = b, for some a, b ∈ (0, 1).

Let PA(x1, . . . , xn) denote the probability of a sequence of outcomes (x1, . . . , xn)
under hypothesis A, i.e. PA(x1, . . . , xn) = PA[X1 = x1, . . . , Xn = xn] with the
analogous definition for PB .

Lemma 4.5. With the above notation,

Zn =
PA(X1, . . . , Xn)

PB(X1, . . . , Xn)
=

n∏
i=1

PA(Xi)

PB(Xi)
.

is a martingale under PB under the filtration Fn = σ(X1, . . . , Xn). Moreover, Zn

converges almost surely to 0 if a ̸= b.

Proof. Note that Zn = Y1 · · ·Yn, where Yi are independent random variables with
distribution

P[Yi = a
b ] = b and P[Yi = 1−a

1−b ] = 1− b.
As E[Yi] = 1, it follows that Zn is a martingale with respect to Fn as

E[Zn+1|Fn] = Zn · E[Yn+1|Fn] = Zn · E[Yn+1] = Zn.

Since Zn is positive, it is bounded in L1. Therefore by Doob’s Martingale conver-
gence theorem (Theorem 4.2) an integrable limit Z∞ almost surely exists. If a = b,
then Zn = 1 and thus Z∞ = 1.

On the other hand, if a ̸= b, then Yi is bounded away from 1. We claim that
Z∞ = 0 almost surely. Indeed, if Z∞ is non-zero and finite, then the tail

Z∞/Zn = lim
m→∞

Zm/Zn = lim
m→∞

m∏
i=n+1

Yi

must converge to 1. Yet this can only be if the Yi converge to 1. Indeed, if
|Zm/Zn − 1| < ε for all m ≥ m0, then Zm+1/Zn = Ym+1Zm/Zn and hence

Ym+1 =
Zm+1/Zn

Zm/Zn
∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
= 1 +O(ε).

This contradicts Yi being bounded away from 1. Therefore, Z∞ = 0 almost surely.
To give an alternative argument that Z∞ = 0 if a ̸= b almost surely, we note

that since log is strictly concave,

E[log(Yi)] = b log a
b + (1− b) log 1−a

1−b < log 1 = 0.

Therefore by the law of large numbers, it holds almost surely that

lim
n→∞

logZn

n
= E[log(Yi)] < 0.

Thus logZn → −∞ and therefore Zn → 0 almost surely. □

We note that Zn if a ̸= b is an example of a martingale that converges almost
surely but not in L1 to Z∞ = 0. Indeed, E[Zn] = E[Z1] = 1 for all n ≥ 1 and
therefore Zn cannot converge to 0 in L1.
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4.4. Polya’s Urn Model. At time 0 we have an urn with two balls, one white
and one black. At each successive time, we draw at random one ball from the urn
and return it back along with another ball of the same colour. This way, at time
n, we have n+ 2 balls in the urn of which Bn are black and Wn = n+ 2−Bn are
white. Note that Bn ∈ {1, . . . , n+ 1}.

Lemma 4.6. (Polya’s Urn Model) With the above notation,

P[Bn = k] =
1

n+ 1

for k ∈ {1, . . . , n + 1}. Moreover, Mn = Bn

n+2 is a martingale with respect to

Fn = σ(B1, . . . , Bn) that converges to M∞, being the uniform [0, 1] variable.

Proof. The first claim is proved by induction. Indeed, the claim holds for n = 0 and
n = 1. Assume now the claim holds for time n−1. Then we have for k ∈ {1, . . . , n},

P[Bn = k] =

n∑
ℓ=1

P[Bn = k|Bn−1 = ℓ] · P[Bn−1 = ℓ]

=
1

n
(P[Bn = k|Bn−1 = k] + P[Bn = k|Bn−1 = k − 1])

=
1

n

(
n+ 1− k
n+ 1

+
k − 1

n+ 1

)
=

1

n+ 1
.

In addition,

P[Bn = n+ 1] = P[Bn = n+ 1|Bn−1 = n]P[Bn−1 = n] =
n

n+ 1
· 1
n
=

1

n+ 1
.

This concludes the proof the first claim.
To show that Mn = Bn

n+2 is a martingale, we denote by

Xi =

{
1 if the ith ball is black,

0 if the ith ball is white.

Then it holds that Bn = 1 +
∑n

i=1Xi. We note that

E[Bn+1

n+3 |Fn] =
1

n+ 3
(Bn + E[Xn+1|Fn]).

Since Xn+1 only depends on Bn,

E[Xn+1|Fn] = E[Xn+1|Bn] =
Bn

n+ 2
. (4.1)

This implies that Mn = Bn

n+2 is a martingale.

We give a more precise argument for (4.1). Indeed, we can express Xn+1 =∑n+1
k=1 Xn+11{Bn=k} and note that since the distribution of Xn+1 depends only on
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the value of Bn, the function E[Xn+1|Fn] is constant on the sets 1Bn=k. Therefore

E[Xn+11{Bn=k}|Fn] = 1{Bn=k}
E[Xn+11{Bn=k}]

P[Bn = k]

= 1{Bn=k}
E[1{Xn+1=1}1{Bn=k}]

P[Bn = k]

= 1{Bn=k}
P[Bn+1 = k + 1, Bn = k]

P[Bn = k]

= 1{Bn=k}

1
n

k
n+2
1
n

= 1{Bn=k}
k

n+ 2
.

Therefore

E[Xn+1|Fn] =

n+1∑
k=1

E[Xn+11{Bn=k}|Fn] =

n+1∑
k=1

1{Bn=k}
k

n+ 2
=

Bn

n+ 2
.

The same argument shows that E[Xn+1|Bn] is the same function.
AsMn is uniformly bounded, it is uniformly integrable and hence by Theorem 4.3

converges almost surely and in L1 to a random variable M∞. Notice that for
x ∈ [0, 1)

P[Mn ≤ x] =
⌊(n+ 2)x⌋
n+ 1

→ x,

as n → ∞. So Mn converges in distribution to a uniform [0, 1]-variable and hence
also in L1 and almost surely. □

4.5. Galton-Watson branching process. Let (Xn,r)n,r≥1 be an infinite array
of independent identically distributed random variables, each with the same distri-
bution as X, where

P[X = k] = pk

for k = 0, 1, . . .. Denote µ = E[X] and σ2 = Var(X) and assume that σ2 <∞. The
sequence of random variables (Zn)n≥0 is defined by Z0 = 1 and

Zn = Xn,1 + . . .+Xn,Zn−1 .

We note that

E[Z2
n+1|{Zn = k}] = E

 k∑
i,j=1

Xn+1,iXn+1,j

 = kσ2 + k2µ2.

Therefore

E[Z2
n+1|Fn] = E[Z2

n+1|Zn] = σ2 · Zn + µ2 · Z2
n.

To calculate E[Z2
n], we recall that E[Zn] = µn and therefore

E[Z2
n+1] = E[E[Z2

n+1|Fn]]

= σ2 · E[Zn] + µ2 · E[Z2
n]

= σ2µn + µ2 · E[Z2
n].
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Notice that E[Z2
0 ] = 1, E[Z2

1 ] = µ2 + σ2 and E[Z2
2 ] = µ4 + σ2(µ + µ2). More

generally we claim for n ≥ 1 that

E[Z2
n] = µ2n + σ2(µn−1 + µn + . . .+ µ2n−2).

It is a straightforward calculation to check that this formula indeed satisfies the
inductive relation. We conclude since µ > 1,

E[M2
n] = E

[
Z2
n

µ2n

]
= 1 + σ2(µ−2 + . . .+ µ−(n+1)) ≤ 1 +

σ2

1− µ
.

Therefore Mn is bounded in L2. Hence, by Theorem 4.4, Mn converges in L2 to a
random variable M∞ and hence also in L1.

4.6. Gambler’s Ruin. We are going to use the following theorem:

Theorem 4.7. (Optional Stopping Theorem) Let (Mn)n≥1 be a martingale on a
filtered probability space and let τ be an almost surely finite stopping time. Assume
that either

(1) (Mn)n≥1 is uniformly integrable, or
(2) E[τ ] <∞ and (

sup
n≥1

E[|Mn+1 −Mn| |Fn]

)
<∞

almost surely.

Then

E[Mτ ] = E[M0].

In this section we are going to discuss the gambler’s ruin problem. Let (Xn)n≥1

be an i.i.d. sequence of random variables with

P[Xi = 1] = p and P[Xi = −1] = q = 1− p

with p ∈ (0, 1). Suppose that a and b are integers with 0 < a < b and consider

Sn = a+X1 + . . .+Xn and τ = inf{n ≥ 1 : Sn = 0 or Sn = b}.

Then τ is a stopping time.
We denote p0 = P[Sτ = 0] and pb = P[Sτ = b]

Lemma 4.8. It holds that E[τ ] <∞.

Proof. Let Ak for k ≥ 1 be the event that

Ak = {X(k−1)·b+1 = . . . = Xk·b = 1}.

Then P(Ak) = pb for all k ≥ 1 since the Xi are independent. If Ak happens, then
τ ≤ k · b since either we were below 0 some time before k · b or we are at b before
k · b. Therefore it follows that

{τ ≥ n} ≤ (1− γ)⌊n
b ⌋ ≤ e−cn

for suitable constants c. Therefore

E[τ ] =
∞∑

n=1

nP[τ = n] ≤
∞∑

n=1

nP[τ ≥ n] ≤
∞∑

n=1

ne−cn <∞.

□
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We make one important remark that shows we need to be careful with the
assumptions in the optional stopping theorem. Indeed, if p = q note that Sn is a
martingale. Consider now the one-sided stopping time

τ ′ = inf{n ≥ 1 : Sn = 0}.

We note that the conclusion of the optional stopping theorem does not hold as
0 = E[Mτ ′ ] ̸= E[M0] = a. The stopping time τ ′ is almost surely finite, as we have
seen in previous sheets. So we conclude that Sn is not uniformly integrable. Also
we note that E[|Sn+1−Sn|] ≤ 1 as we move by one step at each time. Thus it must
follow that E[τ ′] =∞.

We note that if E[τ ′] was finite, would could easily make arbitrage in unbiased
financial markets, which I encourage the reader to ponder about.

4.6.1. Biased Gambler’s Ruin. Assume that p ̸= q. Throughout this section write
γ = p/q. We aim to calculate E[τ ], p0 and pb.

Lemma 4.9. The stochastic processes

Mn = γSn and Nn = Sn − n(p− q)

are martingales.

We note that if γ = 1, then Mn is always 1.

Proof. We first show that Nn is a martingale. Indeed,

E[Nn+1|F] = Sn − (n+ 1)(p− q) + E[Xn+1|Fn] = Nn

since E[Xn+1|Fn] = E[Xn+1] = p− q. For the second claim, we calculate

E[Mn+1|Fn] = γSn · E[γXn+1 ] =Mn,

since E[γXn+1 ] = E[γXn+1 ] = pγ + qγ = q + p = 1. This concludes the proof. □

We note that E[τ ] < ∞ and that |Nn+1 − Nn| ≤ 2 and therefore E[|Nn+1 −
Nn| |Fn] ≤ 2. So we can apply the optimal stopping theorem to Nn, which implies

b · pb − E[τ ](p− q) = E[Sτ ]− E[τ ](p− q) = E[Nτ ] = E[N0] = S0 = a

On the other hand, none of the assumption of the optional stopping theorem are
satisfies for Mn. Yet we can use the following trick. Namely, we consider stopped
the stochastic processes

Mτ
n =Mn∧τ ,

which was shown in the lecture to be a martingale. Note that 0 ≤Mτ
n ≤ max

{
1, γb

}
,

so it is uniformly bounded and hence uniformly integrable. Thus we can apply the
optional stopping theorem to conclude that

p0 + pbγ
b = p0γ

0 + pbγ
b = E[Mτ ] = E[M0] = γa.

Using that p0 + pb = 1, it follows that

pb =
γa − 1

γb − 1
and p0 = 1− pb =

γb − γa

γb − 1
.

Moreover, by the above

E[τ ] =
bpb − a
p− q

.
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4.6.2. Unbiased Gambler’s Ruin. We assume in the following that p = q = 1/2.
Then Sn is a martingale that satisfies the assumption of the optional stopping
theorem. Since p0 + pb = 1 and as bpb = E[Sτ ] = E[S0] = a, it follows that

pb =
a

b
and pa = 1− pb = 1− a

b
=
b− a
b

.

We observe that the above studies martingale Mn = γSn is not useful in the unbi-
ased case. To deduce the equation for E[τ ], note that σ2 = 1 and recall that S2

n−n
is a martingale. Thus by optional stopping,

ab− E[τ ] = b2pb − E[τ ] = E[S2
τ ]− E[τ ] = E[S2

0 ] = a2.

So E[τ ] = ab − a2 = a(b − a). This calculative approach does not work in the
unbiased case.

4.6.3. Alternative approach using polynomial method. We give an example where
an alternative approach to some of the above problems. We review the method
of characteristic polynomials to solve recurrence relations. Indeed, assume we are
given a recurrence relation with a0, . . . , ad−1 to be fixed and

an = α1an−1 + . . .+ αdan−d

for n ≥ d. Then we consider the equation involving the characteristic polynomial

λd − α1λ
d−1 − α2λ

d−2 − . . .− αd = 0

Let λ1, . . . , λk be distinct real roots of the above polynomial. Then any sequence

an =

k∑
i=1

ciλ
n
i

satisfies the equation as one readily checks.

Example 4.10. Assume that we are in a biased random walk with

P[Xi = 1] =
2

3
and E[Xi = −1] =

1

3
.

We start at n and denote by pn the probability that we ever hit 0. Then it holds
that

pn =
1

2n
.

Proof. Let pn be the probability that we hit 0. We then have p0 = 1 and the
recurrence relation

pn =
2

3
pn+1 +

1

3
pn−1

or equivalently

pn =
3

2
pn−1 −

1

2
pn−2.

Therefore the characteristic equation is

λ2 − 3

2
λ+

1

2
= (λ− 1)(λ− 1

2
).

Thus it follows that

pn =
1

2n
.

We give an alternative solution by using the results from section 4.6.1. Indeed
consider the previous example with p = 2

3 and q = 1
3 such that q

p = 1
2 . Let τ be
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the hitting time of {0, b} for b > n and assume that the random walk starts at n.
Write pn,0 = P[Sτ = 0]. Then it holds that

pn,0 =
1
2b
− 1

2n

1
2b
− 1

.

The probability in question is thus

pn = lim
b→∞

pn,0 =
1

2n
.

□
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5. B8.1 2023 Exam

5.1. Question 1. Let (Ω,F ,P) be a probability space.

5.1.1. Question 1 a). Recall that a π-system is a collection of sets that is closed
under intersections. A λ-system is a collection of sets M such that

(1) Ω ∈M .
(2) If A,B ∈M and A ⊂ B then B\A ∈M .
(3) If (An)n≥1 ⊂M is a collection of sets with An ⊂ An+1 for all n ≥ 1, then⋃

n≥1An ∈M .

Lemma 5.1. Let A1 and A2 be two π-systems in F and let Gi = σ(Ai) for i = 1, 2.
Then G1 and G2 are independent if

P[A ∩B] = P[A]P[B]

for all A ∈ A1 and B ∈ A2.

Proof. Consider

M1 = {A ⊂ Ω : P[A ∩B] = P[A]P[B] for all B ∈ A2}.
We claim that M1 is a λ-system. Indeed, it is clear that Ω ∈M . Assume now that
A1, A2 ∈M with A1 ⊂ A2. Then it holds that

P[(A2\A1) ∩B] = P[A2 ∩B]− P[A1 ∩B] = (P[A2]− P[A1])P[B] = P[A2\A1]P[B]

and therefore A2\A1 ∈M . Finally, if (An)n≥1 is an increasing sequence of sets in
A then write A =

⋃
n≥1An. It holds by monotone convergence that

P[A ∩B] = lim
n→∞

P[An ∩B] = lim
n→∞

P[An]P[B] = P[A]P[AB].

So A ∈M and so we have shown that M is a λ-system.
By our assumption A1 ⊂ M1 and therefore by the π − λ-systems lemma, it

follows that σ(A1) = G1 ⊂M1.
We next consider

M2 = {B ⊂ Ω : P[A ∩B] = P[A]P[B] for all A ∈ G1}.
Then as before M2 is a λ-system and by the first step A2 ⊂ M2. By the π − λ-
systems lemma it follows that G2 = σ(A2) ⊂M2, which concludes the proof. □

5.1.2. Question 1 b). Now suppose that Y0, Y1, . . . are independent random vari-
ables with

P[Yn = 1] =
1

2
= P[Yn = −1]

for all n ≥ 0. For n ≥ 1 we define

Xn = Y0Y1 · · ·Yn.
We claim that X1, X2, . . . are independent.

We now consider

Y = σ(Y1, Y2, . . .), Tn = σ(Xk : k ≥ n)
and

G =
⋂
n≥1

σ(Y, Tn), H = σ

Y, ⋂
n≥1

Tn

 .
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For every n, we have Y0 = Y −1
1 · · ·Y −1

n Xn. Therefore, since all of the random
variables Y1, . . . , Yn and Xn are σ(Y, Tn)-measurable and as the product of measur-
able random variables is again measurable, it follows that Y0 is σ(Y, Tn)-measurable.
As n was arbitrary, Y0 is G-measurable.

We now want to show that Y0 is independent of H so it suffices by a) to show
that

P[{Y0 = i} ∩A ∩B] = P[Y0 = i]P[A]P[B]

for i = 1,−1 and all A ∈ Y and B ∈
⋂

n≥1 Tn. By the Komlogorov 0 − 1 law (as

the Xi are independent), every element of
⋂

n≥1 Tn has either measure 0 or 1. So

if P[B] = 0, the above claim is obvious so we can assume that P[B] = 1 in which
case it suffices to show that

P[{Y0 = i} ∩A] = P[Y0 = i]P[A],

which follows as Y0 is independent from Y by construction.

5.1.3. Question 1 c). Let (Mn)n≥1 be a martingale relative to a given filtration
(Fn)n≥0 and such that |Mn+1 − Mn| ≤ L for all n ≥ 0 and some constant L.
Assume that M0 = 0.

(i) Let τK = inf{n ≥ 0 : Mn ≤ −K} forK > 0. Then we claim that limn→∞Mn

exists on {τK =∞}. Indeed, note that τK is a stopping time as it is the first hitting
time for an adapted process. Also note that (Mn∧τK +K+L)n≥0 is a non-negative
martingale and therefore converges almost surely. So Mn converges on τK =∞.

(ii) Therefore Mn converges on
⋃∞

K=1{τK =∞} = {lim infMn > −∞}. Apply-
ing the same argument for −M gives the same conclusion for lim supMn <∞. So
we have shown thatMn converges on the set lim infMn > −∞ and lim supMn <∞,
which implies the claim that

A = { lim
n→∞

Mn exists and is finite}

B = {lim supMn =∞ and lim infMn =∞}

satisfies P[A ∪B] = 1.

5.1.4. Exercise 1 d). Consider a sequence of events (Bn)n≥1 and let Fn = σ(B1, . . . , Bn)
for n ≥ 1 and F0 = {∅,Ω}.

(i) Now consider (Xn)n≥0 the submartingale given by X0 = 0 and Xn =∑n
k=1 1Bk

for all n ≥ 1. Recall that the Doob decomposition of Xn is the de-
composition Xn = Mn + An, where Mn is a martingale and An is a predictable
process. The martingale Mn is given as

Mn =

n∑
k=1

(Xk − E[Xk|Fk−1]) =

n∑
k=1

(1Bk
− E[1Bk

|Fk−1]) .

(ii) Note that |Mn−Mn−1| ≤ 2 and let A and B the the sets from c). From c) we
conclude that if ω ∈ A, then

∑∞
k=1 1Bk

(ω) =∞ if and only if
∑∞

k=1 E[1Bk
|Fn−1](ω) =

∞. When ω ∈ B thenMn oscillates and therefore we must have
∑∞

k=1 1Bk
(ω) =∞

then it must also hold that
∑∞

k=1 E[1Bk
|Fn−1](ω) =∞. This implies

P[Bn i.o.] = P

[ ∞∑
k=1

E[1Bk
|Fn−1](ω) =∞

]
.
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(iii) To prove the second Borel-Cantelli lemma, we note that if B1, B2, . . . are
independent, then E[1Bk

|Fn−1](ω) = P[Bk] and so if
∑

k≥1 P[Bk] = ∞, then

P[Bn i.o.] = 1.

5.2. Question 2. Let (Ω,F ,P) be a probability space.

5.2.1. Question 2 a). (i) Let X be a random variable and let B(R) denote the Borel
σ-algebra on R.

Lemma 5.2. It holds that

σ(X) = {X−1(A) : A ∈ B(R)}.

Proof. The right hand side is a σ-algebra since it clearly contains Ω and it holds
that X−1(Ac) = X−1(A)c and X−1(∪i≥1Ai) = ∪i≥1X

−1(Ai) for any sets A and
Ai in B(R). By definition, σ(X) ⊃ {X−1(A) : A ∈ B(R)} and since the right hand
side is a σ-algebra, σ(X) ⊂ {X−1(A) : A ∈ B(R)}. This concludes the proof. □

(ii) For the next exercise we recall the statement of the monotone class theorem.

Theorem 5.3. (Monotone Class Theorem) Let H be a class of bounded functions
from Ω to R satisfying the following:

(1) H is a vector space.
(2) The constant function 1 is in H .
(3) If (fn)n≥1 is a sequence in H such that fn ↑ f for a bounded function f ,

then f ∈H .

If C ⊂ H is stable under pointwise multiplication, then H contains all bounded
σ(C )-measurable functions.

Lemma 5.4. If a bounded random variable Z is σ(X)-measurable, then Z = g(X)
for some measurable g : R→ R.

Proof. Consider H to be the class of bounded functions of the form g(X) for some
measurable map g : R→ R. The class H satisfies the assumption of the Monotone
Class Theorem since if Yn = gn(X) with Yn ↑ Y for Y a bounded function, then
we can take g = lim supn≥1 gn and check that Y = g(X). We furthermore define

C = {1C : C ∈ σ(X)}. Then C ⊂ H since by the previous lemma C = X−1(A)
for some A ∈ B(R) and so we can set g = 1A. As σ(X) is a σ-algebra and therefore
a π-system and 1A · 1B = 1A∩B , the set C is stable under pointwise multiplication.
Therefore by the Monotone Class Theorem, H contains all bounded σ(C ) = σ(X)
measurable functions, concluding the proof. □

5.2.2. Question 2 b). Consider f : [0, 1] → R an L-Lipschitz function, that is
|f(u)− f(v)| ≤ L|u− v| for all u, v ∈ [0, 1]. Suppose X has a uniform distribution
on [0, 1] and define

Xn =
⌊2nX⌋
2n

, and Zn = 2n(f(Xn + 2−n)− f(Xn))

for all n ≥ 1, where ⌊x⌋ denotes the integer part.
(i) We note that for all ω ∈ Ω it holds that Xn(ω) ∈ [X(ω) − 2−n, X(ω)] and

therefore for all ω ∈ Ω, |Xn(ω)−X(ω)| ≤ 2−n and thus the converegnce is almost
surely, in probability and in L2.

(ii) We next claim for any n ≥ 1 that

σ(Xn, Xn+1, . . .) = σ(X).
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It is clear that σ(Xn) ⊂ σ(X) since Xn is σ(X)-measurable. To show the converse,
it holds as X = limn→∞Xn that X is σ(Xn, Xn+1, . . .)-measurable and therefore
the claim follows.

(iii) A family of random variables {Xi : i ∈ I} is uniformly integrable if

lim
K→∞

sup
i∈I

E[|Xi|1|X|>K ] = 0.

The family (Zn)n≥1 is indeed uniformly integrable as

|Zn(ω)| = 2n|f(Xn(ω) + 2−n)− f(Xn(ω))| ≤ 2nL|Xn(ω) + 2−n −Xn(ω)| ≤ L

for all n ≥ 1 as f is L-Lipschitz. So Zn is bounded and hence uniformly integrable.
(iv) Finally, consider Fn = σ(X1, . . . , Xn) and let h : [0, 1] → R be a bounded

measurable function. Then by construction Fn = {X−1([ i
2n ,

i+1
2n )) : 0 ≤ i ≤ 2n−1}

and so Fn is a partition of Ω. For convenience denote by Ai = X−1([ i
2n ,

i+1
2n )) for

0 ≤ i ≤ 2n and thus for ω ∈ Ω, almost surely

E[h(X)|Fn](ω) =

2n∑
i=0

E[h(X)1Ai
]

P[Ai]
1Ai

(ω)

=

2n∑
i=0

2n
∫ i+1

2n

i
2n

h(x) dx · 1X(ω)∈[ i
2n , i+1

2n )

= 2n
∫ Xn(ω)+2−n

Xn(ω)

h(x) dx.

5.2.3. Question 2 c). (i) We now show that Zn is a martingale relative to the
filtration (Fn)n≥1. Note that

Xn+1 =
⌊2n+1X⌋
2n+1

∈ {Xn, Xn +
1

2n+1
}

and each of these cases happens with probability 1/2. Therefore

E[f(Xn+1)|Fn] =
1

2
(f(Xn) + f(Xn + 1

2n+1 )).

Thus it follows that

E[Zn+1|Fn] = 2n+1E[f(Xn+1 +
1

2n+1 )− f(Xn+1)|Fn]

= 2n+1 1

2
(f(Xn + 1

2n ) + f(Xn + 1
2n+1 )− f(Xn + 1

2n+1 )− f(Xn))

= 2n(f(Xn + 1
2n )− f(Xn)) = Zn.

Thus (Zn)n≥1 is a martingale.
(ii) The martingale convergence theorem for UI martingales states that if (Mn)n≥1

is a sequence of UI martingales then there is a F∞ random variable M∞ such that
Mn →M∞ almost surely and in L1 and Mn = E[M∞|Fn]. Applied to Zn it follows
that there is a σ(X)-measurable random variable Z∞ such that Zn → Z∞ almost
surely and in L1.

(iii) By a) it holds that Z∞ = g(X) for a Borel measurable function g : [0, 1]→ R.
Thus by b), we have almost surely,

Zn = E[Z∞|Fn] = E[g(X)|Fn] = 2n
∫ Xn+2−n

Xn

g(x) dx.
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By the definition of Zn it therefore follows that

f(Xn + 2−n)− f(Xn) =

∫ Xn+2−n

Xn

g(x) dx.

Thus we conclude by a telescoping sum that

f

(
i

2n

)
− f(0) =

∫ i
2n

0

g(u) du

for all 0 ≤ i ≤ 2n. As n→∞ and since f is continuous,

f(x)− f(0) =
∫ x

0

g(u) du

for almost all x ∈ [0, 1].

5.3. Question 3. Let (Ω,F ,P) be a probability space.

5.3.1. Question 3 a). Three players start with a, b and c tokens respectively. In
each round, two players are selected, uniformly at random from the players in play,
and then one of them, selected uniformly at random, gives the other one a token.
Each choice of a player is made independently of everything that has happened so
far. When a player has no tokens left, she stops playing. When one player gathers
all the tokens she wins and nothing else happens in the subsequent rounds of the
game.

We denoteXn, Yn, Zn the number of tokens owned by each of the players after the
nth round. In particular, X0 = a, Y0 = b and Z0 = c. We let Fn = σ(Xk, Yk, Zk :
0 ≤ k ≤ n).

(i) and (ii) Let τ be the first time one of the players has no tokens left, which is
clearly a stopping time. Let

Mn = XnYnZn +
n

3
(a+ b+ c)

for n ≥ 0. Then we claim that (Mn∧τ )n≥1 is a martingale. Indeed, we note that
while Xn, Yn and Zn are all non-zero it holds that

Xn+1Yn+1Zn+1 = XnYnZn +
1

3
(Xn + Yn + Zn).

This implies the claim.
(iii) We observe that Mn is not a martingale itself as when τ happens, XnYnZn

is zero but n
3 (a+ b+ c) still grows. So Mn is a submartinagle since

E[Mn+1|Fn] = E[Mn+11n<τ |Fn] + E[Mn+11τ≤n|Fn]

=Mn1n<τ +
n+ 1

3
(a+ b+ c)1τ≤n

≥Mn1n<τ +
n

3
(a+ b+ c)1τ≤n

=Mn.

(iv) Finally, we compute E[τ ]. It clearly holds that E[τ ] <∞ since

P[τ ≥ (a+ b+ c)n] ≤ e−cn

for some constant c > 0. Therefore, as |Mn+1 −Mn| ≤ L for some constant L > 0,
it follows that

E[τ ]
3

(abc) = E[Mτ ] = E[M0] = abc
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and therefore

E[τ ] =
3abc

a+ b+ c
.

5.3.2. Question 3 b). Let X be an integrable random variable and G be a sub-σ-
algebra of F . Let Y = E[X|G] and suppose that X and Y have the same distribu-
tion.

(i) Assume for the moment that X is square integrable. Then so is Y and it
holds that

E[(Y −X)2] = E[Y 2] + E[X2]− 2E[XY ]

= 2E[Y 2]− 2E[E[XY |G]]
= 2E[Y 2]− 2E[Y E[X|G]]
= 2E[Y 2]− 2E[Y 2] = 0,

having used in the first line that X and Y have the same distribution. So it follows
that X = Y almost surely.

(ii) We next claim that E[X ∧ a|G] = Y ∧ a. almost surely for any a > 0.
Indeed, by monotonicity of conditional expectation, E[X ∧ a|G] ≤ E[X|G] = Y and
E[X∧a|G] ≤ E[a|G] = a. So it follows that E[X∧a|G] ≤ Y ∧a. Also, since X∧a and
Y ∧a have the same disribution, it follows that E[E[X ∧a|G]] = E[X ∧a] = E[Y ∧a]
and therefore E[X ∧ a|G] = Y ∧ a. almost surely.

(iii) Similarly one argues that that

E[(X ∧ a) ∨ (−a)|G] = (Y ∧ a) ∨ (−a)
almost surely for any a > 0 and therefore by the L2-case it follows that (X ∧ a) ∨
(−a) = (Y ∧a)∨ (−a) almost surely. Sending a→∞ it follows that X = Y almost
surely.

(iv) Now consider T : Ω→ Ω be a F-measurable map and assume that P◦T = P
and that X is such that

E[XZ] = E[X(Z ◦ T )]
for any bounded measurable random variable Z. We claim that X = X◦T P-almost
surely. Write G = T−1(F). Then
E[(X ◦T )(Z ◦T )] = E[XZ] = E[X(Z ◦T )] = E[E[X(Z ◦T )|G]] = E[E[X|G](Z ◦T )],
having used T -invariance of P in the first equality and that Z ◦ T is G-measurable
in the last. By considering Z to be characteristic functions and since X ◦ T and
E[X|G] are both G-measurable, it follows that X ◦ T = E[X|G] almost surely. Also
X and X ◦T have the same distribution as T preserves P. Thus it follows from (iii)
that X = X ◦ T almost surely with respect to P.



NOTES ON EXERCISE SHEETS IN PROBABILITY 38

6. B8.1 2024 Exam

6.1. Question 1. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space.

6.1.1. Question 1 a). Let (Xn)n≥0 be a submartingale and fix λ > 0.
(i) Recall that a stopping time is a random variable τ : Ω→ N such that for all

n ≥ 1,

{τ = n} ∈ Fn.

The random variable τ = inf{n ≥ 0 : Xn ≥ λ} is a stopping time since

{τ = n} = X−1
n ([λ,∞)) ∈ Fn

since Xn is Fn-measurable by our assumptions.
(ii) Consider now the process Yn = (Xn −Xτ )1{τ≤n} for n > 0. We claim that

Yn is a submartingale. To prove this, write Xn = maxk≤nXk and consider the
predictiable process Vn = 1{τ≤n−1} = 1{Xn−1≥λ}. Then it holds that

(V ◦X) =

n∑
k=1

Vk(Xk −Xk−1) = Xn∨τ −Xτ = (Xn −Xτ )1{τ≤n},

which is a submartingale as V ◦X always is.
(iii) We now prove Doob’s maximal inequality, i.e. that for n ≥ 1,

λP[max
k≤n

Xk > λ] ≤ E[Xn1{maxk≤n Xk>λ}] ≤ E[|Xn|].

To prove this, we further note that since Xτ ≥ λ we have that (Xτ −λ)1{τ≤n} is an
adapted integrable and nondecreasing process and therefore a submartingale. Thut
it follows that Zn = (Xn − λ)1{τ≤n} = (Xn − λ)1{maxk≤n Xk≥λ} is a submartingale
and therefore

0 ≤ E[Z0]

≤ E[Zn]

= E[(Xn − λ)1{maxk≤n Xk≥λ}]

= E[Xn1{maxk≤n Xk≥λ}]− λP[max
k≤n

Xk > λ],

showing the first inqueality. The second inequality follows as

E[Xn1{maxk≤n Xk>λ}] ≤ E[|Xn|1{maxk≤n Xk>λ}] ≤ E[|Xn|].

This concludes the proof of Doob’s maximal inequality.
(iv) Now let ξ1, ξ2, . . . be a sequence of independent random variables with

E[ξ2i ] <∞ and E[ξi] = 0 for all i = 1, 2, . . .. Let

S0 = 0 and Sn =

n∑
i=1

ξi, n ≥ 1.

We claim that S2
n is a submartingale. Indeed, by the conditional Jensen inequality

since x 7→ x2 is convex,

E[S2
n+1|Fn] = E[(Sn + ξn+1)

2|Fn]

≥ (E[Sn + ξn+1|Fn])
2

= (Sn + E[ξn+1])
2 = S2

n,
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since E[ξn+1] = 0. Thus it follows by Doob’s inequality that

P
(

max
0≤k≤n

|Sk| > λ

)
≤ λ−2E[S2

n].

(v) Assume further that
∑∞

i=1 E[ξ2i ] < ∞. We claim that Sn converges almost
surely to a finite limit. Indeed, we note that Sn is a martingale and is bounded in
L2 since

E[|Sn|] ≤
√

E[S2
n] ≤

√√√√ ∞∑
i=1

E[ξ2i ]

and so by Doob’s forward convergence theorem the claim follows.

6.1.2. Question 1 b). Let Z1, Z2, . . . be a sequence of independent random variables.
Fix λ > 0 and let ηi = Zi1{|Zi|≤λ}, i = 1, 2, . . .. Consider the following three
conditions:

(I)
∑∞

i=1 P(|Zi| > λ) <∞,
(II)

∑∞
i=1 E[ηi] converges,

(III)
∑∞

i=1 var(ηi) <∞,

where var(ηi) is the variance of ηi.
(i) We first claim that if conditions (I), (II), and (III) hold, then

∑∞
i=1 Zi con-

verges a.s. Indeed, consider ξi = ηi − E[ηi]. Then E[ξi] = 0 and
∑∞

i=1 E[ξ2i ] < ∞
by (III). Thus Sn =

∑n
i=1 ξi converges and therefore by (II)

∞∑
i=1

ηi = Sn +

n∑
i=1

E[ηi]

also converges almost surely. Finally, by the first Borel-Cantelli Lemma it follows
from (I) that Zi = ηi for sufficiently large i almost surely. Thus it follows that∑∞

i=1 Zi converges from the observation that
∑∞

i=1 ηi does.
(ii) Now we suppose that

∑∞
i=1 Zi converges a.s. Then we claim that (I) holds.

Indeed, assume for a contradiction that (I) does not hold. Then by the second
Borel-Cantelli lemma, |Zi| > λ infinitely often almost surely, which is not possible
if
∑∞

i=1 Zi converges.
(iii) Again assume that

∑∞
i=1 Zi converges a.s. and that (III) holds. Then we

show that (II) holds. Indeed, by (ii) we have that (I) holds and so by the argument
of (i) we have that

∑n
i=1 ξi converges almost surely. Also

∑n
i=1 ηi converges almost

surely since
∑∞

i=1 Zi converges a.s. and ηi = Zi for sufficiently large i almost surely.
Thus we conclude that

n∑
i=1

E[ηi] =
n∑

i=1

ηi −
n∑

i=1

ξi

converges.

6.2. Question 2. Let (Ω,F ,P) be a probability space.

6.2.1. Question 2 a). Let (Ω,F ,P) be a probability space and G ⊂ F be a σ-
algebra.

(i) Let X be an integrable random variable. Then the conditional expectation
E[X|G] is the unique G-measurable integrable random variable such that

E[X1B ] = E[E[X|G]1B ]
for all B ∈ G.
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(ii) For A ∈ F we write P[A|G] = E[1A|G]. Then for sets A,B ∈ F we have

P[A|σ(B)] =
P[A ∩B]

P[B]
1B +

P[A ∩Bc]

P[Bc]
1Bc .

Indeed, this follows as the left hand side clearly satisfies the uniqueness property
written above. For example,

E
[(

P[A ∩B]

P[B]
1B +

P[A ∩Bc]

P[Bc]
1Bc

)
1B

]
= E

[
P[A ∩B]

P[B]
1B

]
= P[A ∩B] = E[1A1B ].

The same holds for Bc and hence the claim follows by uniqueness of conditional
expectation.

(iii) It follows by monotonicity and linearity of conditional expectation that
0 ≤ P[A|G] ≤ 1 and P[∅|G] = 0 and P[Ω|G] = 1.

(iv) Let A1, A2, . . . be disjoint events in F . Then almost surely

lim
n→∞

n∑
i=1

P[Ai|G] = lim
n→∞

n∑
i=1

E[1Ai |G]

= lim
n→∞

E

[
n∑

i=1

1Ai

∣∣∣∣G
]

= E

[ ∞∑
i=1

1Ai

∣∣∣∣G
]
= P

⋃
i≥1

Ai

∣∣∣∣G
 ,

having used that the sets are disjoint in the second line and conditional monotone
convergence in the third.

(v) We note that this does not suffice to conclude that A 7→ P[A|G](ω) is a
probability measure since we have no control on the null set of the various unions.

6.2.2. Question 2 b). Suppose that Q is another probability measure on F that is
absolutely continuous with respect to P, that is if P[A] = 0 for any A ∈ F then
Q[A] = 0.

(i) The Radon-Nikodym theorem states that under these assumption there exists
a positive function DF ∈ L1(Ω,F ,P) such that for all A ∈ F ,

Q(A) =

∫
A

DF dP = EP[D
F1A].

(ii) Now let G ⊂ F be a sub-σ-algebra. Then let DG be the Radon-Nikodym
derivative of Q with respect to P on G. We claim that

DG = E[DF |G].

Indeed to show this we note that for B ∈ G,

EP[D
F1B ] = Q(B) = EP[D

G1B ].

Therefore the unique characterisation of conditional expectation is verified and the
claim follows.

(iii) Now let (Fn)n≥1 be a filtration on (Ω,F ,P) such that F∞ = σ(
⋃

n≥1 Fn) =
F . Assume that Q is absolutely continuous to P on each Fn, but we no longer
assume that this holds for F . Denote by Dn = DFn .
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We now claim that that Q is absolutely continuous to P on F is equivalent to
Dn being uniformly integrable. We note that Dn is a martingale since by (ii) we
have that

E[Dn+1|Fn] = Dn.

We recall the following result from the lecture notes:

Theorem 6.1. (Theorem 8.32) Let (Mn)n≥1 be a martingale on a filtered proba-
bility space (Ω,F , (Fn)n≥0,P). Then (Mn)n≥1 is uniformly integrable if and only
if there is an F∞-measurable random variable M∞ such that

Mn = E[M∞|Fn]

almost surely.

Indeed, if Dn is uniformly integrable, there exists a limit D such that Dn → D
in L1. So if A ∈ F , then

Q[A] = EP[D1A] = lim
n→∞

EP[Dn1A].

Thus if A ∈
⋃

n≥1 Fn and P[A] = 0, then the same holds for Q[A]. Since the

collection of sets with P[A] = 0 is a π-system, it follows that the same holds for
all sets in F . Converesely, if Q is absolutely continuous to P on F , there exists
a density such that by (ii) Dn = E[D|Fn] and Dn is uniformly integrable by the
above result.

(iv) Consider σ(τ) the σ-algebra generated by the sets {τ = n} and
Fτ = {A ∈ F∞ : A ∩ {τ = n} ∈ Fn for all n ≥ 1}.

Since {τ = n} is a partition, it is obvious that σ(τ) ⊂ Fτ . To give an easy
example where the inequality is strict, we can simply consider the constant stopping
time τ ≡ 1. Then σ(τ) = {∅,Ω} is the trivial σ-algebra and Fτ = F1. So we simply
take a filtration where F1 is not trivial, as for example the simple random walk.

6.3. Question 3. Let (Ω,F ,P) be a probability space.

6.3.1. Question 3 a). (i) Let A ⊂ Ω. Then we claim that

σ(F , A) = {(B ∩A) ∪ (C ∩Ac) : B,C ∈ F}.
It is clear that ⊃ holds. For the other direction denote the left hand side by H. If
D ∈ F , then D ∈ F since D = (D ∩ A) ∪ (D ∩ Ac). Also A ∈ H. So it suffices to
show that H is a σ-algebra. We next show that H is closed under complements so
let E = (B ∩A) ∪ (C ∩Ac) be a set in H with B,C ∈ F . Then

Ec = (B ∩A)c ∩ (C ∩Ac)c = (Bc ∪Ac) ∩ (Cc ∪A) = (Bc ∩A) ∪ (Cc ∩Ac)

so H is indeed closed under complements. Finally we show that it closed under
countable untions so let En = (Bn ∩A)∪ (Cn ∩Ac) be a sequence of sets in H with
Bn, Cn ∈ F . Then ⋃

n≥1

En = (∪n≥1Bn ∩A) ∪ (∪n≥1Cn ∩Ac)

so
⋃

n≥1 ∈ H since F is a σ-algebra. Thus we have shown that H is indeed a
σ-algebra and hence the claim follows.

(ii) Let X,Y be two independent random variables uniformly distributed on [0, 1]
and write U = min{X,Y } and V = max{X,Y }.
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Note that for 0 ≤ u ≤ v ≤ 1,

P[U ≤ u, V ≤ v] = 2P[X ≤ u,X ≤ Y ≤ v]

= 2

∫ u

0

∫ v

x

dydx

= 2u(v − u) = 2uv − v2.

So the joint density satisfies

f(U,V )(u, v) =
∂2

∂u∂v
P[U ≤ u, V ≤ v] = 2 on {(u, v) ∈ [0, 1]2 : u ≤ v}.

Thus it follows that

E[U |σ(V )] =

∫
uf(U,V )(u, V ) du∫
f(U,V )(u, V ) du

=

∫ V

0
2u du∫ V

0
2 du

=
V

2

and

E[V |σ(U)] =

∫
vf(U,V )(U, v) dv∫
f(U,V )(U, v) dv

=

∫ 1

U
2v dv∫ 1

U
2 dv

=
1− U2

2(1− U)
=

1 + U

2
.

6.3.2. Question 3 b). Let X1, X2, . . . be a sequence of i.i.d. random variables with
P(X1 = j) = pj > 0, j = 0, 1, 2, . . .,

∑∞
j=0 pj = 1. The sequence is revealed

one at a time, so that by time n, the values of X1, . . . , Xn are known. Let Fn =
σ(X1, . . . , Xn) with F0 = {∅,Ω}.

(i) Let τ be the first time that the pattern 1, 1, 5, 7, 1, 1 is observed. It is clear
that τ is a (Fn)n≥0 stopping time and we claim that P[τ ] < ∞. To show this we
prove that for n ≥ 1,

E[τ > 6n] ≤ e−cn

for some small constant c > 0. Indeed, for k ≥ 1 consider the event

Ak = (X6k, X6k+1, X6k+2, X6k+3, X6k+4, X6k+5) = (1, 1, 5, 7, 1, 1).

Then the events (Ak)k≥1 are independent since the Xi are and it holds that P[Ak] =
p41p5p7 > 0. Thus we have that

P[τ > 6n] ≤ P[Ac
1 ∩Ac

2 ∩ . . . ∩Ac
n] ≤ (1− P[A1])

n ≤ e−cn

for a sufficiently small constant c > 0. So we conclude that

E[τ ] =
∑
n≥0

P[τ ≥ n] ≤ 6
∑
n≥0

P[τ ≥ 6n] <∞.

(ii) Consider a casino which offers fair bets according to the sequence (Xn).
Specifically, if a gambler bets stake a on the outcome of the nth bet being j, i.e.,
on Xn = j, then they lose their stake with probability 1 − pj or, with probability

pj , they get their stake a back and win
a(1−pj)

pj
more (so in total the player receives

a
pj
). Consider a sequence of gamblers: they all start with a capital of 1 and the ith

gambler starts betting at time i on the pattern (1, 1, 5, 7, 1, 1) at subsequent rounds
they bet all of their capital until they either see the sequence and retire, or they
lose earlier and are out.
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For i ≥ 1, let Y i
n denote the capital of the ith gambler after round n, n ≥ 0. We

claim that (Y i
n)n≥0 is a (Fn)n≥0-martingale. First note that Y i

n = 1 for 0 ≤ n < i.
Then it holds that

Y i
i =

1

pi
1Xi=i, Y i

i+1 =
Y i
i

p1
1Xi+1=1, Y i

i+2 =
Y i
i+1

p5
1Xi+2=5,

etc. and finally Y i
n = Y i

i+5 for all n > i+ 5.
Indeed, this follows as the game is fair. More precisely, if i− 1 ≤ n ≤ i+ 4,

E[Y i
n+1|Fn] = E

[
Y i
n

pj
1Xn+1=j |Fn

]
=
Y i
n

pj
E[1Xn+1=j |Fn] = Y i

n.

Thus concludes the claim since for the other n we ave Y i
n+1 = Y i

n.
(iii) Assuming the above gamblers are the only players in the casino. Denote by

Mn the total winning of the casino’s profit and loss by time n. Then it holds that

Mn = n− (Y n
n + Y n−1

n + Y n−2
n + Y n−3

n + Y n−4
n + Y n−5

n ).

Mn is a sum of martingales and therefore a martingale it self. Then it holds by the
optional stopping theorem since |Mn+1 −Mn| is uniformly bounded as at most 6
players are in the casino at the same time and as E[τ ] <∞ that

E[τ ]− (Y τ
τ + Y τ−1

τ + Y τ−2
τ + Y τ−3

τ + Y τ−4
τ + Y τ−5

τ ) = E[Mτ ] = E[M0] = 0

At time τ we have that

Y τ−5
τ =

1

p41p5p7
, Y τ−1

τ =
1

p21
, Y τ

τ =
1

p1

and Y τ−4
τ = 0 = Y τ−3

τ = Y τ−2
τ . So it follows that

E[τ ] =
1

p1
+

1

p21
+

1

p41p5p7
.
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7. B8.2 Class 1

7.1. Consequences of the Monotone Class Theorem. Recall the following
result.

Definition 7.1. Let Ω be a set. A collection of subsets M ⊂ P(Ω) is called a
monotone class if the following properties hold:

(1) Ω ∈M .
(2) If A,B ∈M and A ⊂ B, then B\A ∈M .
(3) If (An)n≥1 is an increasing sequence subsets of Ω with An ∈ M for all

n ≥ 1, then ⋃
n≥1

An ∈M .

Theorem 7.2. (Monotone Class Theorem) If C ⊂ P(Ω) is stable under finite
intersections and C ⊂M for M a monotone class, then σ(C ) ⊂M .

Lemma 7.3. Let (Xi)i∈I be a collection of random variables on (Ω,F ,P). Let
H = σ(Xi : i ∈ I) and let G ⊂ F . Then G is independent of H if and only if G
is independent of H ′ = σ(Xi : i ∈ I ′) for every finite I ′ ⊂ I.

Proof. It is clear that if G and H are independent, then so is G and H ′ for every
finite I ′ ⊂ I. So assume that G and H ′ are independent for every finite I ′ ⊂ I.

Consider M = {A ∈ F : A is independent from G }. Then one readily checks
(using the monotone convergence theorem) that M is a monotone class. We note
that by assumption σ(Xi) ⊂ M for all i ∈ I. Thus consider C to be the class of
events that depend on only finitely many Xi, i.e.

C =
⋃

I′⊂I finite

σ(Xi : i ∈ I ′).

Then C ⊂M by assumption and it is closed under finite intersections. Therefore by
the monotone class theorem σ(Xi : i ∈ I) ⊂ σ(C ) ⊂M and the claim follows. □

Lemma 7.4. Let (Xi)i∈I be a collection of random variables on (Ω,F ,P). Let
H = σ(Xi : i ∈ I) and let G ⊂ F and let Y be a bounded random variable. Then
E[Y |σ(Xi0)] = E[Y |H ] if E[Y |σ(Xi0)] = E[Y |σ(Xi1 , . . . , Xin)] for every finite set
of indices {i1, . . . , ik} ⊂ I.

Proof. Clearly E[Y |σ(Xi0)] is H -measurable. The collection M of sets A ∈ F
such that E[1AY ] = E[1AE[Y |σ(Xi0)]] is a monotone class. To check that it is
closed under monotone limits, one uses the dominated convergence theorem. As
before, we note that the π-system C of events which depend on finitely many Xi

is contained in M . Thus the claim follows by the monotone class theorem. □

Lemma 7.5. Let (Xi)i∈I be a collection of random variables on (Ω,F ,P). Assume
that I =

⋃n
i=1 Ii and denote by Hi = σ(Xs : s ∈ Ii) for 1 ≤ i ≤ n. Then

H1, . . . ,Hn are independent if and only if for every finite collection of subsets I ′i ⊂ I
with 1 ≤ i ≤ n the collection if σ-algebras (H ′

i )1≤i≤n with H ′
i = σ(Xs : s ∈ I ′i) is

independent.

Proof. We proceed by induction. For n = 1, there is nothing to show. Assuming the
inductive hypothesis, it follows that H2, . . . ,Hn are independent. Denote H ′ =
σ(H2, . . . ,Hn) = σ(Xs : s ∈ I2 ∪ . . . ∪ In).
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To conclude the lemma, we show that H1 and H ′ are independent. It follows
from Lemma 7.3 that σ(Xi : i ∈ I ′1) for a finite subset I ′1 ⊂ I1 is independent
from H ′. Let M be the monotone class of sets in F independent from H ′.
Moreover, consider C to be the collection of events that only depend on finitely
many Xi with i ∈ I1. Then it follows that C ⊂M and it is clear that C is closed
under finite intersections. Therefore, by the monotone class theorem, it follows that
H1 ⊂ σ(C ) ⊂M and therefore H1 and H ′ are independent. □

As another application of the monotone class theorem, we can prove the following
lemma.

Lemma 7.6. Let (Ω,F ,P) be a probability space and let H1, . . . ,Hn be indepen-
dent σ-algebras. Then H1 is independent from σ(H2, . . . ,Hn).

Proof. Let M = {A ∈ F : A is independent from H1} be the sets independent of
H1. Then as in Lemma 7.3, M is a monotone class. Consider

C = {B2 ∩ . . . ∩Bn : Bi ∈Hi for 2 ≤ i ≤ n}.
We note that C ⊂M . Indeed, let Bi ∈ Hi for 2 ≤ i ≤ n. Then since H1, . . . ,Hn

are independent, of any A ∈H1,

P[A ∩B2 ∩ . . . ∩Bn] = P[A]P[B2] · · ·P[Bn] = P[A]P[B2 ∩ . . . ∩Bn] (7.1)

Thus B2 ∩ . . . ∩ Bn ∈ M . Moreover, C is stable under finite intersections and
H2, . . . ,Hn ⊂ C . Thus it follows by the monotone class theorem that σ(C ) =
σ(H2, . . . ,Hn) ⊂M , implying the claim. □

Corollary 7.7. Let X1, X2 . . . , Xn be independent random variables, i.e. the σ-
algebras σ(X1), σ(X2), . . . , σ(Xn) are independent. Then σ(X1) is independent
from σ(X2, . . . Xn).

Proof. Follows directly from Lemma 7.6. □

7.2. Brownian Motion and its properties.

Definition 7.8. Let (Ω,F ,P) be a probability space. A collection of σ-algebras
(Ft)t≥0 with t ranging in [0,∞) and Ft ⊂ F for all t ∈ [0,∞) is called a filtration
if Ft ⊂ Fs for all t ≤ s.

Definition 7.9. A (continuous-time) stochastic process (Mt)t≥0 on a filtered prob-
ability space (Ω,F , (Ft)t≥0,P) is a collection of random variables Mt : Ω→ R such
that Mt is Ft-measurable for all t ≥ 0.

Definition 7.10. A stochastic process (Bt)t≥0 is called a Brownian motion if there
is some constant σ > 0, such that

(i) (Zero at zero) B0 = 0.
(ii) (Normally distributed) For each s ≥ 0 and t > 0, the random variable Bs+t−

Bs is normally distributed with mean zero and variance σ2t.
(iii) (Independence of increments) For each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤

. . . ≤ tn the random variables Bt0 , Bt1−Bt0 , . . . , Btn−Btn−1
are independent.

(iv) (Continuity) Bt is continuous in t ≥ 0.

When σ2 = 1, we say that we have a standard Brownian motion.

Lemma 7.11. Suppose that (Bt)t≥0 is a Brownian motion. Then (−Bt)t≥0 and
(cBt/c2)t≥0 for any c > 0 are Brownian motions as well.
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Proof. The first claim is obvious. For the second claim, denote Mt = cBt/c2 . Then
M0 = 0 and Mt is continuous. Also Ms+t −Ms = c(B(s+t)/c2 −Bs/c2) is normally

distributed with variance σ2t. Finally the independence follow similarly. □

Lemma 7.12. It holds that limn→∞
1
nBn = 0 almost surely and in L1.

Proof. Denote Xi = Bi −Bi−1 for i ≥ 1. Then we can express Bn =
∑n

i=1Xi as a
sum of independent random variables of mean 0. Thus by the law of large numbers,
1
nBn → E[Xi] = 0 almost surely and in L1. □

We now aim to show that limt→∞
1
tBt = 0. In order to do so, we need the

following preliminary calculation.

Lemma 7.13. Let X be a normally distributed random variable with mean 0 and
variance 1. Then it holds for x > 0,

P[X ≥ x] ≤ e−x2/2

√
2πx

.

Proof. Applying integration by parts,

P[X ≥ x] = 1√
2π

∫ ∞

x

e−y2/2 dy

=
1√
2π

∫ ∞

x

y−1 · (ye−y2/2) dy

=

[
−e

−y2/2

√
2πy

]∞
x

− 1√
2π

∫ ∞

x

y−2 · e−y2/2 dy

≤ e−x2/2

√
2πx

.

□

Lemma 7.14. It holds that sup0≤t≤rBt is distributed as |Br|.

Proof. This is proved in section 5 of the lecture notes. □

Lemma 7.15. It holds that limt→∞
1
tBt = 0 almost surely.

Proof. We first show that

lim
n→∞

sup
t∈(0,1)

Bn+t −Bn

n
= 0

almost surely. Indeed, denote Mn = supt∈(0,1)Bn+t − Bn. Consider the event

An = {Mn >
√
n}. Moreover, by Lemma 7.14, Mn is distributed like |B1|. Thus

by Lemma 7.13,

P[An] = P[|B1| ≥
√
n] ≤

√
2√
πn

e−n/2

and so ∑
n≥1

P[An] <∞.

Therefore by the first Borel-Cantelli lemma (which does not require independence),
almost surely, An only occurs finitely many often and thus Mn

n ≤ 1√
n

for large

enough n almost surely. This implies the claim.
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To show the main claim, we calculate,

lim
t→∞

1

t
Bt = lim

t→∞

⌊t⌋
t

(
Bt −B⌊t⌋

⌊t⌋
+
B⌊t⌋

⌊t⌋

)
≤ lim

t→∞

⌊t⌋
t

(
sup

t∈[⌊t⌋,⌈t⌉)

Bt −B⌊t⌋

⌊t⌋
+
B⌊t⌋

⌊t⌋

)
= 0

almost surely. This implies that limt→∞
Bt

0 ≤ 0 almost surely. Applying the same
conclusion to −Bt, concludes the proof. □

By arguments from the appendix, we can further show that the Mn are inde-
pendent, for which we need to show that M0, . . . ,Mn are independent. The claim
follows from Lemma 7.5. Indeed, denote Hk = σ(Bk+s − Bk : s ∈ [0, 1)) and
observe that it suffices to show that H0, . . . ,Hk are independent. By Lemma 7.5
it suffices to show that for a finite collection of times 0 ≤ tk,1 ≤ . . . ≤ tk,ik < 1 for
0 ≤ k ≤ n the σ-algebras H ′

k = σ(Bk+tk,j
−Bk : 1 ≤ j ≤ ik) are independent. To

see this we note that

H ′
k = σ(Bk+tk,1

−Bk, Bk+tk,2
−Bk+tk,1

, . . . , Bk+tk,ik
−Bk+tk,ik−1

)

and the claim follows form the independence of increments.

7.3. Modifications and Indistinguishable Processes.

Definition 7.16. Let (X)t≥0 and (Yt)t≥0 be two stochastic processes defined on a
common probability space. Then we say that:

(i) X is a modification of Y if for all t ≥ 0 it holds that Xt = Yt almost surely.
(ii) X is indistinguishable from Y if

P[Xt = Yt for all t ∈ R≥0] = 1.

Lemma 7.17. Let (X)t≥0 and (Yt)t≥0 be two stochastic processes. Assume that
X and Y have almost surely right continuous paths and are modifications of each
other. Then X and Y are indistinguishable.

Proof. Since X and Y are indistinguishable and Q is countable, it follows that

P [Xt = Yt : t ∈ Q≥0] = 1.

The claim then follows by right continuity. □

Lemma 7.18. Brownian motion is indistinguishable from a γ-locally Hölder con-
tinuous process for order γ for every γ ∈ (0, 1/2).

Proof. By the above lemma and since Brownian motion is continuous, it suffices
to show that Brownian motion is a modification of a γ-Hölder continuous process.
Recall that Kolmogorov’s continuity criterion states the following. Assume that a
stochastic process (Xt)t≥0 satisfies

E[|Xt −Xs|α] ≤ C|t− s|1+β

for all s, t ≥ 0 and some strictly positive constants α, β, C > 0. Then Xt has a
γ-locally Hölder continuous process for every γ ∈ (0, β/α).
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To show the claim, we note that for s, t ≥ 0 the random variable Bt − Bs is
normally distributed with mean zero and variance |t−s|. Thus |t−s|−1/2(Bt−Bs)
is a normally distributed standard Gaussian. Therefore it follows that

E[|Bt −Bs|n] = E
[
|t− s|−n/2

|t− s|−n/2
|Bt −Bs|n

]
≤ Cn|t− s|n/2,

where Cn = E
[
|t− s|−n/2|Bt −Bs|n

]
, which is finite and strictly positive since a

standard Gaussian has moments of arbitrary degree. Thus Bt admits a modification

with γ ∈ (0, n/2−1
n ). The claim follows as limn→∞

n/2−1
n = 1/2. □

7.4. Gaussian Processes.

Definition 7.19. A multivariate Gaussian is a multivariate random variable X =
(X1, . . . , Xn) such that for every u ∈ Rℓ it holds that

⟨u,X⟩ =
ℓ∑

i=1

uiXi

is a Gaussian random variable. We say that X is centred if (E[X1], . . . ,E[Xn]) = 0.

Multivariate Gaussians have the following very useful property.

Lemma 7.20. Let X = (X1, . . . , Xn) be a multivariate Gaussian. Then the random
variables X1, . . . , Xn are independent if and only if the covariance matrix (ΓX)ij =
cov(Xi, Xj) is diagonal.

Proof. If the random variables are independent, then for i ̸= j it holds that
cov(Xi, Xj) = 0. For the other direction, we assume without loss of generality
that X is centred. So ⟨u,X⟩ =

∑n
i=1 uiXi is a centred random variable with vari-

ance uTΓXu.
To prove the claim, we consider the characteristic function u 7→ E[ei⟨u,X⟩] and

recall that X is independent whenever E[ei⟨u,X⟩] =
∏n

k=1 E[eiukXk ]. We note that if

Y ∼ N (0, σ2), E[eitY ] = e−σ2t2/2. By assumption, write ΓX = diag(λ21, . . . , λ
2
n) with

λ2i = Var(Xi) and therefore ⟨u,X⟩ is a centred Gaussian with variance
∑n

k=1 λ
2
ku

2
k.

Thus it follows that

E[ei⟨u,X⟩] = e−
1
2

∑n
k=1 λ−2

k u2
k =

n∏
k=1

e−λ2
ku

2
k/2 =

n∏
k=1

E[eiukXk ].

Thus the claim follows. □

It is important to note that it is necessary to assume that the Gaussian is mul-
tivariate. It is a classical fallacy in probability theory to assume only that the
marginals are Gaussian, as the following example shows.

Example 7.21. We give an example of two uncorrelated random variables X and
Y that are both distributed as N (0, 1), yet that are not independent.
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Indeed consider X be a N (0, 1)-distributed random variable and let Z be an
independent uniform {±1} variable. Denote Y = X ·Z and note Y ∼ N (0, 1) since

P[Y ≤ x] = 1

2
P[Y ≤ x |Z = 1] +

1

2
P[Y ≤ x |Z = −1]

=
1

2
P[X ≤ x] + 1

2
P[−X ≤ x]

=
1

2
(Φ(x) + Φ(−x)) = Φ(x),

where Φ(x) = P[X ≤ x] is the CDF of N (0, 1) and we use that Φ(x) = Φ(−x). In
addition X and Y are both uncorrelated since

cov(X,Y ) = E[XY ] = E[X2Z] = E[X2]E[Z] = 0.

However, X and Y are not independent as for x ≤ 0,

P[X ≤ x, Y ≤ x] = P[X ≤ x, Z = 1] =
1

2
Φ(x),

which is not equal to Φ(x)2 for x < 0.

Definition 7.22. A continuous stochastic process (Xt)t≥0 is called a (centred)
Gaussian process if for every finite set {t1, . . . , tn} ⊂ R>0 it holds that the random
variable

X = (Xt1 , Xt2 , . . . , Xtn)

is a multivariate (centred) Gaussian.

Lemma 7.23. Let (Xt)t≥0 be a Gaussian process, let {t1, . . . , tn} ⊂ R>0 be a finite
set and write X = (Xt1 , Xt2 , . . . , Xtn). Let B ∈ Mk,n(R) be a matrix. Then the
random vector BX is a multivariate Gaussian.

Proof. Let u ∈ Rk. Then ⟨u,BX⟩ = ⟨BTu,X⟩ and therefore it follows that BX is
a multivariate Gaussian. □

Lemma 7.24. Brownian motion is a Gaussian process.

Proof. Let {t1, . . . , tn} ⊂ R>0 be a finite set, write X = (Bt1 , Bt2 , . . . , Btn) and let
u ∈ Rn. We want to show that

⟨u,X⟩ =
n∑

i=1

uiBti

is a Gaussian random variable. Without loss of generality we assume that t1 ≤
. . . ≤ tn. Notice that

⟨u,X⟩ = un(Btn −Btn−1
) + (un−1 − un)(Btn−1

−Btn−2
) + . . .

. . .+ cn−1(Bt2 −Bt1) + cnBt1

for suitable constants ck. Thus ⟨u,X⟩ is a sum of independent Gaussians and
therefore a Gaussian itself. □

Lemma 7.25. (Characterization of Brownian motion) Let (Xt)t≥0 be a continuous
centred Gaussian process with X0 = 0. Assume that cov(Xt, Xs) = min{t, s} for
t, s ∈ R≥0. Then Xt is a standard Brownian motion.
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Proof. We first show that for each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn the
random variables Bt0 , Bt1 − Bt0 , . . . , Btn − Btn−1 are independent. Indeed, write
X = (Bt0 , Bt1 − Bt0 , . . . , Btn − Btn−1) and we calculate the covariance matrix.
Indeed, notice that for 1 ≤ i < j,

cov(Bti −Bti−1
, Btj −Btj−1

) = cov(Bti , Btj )− cov(Bti−1
, Btj )

− cov(Bti , Btj−1
) + cov(Bti−1

, Btj−1
)

= ti − ti−1 − ti + ti−1 = 0.

Moreover if j ≥ 1,

cov(Bt0 , Btj −Btj−1
) = cov(Bt0 , Btj )− cov(Bt0 , Btj−1

) = t0 − t0 = 0.

Thus we have shown that the covariance matrix of X is zero and therefore by
Lemma 7.20 it follows that Bt0 , Bt1 −Bt0 , . . . , Btn −Btn−1

are independent.
Moreover, by Lemma 7.23, Xs+t −Xs is a centred Gaussian and

var(Xs+t −Xs) = cov(Xs+t −Xs, Xs+t −Xs)

= cov(Xs+t, Xs+t)− 2cov(Xs+t, Xs) + cov(Xs, Xs)

= s+ t− 2s+ s = t.

This implies the claim. □

7.5. Applications of Gaussian Processes.

Proposition 7.26. The stochastic process (tB1/t)t≥0 is a Brownian motion.

Proof. Write Xt = tB1/t. Since (0,∞) ∋ t 7→ 1
t is continuous, it follows that

t 7→ Xt is almost surely continuous on (0,∞). By the Lemma 7.15, it holds that
limt→0Xt = 0, so the process is also continuous at zero and zero at zero.

It is clear that Xt is a centred Gaussian process and note that

cov(Xt, Xs) = tsmin{ 1s ,
1
t } = min{s, t}.

Therefore by Lemma 7.25 Xt is a Brownian motion. □

For the purposes of the next lemma, we define the conditional variance of a
random variable X defined on (Ω,F ,P) with respect to a σ-algebra A ⊂ F as

Var(X|A ) = E[X2 |A ]− E[X|A ]2.

Lemma 7.27. Let (Bt)t≥0 be a Brownian motion. Fix 0 ≤ s < t < ∞. Then
conditionally on Bs and Bt it holds that B s+t

2
is normally distributed with mean

1
2 (Bs +Bt) and variance 1

2 (t− s).

Proof. Consider the random variable

Y = B s+t
2
− 1

2
(Bs +Bt) =

1

2
(B s+t

2
−Bs) +

1

2
(B s+t

2
−Bt).

Note that Y is a sum of independent mean-zero Gaussian. Therefore it is a Gaussian
itself, E[Y ] = 0 and

Var(Y ) =
1

4
Var(B s+t

2
−Bs) +

1

4
Var(B s+t

2
−Bt)

=
1

4

(
s+ t

2
− s+ t− s+ t

2

)
=
t− s
4

.
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We show below that Y is independent from Bs and Bt. Assume for the moment,
that this is the case. Then the distribution of Y conditioned on Bs and Bt is the
same as the distribution of Y , which is a Gaussian with mean zero and variance
t−s
4 . Then E[Y |Bs, Bt] = E[Y ] = 0 and thus

E[B s+t
2
|Bs, Bt] = E

[
1

2
(Bs +Bt) |Bs, Bt

]
=
Bs +Bt

2
.

Similarly, Var(Y |Bs, Bt) = Var(Y ) = t−s
2 and therefore

Var(B s+t
2
|Bs, Bt) = Var(B s+t

2
− E[B s+t

2
|Bs, Bt]|Bs, Bt)

= Var(B s+t
2
− 1

2
(Bs +Bt)|Bs, Bt)

= Var(Y |Bs, Bt)

=
t− s
2

showing the claim.
It remains to show that Y is independent of Bs and Bt. We first show that Y

and Bs are independent. Indeed by Lemma 7.23, (Y,Bs) is a multivariate Gaussian.
Thus by Lemma 7.20 it suffices to show that cov(Y,Bs) = 0. Note first that for
r1 ̸= r2 it holds that cov(Br1 , Br2) = min{r1, r2}. Indeed, assuming without loss
of generality that r1 ≤ r2,

cov(Br1 , Br2) = cov(Br1 , Br2 −Br1 +Br1)

= cov(Br1 , Br2 −Br1) + cov(Br1 , Br1) = 0 + Var(Br1) = r1.

We calculate

cov(Y,Bs) = cov(B s+t
2
, Bs)−

1

2
(cov(Bs, Bs) + cov(Bt, Bs)) = s− 1

2
(s+ s) = 0.

Similarly,

cov(Y,Bt) = cov(B s+t
2
, Bt)−

1

2
(cov(Bs, Bt) + cov(Bt, Bt))

=
s+ t

2
− 1

2
(s+ t) = 0.

In particular, Y,Bs − Bt and Bt is a collection of independent random variables
as their covariance matrix is zero. Thus by Corollary 7.7, it follows that Y is
independent of σ(Bs −Bt, Bt) = σ(Bs, Bt). This concludes the proof. □
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8. B8.2 Class 2

8.1. Stopping Times.

Definition 8.1. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A stopping
time τ is a measurable map τ : Ω→ [0,∞] such that

{τ ≤ t} ∈ Ft

for all t ≥ 0.

Lemma 8.2. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let τ be a
stopping time. Then for any t ≥ 0 it holds that

{τ > t}, {τ < t}, {τ ≥ t} ∈ Ft.

Proof. As {τ > t} = {τ ≤ t}c, the first claim follows. Similarly since {τ < t}c =
{τ ≥ t} it suffices to show that {τ < t} ∈ Ft, which follows since

{τ < t} =
⋃
n≥1

{τ ≤ t− 1
n} ∈ Ft.

□

Lemma 8.3. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let τ and ρ
be stopping times. The following properties hold:

(i) τ ∧ ρ = min{τ, ρ}, τ ∨ ρ = max{τ, ρ} and τ + ρ are all stopping times.
(ii) The collection of sets

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}
is a σ-algebra.

(iii) If τ ≤ ρ then Fτ ≤ Fρ.
(iv) Fτ∧ρ = Fτ ∩Fρ and {τ ≤ ρ} is Fτ∧ρ-measurable.

Proof. To show (i), note that {τ ∧ ρ ≤ t} = {τ ≤ t} ∪ {ρ ≤ t} and {τ ∨ ρ ≤ t} =
{τ ≤ t} ∩ {ρ ≤ t} implying that τ ∧ ρ and τ ∨ ρ are stopping times. It remains to
show that τ + ρ is a stopping times. To see this, observe

{τ + ρ > t} = {τ = 0, ρ > t} ∪ {ρ = 0, τ > t} ∪
⋃
s∈Q

s∈[0,t]

(
{τ > s} ∩ {ρ > t− s}

)
∈ Ft.

Indeed this inequality of sets holds since if τ +ρ > t, then, as Q is dense in R, there
is ε > 0 such that τ + ρ− ε > t and s = τ − ε is rational. The claim follows since
{t+ ρ ≤ t} = {t+ ρ > t}c.

Next, to show (ii) observe that it is clear that Fτ contains ∅ and Ω and that
it is closed under countable unions. To show that it is closed under complements,
notice that for any set A and t ≥ 0 we have a disjoint union.

{τ ≤ t} = (A ∩ {τ ≤ t}) ∪ (Ac ∩ {τ ≤ t}).
Therefore if A ∈ Fτ , we conclude

Ac ∩ {τ ≤ t} = {τ ≤ t}\(A ∩ {τ ≤ t}) = {τ ≤ t} ∩ (A ∩ {τ ≤ t})c ∈ Fτ

and the claim follows.
To show (iii), let A ∈ Fτ . Then since {ρ ≤ t} ⊂ {τ ≤ t},

A ∩ {ρ ≤ t} = A ∩ {ρ ≤ t} ∩ {τ ≤ t} = (A ∩ {τ ≤ t}) ∩ {ρ ≤ t} ∈ Ft
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as A ∩ {τ ≤ t} ∈ Ft.
For (iv), observe it follows by (iii) that Fτ∧ρ ⊂ Fτ ∩Fρ. For the other direction

let A ∈ Fτ ∩Fρ. Then

A ∩ {τ ∧ ρ ≤ t} = A ∩ ({τ ≤ t} ∪ {ρ ≤ t}) = (A ∩ {τ ≤ t}) ∪ (A ∩ {ρ ≤ t}) ∈ Ft.

Therefore A ∈ Fτ∧ρ. Finally, note that

{τ ≤ ρ} ∩ {τ ≤ t} = {τ ∧ t ≤ ρ ∧ t} ∩ {τ ≤ t} ∈ Ft,

where it follows that {τ∧t ≤ ρ∧t} ∈ Ft since both τ∧t and ρ∧t are Ft-measurable
functions. Similarly,

{τ ≤ ρ} ∩ {ρ ≤ t} = {τ ∧ t ≤ ρ ∧ t} ∩ {τ ≤ t} ∩ {ρ ≤ t}.

Therefore {τ ≤ ρ} ∈ Fτ∧ρ. □

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Denote

Ft+ =
⋂
ε>0

Ft+ε.

Note that Ft+ is a σ-algebra as it is an intersection of σ-algebras. Recall that we
say that the filtration (Ft)t≥0 is right-continuous if Ft = Ft+ for all t ≥ 0

Given an adapted stochastic process (Xt)t≥0, for a Borel-measurable subset Γ ⊂
R denote

HΓ = inf{t ≥ 0, Xt ∈ Γ}.

Lemma 8.4. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let (Xt)t≥0

be an adapted stochastic process. Then the following holds:

(i) If (Xt)t≥0 has right-continuous paths, then for an open set Γ, HΓ = inf{t ≥
0 : Xt ∈ Γ} is a stopping time relative to (Ft+)t≥0.

(ii) If (Xt)t≥0 has continuous paths, then for a closed set Γ, HΓ = inf{t ≥ 0 :
Xt ∈ Γ} is a stopping time relative to (Ft)t≥0.

Proof. For (i) we want to show that {HΓ ≤ t} ∈ Ft+. Note that it is enough to
show that {HΓ < t} ∈ Ft since then for any k > 0,

{HΓ ≤ t} =
∞⋂

n=k

{
HΓ < t+

1

n

}
∈ Ft+ 1

k

and hence {HΓ ≤ t} ∈ Ft+.
Now since (Xt)t≥0 is right continuous and Γ is open, if Xr ∈ Γ then necessarily

Xs ∈ Γ for some s > r and s ∈ Q. Thus it follows that

{HΓ < t} =
⋃
s<t

{Xs ∈ Γ} =
⋃

s<t,s∈Q
{Xs ∈ Γ},

which is in Ft as required.
For (ii) we first introduce the distance between a point x ∈ R and a subset

Γ ⊂ R. We define

d(x,Γ) = inf
γ∈Γ

d(x, γ).

If Γ is closed then it holds that

d(x,Γ) = min
γ∈Γ

d(x,Γ). (8.1)
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Indeed, if γn ∈ Γ is a sequence with d(x, γn) < d(x,Γ)+ 1
n then γn ranges within a

compact set. Thus we can pass to a converging subsequence, showing that there is
γ ∈ Γ with d(x,Γ) = d(x, γ).

Returning to (ii), we will first use that Γ is closed, to show that

{HΓ ≤ t} =
{

inf
s∈[0,t]

d(Xs,Γ) = 0

}
. (8.2)

Indeed, we note that ⊂ in (8.2) is clear and for the other direction let ω ∈ Ω be
an event such that infs∈[0,t] d(Xs(ω),Γ) = 0. Then there is a sequence sn ∈ [0, t]
such that limn→∞ d(Xsn(ω),Γ) = 0. Using that [0, t] is compact, we can assume
without loss of generality that sn converges to a limit point s ∈ [0, t]. Thus, as
X has continuous paths it follows that d(Xs(ω),Γ) = 0. Finally, by (8.1), there is
γ ∈ Γ with d(Xs(ω), γ) = 0 and hence Xs(ω) = γ ∈ Γ.

We finally deduce (ii) from (8.2). Indeed, since Xs has continuous paths it holds
that

{HΓ ≤ t} =
{

inf
s∈[0,t],s∈Q

d(Xs,Γ) = 0

}
=
⋂
n≥1

⋃
s≤t,
s∈Q

{Xs ∈ B 1
n
(Γ)},

where B 1
n
(Γ) = {x ∈ X : d(x,Γ) < 1

n}. As {Xs ∈ B 1
n
(Γ)} ∈ Fs, the claim

follows. □

Assuming that Xt is continuous and (Ft)t≥0 is right-continuous, we can use
Lemma 8.4 to conclude that the hitting time of a Borel-measurable sets is also a
stopping time.

Theorem 8.5. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space with right-
continuous filtration and let (Xt)t≥0 be a continuous adapted stochastic process.
Then for every Borel measurable set A, the hitting time HA is a stopping time.

Before proving the result, we establish the following lemma:

Lemma 8.6. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space with right-continuous
filtration and let (τn)n≥1 be a sequence of stopping times. Then

inf
n≥1

τn and sup
n≥1

τn

are stopping times.

Proof. As in the proof of proposition 8.4, it suffices to show that {lim infn→∞ τn <
t} ∈ Ft for all t ≥ 0. Note that infn→∞ τn < t whenever τn ≤ s infinitely often for
some s < t enabling us to write

{ inf
n≥1

τ < t} =
∞⋃
k=1

∞⋂
n=1

∞⋃
m=n

{τm ≤ t− 1
k},

which is in Ft. A similar argument applies to supn≥1 τn, concluding the proof. □

Proof. (of Theorem 8.5) It suffices to show the claim for Borel measurable sets.
Consider the collection of sets

A = {A ⊂ R : HA and HAc are stopping times}.
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By Lemma 8.4, A contains all open subsets of R. It therefore suffices to show that
A is a σ-algebra.

It is clear that ∅,R ∈ A and that A is closed under complements. To show that
A is closed under countable unions, let (An)n≥1 be a collection of sets in A and

write A =
⋃

n≥1An and Uk =
⋃k

n=1An. Then by Lemma 8.3 (i), HUk
is a stopping

time and observe that HA = limk→∞HUk
= supk≥1HUk

. Thus by Lemma 8.6
it follows that HA is also a stopping time. A similar argument applies to HAc ,
concluding the proof. □

8.2. Optional Stopping Theorem.

Theorem 8.7. (Optional Stopping Theorem) Let (Mt)t≥0 be a uniformly integrable
martingale and let τ be an almost surely finite stopping time. Then

E[Mτ ] = E[M0].

We note that a bounded martingale is uniformly integrable. To apply the op-
tional stopping theorem, the following proposition is useful.

Proposition 8.8. Let (Mt)t≥0 be a martingale with right continuous paths and let
τ be an almost surely finite stopping time. Then the stopped process Mτ =Mτ∧t is
also a martingale.

Lemma 8.9. Let (Bt)t≥0 be a Brownian motion. Then

lim sup
t→∞

Bt =∞ and lim inf
t→∞

Bt = −∞

almost surely.

Proof. By symmetry it suffices to show that for every M > 0,

P[sup
s≥0

Bs > M ] = 1.

Let δ > 0 and recall that Bδ
t = Bδ2t/δ is a standard Brownian motion. Thus

P
[
sup

0≤s≤1
Bs > Mδ

]
= P

[
sup

0≤s≤1/δ2
Bδ2s/δ > M

]
= P

[
sup

0≤s≤1/δ2
Bδ

t > M

]
.

Letting δ → 0, the right-hand sice converges to P[sups≥0Bs > M ] whereas the

left-hand side converges to P
[
sup0≤s≤1Bs > 0

]
= 1, as seen in the lecture.

Alternatively the claim follows from the reflection principle, or the fact that if
Sn =

∑n
i=1Xi with (Xi)i≥1 independentN (0, 1)-random variables then lim supt→∞ Sn =

∞ almost surely. □

Let Bt be the standard Brownian motion. Denote by Ha = inf{t ≥ 0 : Bt = a}.

Lemma 8.10. Let a < 0 < b. Then BHa∧Hb
is distributed as

b

b− a
δa +

−a
b− a

δb.

Proof. Note Ha ∧ Hb < ∞ almost surely by Lemma 8.9. Therefore BHa∧Hb
is

distributed like pδa + (1 − p)δb for some p ∈ [0, 1]. Moreover, by the optional
stopping theorem, since BHa∧Hb is bounded and therefore uniformly integrable,

p · a+ (1− p) · b = E[BHa∧Hb
] = E[BHa∧Hb

Ha∧Hb
] = E[B0] = 0.

This implies p = b
b−a and (1− p) = −a

b−a . □
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Lemma 8.11. For a, λ > 0 it holds that

E[e−λHa ] = e−a
√
2λ.

Proof. Since Mt = eαBt−α2t/2 is a martingale and MHa is bounded it follows from
the optional stopping theorem,

1 = E[eαBHa−α2Ha/2] = eαaE[e−α2Ha/2].

Therefore E[e−α2Ha/2] = e−αa. Setting α =
√
2λ implies the claim. □

Lemma 8.12. For a, λ > 0 it holds that

E[e−λHa∧H−a ] =
1

cosh(a
√
2λ)

.

Proof. Denote by A = {Ha ∧ H−a = Ha} = {BHa∧H−a = a}. Then it holds that
Ac = {Ha ∧ H−a = H−a} = {BHa∧H−a = −a} and by Lemma 8.10 we have

that P[A] = P[Ac] = 1/2. Also by symmetry we have that, E[e−λHa∧H−a |A] =
E[e−λHa∧H−a |Ac] = E[e−λHa∧H−a ]. Indeed this follows since

E[e−λHa∧H−a ] = E[e−λHa∧H−a |A]P[A] + E[e−λHa∧H−a |Ac]P[Ac].

Recall that for any α > 0 it holds that Mt = eαBt−α2t/2 is a martingale. Since
MHa∧Hb is bounded, it follows by the optional stopping theorem,

1 = E[eαB0 ] = E[eαBHa∧H−a
−α2(Ha∧H−a)/2]

= E[eαBHa∧H−a
−α2(Ha∧H−a)/2|A]P[A]

+ E[eαBHa∧H−a
−α2(Ha∧H−a)/2|Ac]P[Ac]

=
eαa

2
E[e−α2(Ha∧H−a)/2|A] + e−αa

2
E[e−α2(Ha∧H−a)/2|Ac]

= cosh(αa)E[e−α2Ha∧H−a/2].

Therefore E[e−α2Ha∧H−a/2] = 1
cosh(aα) and setting α =

√
2λ implies the claim. □

8.3. Reflection Principle.

Theorem 8.13. (The reflection principle) Let (Bt)t≥0 be a standard Brownian
motion and let τ be a stopping time. Then the process

B′
t =

{
Bt if t < τ,

2Bτ −Bt if t ≥ τ

is a standard Brownian motion.

Proof. This follows rather immediately from the strong Markov property. □

Corollary 8.14. Let St = sup0≤s≤tBs. Then for a ≥ 0 and b ≤ a we have for all
t ≥ 0

P[St ≥ a,Bt ≤ b] = P[Bt ≥ 2a− b].
Moreover, St and |Bt| have the same distribution.
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Proof. We apply the reflection principle with the stopping time Ha and B′ the at
τ reflected process:

P[St ≥ a,Bt ≤ b] = P[Ta ≤ t, Bt ≤ b]
= P[Ta ≤ t, B′

t ≤ b]
= P[Ta ≤ t, 2a−Bt ≤ b]
= P[Bt ≥ 2a− b],

where we used that as 2a− b ≥> a we have that {Bt ≥ 2a− b} ⊂ {Ta ≤ t}.
To show the claim about the distribution of St we calculate

P[St ≥ a] = P[St ≥ a,Bt ≥ a] + P[St ≥ a,Bt ≤ a]
= 2P[Bt ≥ a]
= P[Bt ≥ a] + P[Bt ≤ a] = P[|Bt| ≥ a].

□

Lemma 8.15. Let a ̸= 0. Then the probability density function of Ha is

fHa
(t) =

|a|√
2πt3

e−a2/2t.

Proof. By symmetry, Ha ∼ H−a and therefore it suffices to assume a > 0. Denote
St = sup0≤s≤tBs and observe that by continuity {Ha ≤ t} = {St ≥ a}. Write

Φ(y) = P[N (0, 1) ≤ y] =
∫ y

−∞

1√
2π
e−x2/2 dx.

Then upon applying a substitution

P[N (0, σ2) ≤ y] =
∫ y

−∞

1√
2πσ2

e−x2/2σ2

dx = Φ(y/σ)

Therefore it holds that P[Ha ≤ t] = P[St ≥ a] = P[|Bt| ≥ a] = 1− 2Φ(a/
√
t). Thus

the probability density function of Ha is

d

dt
P[Ha ≤ t] =

d

dt
(1− 2Φ(a/

√
t)) = −2Φ′(a/

√
t)(−1/2)at−3/2 =

a√
2πt3

e−a2/2t.

□

We observe that Lemma 8.15 is a rather elegant result. The hitting times of the
standard random walk on Z don’t have as explicit a closed form.

Lemma 8.16. Let a ̸= 0 and Ua = sup{t ≥ 0 : Bt = at} be the last time that
Brownian motion hits the line at. Then Ua = 1/Ha in distribution.
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Proof. We assume a > 0. Denote Ws = sB1/s. Then for r ∈ R,
P[Ua ≤ r] = P[sup{t ≥ 0 : Bt = at} ≤ r]

= P[sup{t ≥ 0 : Bt = at} < r]

= P[ 1tBt ̸= a for all t ≥ r]
= P[sBs−1 ̸= a for all s−1 ≥ r]
= P[Ws ̸= a for all r−1 ≥ s]
= P[ max

0≤s≤r−1
Ws < a]

= 1− P[Ha < r−1] = P[H−1
a ≤ r],

having used in the second line that P[Br = ar] = 0. □

We note that Ua is not a stopping time, since the event {Ua ≤ t} does not only
depend on the values of (Bs)0≤s≤t.

Lemma 8.17. It holds that E[Ua] =
1
a2 and therefore E[BUa

] = E[aUa] =
1
|a| .

Proof. Again we assume a > 0. Note that d
dte

−a2/2t = a2

2t2 e
−a2/2t. Therefore by

Lemma 8.15 and partial integration,

E[Ua] = E[ 1
Ha

] =

∫ ∞

0

1

t
fHa

(t) dt

=

∫ ∞

0

a√
2πt5

e−a2/2t dt

=
1

a
√
2π

∫ ∞

0

1√
t
· a

2

2t2
e−a2/2t dt

=
1

a
√
2π

∫ ∞

0

a√
t3
e−a2/2t dt

=
1

a2

∫ ∞

0

a√
2πt3

e−a2/2t dt =
1

a2
.

□

8.4. An Exercise on Gaussian Processes.

Lemma 8.18. Let (Bt)t≥0 be a Brownian motion. Fix 0 ≤ s < t < ∞. Then
conditionally on Bs and Bt for α ∈ [0, 1] it holds that Bαs+(1−α)t is normally
distributed with mean αBs + (1− α)Bt and variance α(1− α)(t− s).
Proof. Consider the random variable

Y = Bαs+(1−α)t−αBs−(1−α)Bt = α(Bαs+(1−α)t−Bs)+(1−α)(Bαs+(1−α)t−Bt).

Note that Y is a sum of independent mean-zero Gaussian. Therefore it is a Gaussian
itself, E[Y ] = 0 and

Var(Y ) = α2((α− 1)s+ (1− α)t) + (1− α)2(αt− αs) = α(1− α)(t− s).
We show below that Y is independent from Bs and Bt. Assume for the moment,

that this is the case. Then the distribution of Y conditioned on Bs and Bt is the
same as the distribution of Y , which is a Gaussian with mean zero and variance
α(1− α)(t− s). Then E[Y |Bs, Bt] = E[Y ] = 0 and thus

E[Bαs+(1−α)t|Bs, Bt] = E [αBs + (1− α)Bt |Bs, Bt] = αBs + (1− α)Bt.
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Similarly, Var(Y |Bs, Bt) = Var(Y ) = α(1− α)(t− s) and therefore

Var(Bαs+(1−α)t|Bs, Bt) = Var(Bαs+(1−α)t − E[Bαs+(1−α)t|Bs, Bt]|Bs, Bt)

= Var(Bαs+(1−α)t − αBs − (1− α)Bt)|Bs, Bt)

= Var(Y |Bs, Bt)

= α(1− α)(t− s)
showing the claim.

It remains to show that Y is independent of Bs and Bt. We first show that Y
and Bs are independent. Indeed (Y,Bs) is a multivariate Gaussian and so it suffices
to show that cov(Y,Bs) = 0. We calculate

cov(Y,Bs) = cov(Bαs+(1−α)t, Bs)− α · cov(Bs, Bs)− (1− α) · cov(Bt, Bs)

= s− αs+ (1− α)s = 0.

Similarly,

cov(Y,Bt) = cov(Bαs+(1−α)t, Bt)− αcov(Bs, Bt)− (1− α)cov(Bt, Bt)

= αs+ (1− α)t− (αs+ (1− α)t) = 0.

In particular, Y,Bs −Bt and Bt is a collection of independent random variables as
their covariance matrix is zero. Thus it follows that Y is independent of σ(Bs −
Bt, Bt) = σ(Bs, Bt). This concludes the proof. □

Lemma 8.19. Let Bt be a standard Brownian motion on (Ω,F , (Ft)t≥0,P). Con-
sider for 0 ≤ t ≤ 1,

Xt = x(1− t) + yt+ (Bt − tB1).

Then Xt is a continuous Gaussian process with mean x(1 − t) + yt and variance
t(1− t). Moreover, Xt has the same law as (Bt|B0 = x,B1 = y).

We note that Xt is not adapted to the filtration Ft, which would imply that
B1 is Ft measurable. However this is not possible since if this was the case then
B1 = E[B1|Ft] = Bt for 0 ≤ t ≤ 1, which is a contradiction. Also Bt is not
a FX

t -Brownian motion. If it were, then B1 would be FX
t -measurable since Bt

would be adapted. Therefore again B1 = E[B1|FX
t ], which contradicts Bt being a

FX
t -Brownian motion.

Proof. We note that X0 = x and X1 = y. Moreover, since Brownian motion is a
Gaussian process, it follows that Xt is a Gaussian process. Note that

E[Xt] = x(1− t) + yt

and

Var(Xt) = Var(Bt − tB1)

= Var((1− t)Bt − t(B1 −Bt))

= (1− t)2t+ t2(1− t) = t(1− t).
By Lemma 8.18 it follows that Xt has the same law as (Bt|B0 = x,X1 = y). □
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9. B8.2 Class 3

9.1. An exercise on stopping times.

Lemma 9.1. Let M be a positive continuous martingale converging almost surely
to zero as t→∞. Let M∗ = supt≥0Mt. Then for x > 0

P [M∗ ≥ x |F0] = min

(
1,
M0

x

)
.

Moreover, the distribution of M∗ is distributed as M0/U for U an uniform [0, 1]
variable independent of M0.

Proof. Denote τx = inf{t ≥ 0 : Mt ≥ x}. Then we note that the process Yt =
Mt∧τx is bounded by max(x,M0) and hence is a uniformly integrable martingale.
We note that since Mt → 0 almost surely,

Y∞ =M0 · 1{M0≥x} + x · 1{τx<∞} · 1{M0<x}

=M0 · 1{M0≥x} + x · 1{M∗≥x} · 1{M0<x}

Therefore it follows that

1{M∗≥x} · 1{M0<x} =
Y∞ −M0 · 1{M0≥x}

x
.

Finally using that E[Y∞ |F0] =M0, we conclude that

P[M∗ ≥ x |F0] = E[1{M∗≥x} |F0]

= E[1{M∗≥x}(1{M0<x} + 1{M0≥x}) |F0]

= E
[
Y∞ −M0 · 1{M0≥x}

x

∣∣∣∣F0

]
+ 1{M0≥x}

=
M0

x
1{M0<x} + 1{M0≥x}

= min

(
1,
M0

x

)
,

showing the first equation.
To show the final claim, we notice that

P[M∗ ≥ x] = E[1{M∗≥x}]

= E[E[1{M∗≥x} |F0]]

= E
[
min

(
1,
M0

x

)]
and furthermore,

P
[
M0

U
≥ x

]
= E[1{M0

x ≥U}]

= E[E[1{M0
x ≥U} |F0]]

= E
[
min

(
1,
M0

x

)]
showing the final claim. □
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Lemma 9.2. Let a > 0 and Ba
t = a+Bt be a Brownian motion starting at a. Let

τ = H0(B
a) = inf{t ≥ 0 : Ba

t = 0}. Then the distribution of Y = supt≤τ B
a
t is

a/U with U a uniform [0, 1] random variable.

Proof. Consider the positive continuous martingale Mt = Ba
t∧τ . Since Mt is pos-

itive, it is bounded in L1 and therefore there is M∞ ∈ L1 such that Mt → M∞
almost surely. We note that τ is almost surely finite and therefore M∞ = 0 almost
surely. The distribution of supt≥0Mt is the same as the one of Y = supt≤τ B

a
t and

thus by the previous lemma it holds that Y is distributed as a/U for U a uniform
[0, 1] variable. □

9.2. Continuous Local Martingales and Quadratic Variation.

Definition 9.3. An adapted process (Mt)t≥0 is called a continuous local mar-
tingale if M0 = 0, it has continuous trajectories a.s. and if there exists a non-
decreasing sequence of stopping times (τn)n≥1 such that τn ↑ ∞ a.s. and for each
n, Mτn = (Mτn∧t)t≥0 is a martingale. We say (τn)n≥1 reduces or localizes M.

More generally, when we do not assume that M0 = 0, we say that M is a
continuous local martingale if Nt =Mt −M0 is a continuous local martingale.

The most important property of continuous local martingales is that they have
quadratic variation processes.

Theorem 9.4. Let M be a continuous local martingale. There exists a unique (up
to indistinguishability) non-decreasing, continuous adapted finite variation process
⟨M⟩ = (⟨M,M⟩t)t≥0, starting in zero, such that (M2

t −⟨M,M⟩t)t≥0 is a continuous
local martingale. The process ⟨M⟩ is called the quadratic variation of M .

9.2.1. Characterisation of the quadratic variation being zero. It is important to note
that local martingales and finite variation processes are orthogonal to each other.

Theorem 9.5. Let M be a continuous local martingale with M0 = 0. Then the
following properties are equivalent:

(i) M is indistinguistable from zero.
(ii) ⟨M⟩t = 0 for all t ≥ 0.
(iii) M is a process of finite variation, i.e. t 7→ Mt has finite variation almost

surely.

We draw the following corollary of the previous theorem.

Corollary 9.6. Let M be a continuous local martingale and let τ1 ≤ τ2 be two
stopping times. Then the following are equivalent:

(i) M is a.s. constant on [τ1, τ2].
(ii) ⟨M⟩t = 0 is a.s. constant on [τ1, τ2].

Proof. Consider M ′
s = Mτ2 −Mτ1 = Ms∧τ2 −Ms∧τ1 . Then by Proposition 7.27

from the lecture notes,

⟨M ′⟩s = ⟨Mτ2⟩s + ⟨Mτ1⟩s − 2⟨Mτ2 ,Mτ1⟩s
= ⟨M⟩s∧τ2 + ⟨M⟩s∧τ1 − 2⟨M,M⟩s∧τ1∧τ2

= ⟨M⟩s∧τ2 − ⟨M⟩s∧τ1 .

Since M ′
0 = 0, the claim follows from the previous proposition. □
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Lemma 9.7. Assume that the filtration (Ft)t≥0 is right continuous. Let Y be a
continuous stochastic process and let t ∈ R≥0. Then

Tt = inf{s > t : Ys ̸= Yt}
is a stopping time.

Proof. We give two proofs, first we consider the continuous process Xs = 1s>t(Ys−
Yt). Then Tt is the first hitting time of the open set R\{0} and hence since the
filtration is right continuous it follows that Tt is a stopping time.

Let T ≥ 0. If T < t, then {Tt ≤ T} = ∅ ∈ FT so we assume that T ≥ t. Then
it holds that

{Tt < T}c = {Tt ≥ T}

=
⋂

s∈[t,T ]

{Ys = Yt}

=
⋂

s∈[t,T ]
s∈Q

{Ys = Yt},

using in the last line that Ys is continuous. Since {Ys = Yt} ∈ Fs, it thus follows
that {Tt < T} ∈ FT . To conclude the proof we notice that for any k > 0,

{Tt ≤ T} =
∞⋂

n=k

{Tt < T +
1

n
} ∈ FT+ 1

k
.

Therefore the claim follows by right continuity of the filtration. □

Proposition 9.8. Let M be a continuous L2-bounded martingale. Then the in-
tervals of constancy for M and ⟨M⟩ coincide. More precisely, if S ≤ S′ are two
random times then for almost every ω ∈ Ω it holds that

Ms(ω) =MS(ω)(ω) for all s ∈ [S(ω), S′(ω)]

if and only if for almost all ω ∈ Ω it holds that

⟨M⟩s(ω) = ⟨M⟩S(ω)(ω) for all s ∈ [S(ω), S′(ω)].

Proof. By the previous corollary and lemma, the claim holds for (t, Tt) for any t.
Assume that the first claim holds. Let Ω′ ⊂ Ω be the set of full measure such that
every ω ∈ Ω′ satisfies Ms(ω) =MS(ω)(ω) and ⟨M⟩Tt

(ω) = ⟨M⟩t(ω) for all t ∈ Q.
Fix any ω ∈ Ω′. Either the interval [S(ω), S′(ω)] consists of a single point, in

which case there is nothing to show, or it contains a rational t and hence S′(ω) ≤
Tt(ω). However, since ω ∈ Ω′ it holds that s 7→ ⟨M⟩s(ω) is constant on [t, Tt(ω)]. As
t is an arbitrary rational, this implies that s 7→ ⟨M⟩s(ω) is constant on (S(ω), S′(ω)].
Finally since s 7→ ⟨M⟩s(ω) is continuous, it cannot vary at a single point, so it is
constant on [S(ω), S′(ω)]. A similar argument applies for the converse direction. □

9.2.2. Quadratic Covariation. Another useful property is the following.

Theorem 9.9. Let M be a martingale with M0 ∈ L2. Then E[⟨M⟩∞] < ∞ and
M2 − ⟨M⟩ is a uniformly integrable martingale.

Definition 9.10. Let M and N be continuous local martingales. Then we define
the quadratic covariation of M and N as

⟨M,N⟩ = 1

2
(⟨M +N,M +N⟩ − ⟨M,M⟩ − ⟨N,N⟩)
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Proposition 9.11. Let M and N be continuous local martingales. Then the fol-
lowing properties hold:

(1) (MtNt−⟨M,N⟩t) is the unique finite variation process that is a continuous
local martingale and that is zero at zero.

(2) The mapping M,N 7→ ⟨M,N⟩ is bilinear and symmetric.
(3) For any stopping time τ and t ≥ 0,

⟨Mτ , Nτ ⟩t = ⟨Mτ , N⟩t = ⟨M,Nτ ⟩t = ⟨M,N⟩t∧τ .

Lemma 9.12. LetM and N be continuous local martingales and let τ be a stopping
time. Then

Mτ (N −Nτ ) =MτN −MτNτ

is a continuous local martingale.

Proof. By Proposition 9.11 (i) it holds thatMτN−⟨Mτ , N⟩ andMτNτ−⟨Mτ , Nτ ⟩
are continuous local martingales. Also by Proposition 9.11 (ii) ⟨Mτ , N⟩ = ⟨Mτ , Nτ ⟩
and therefore the difference of these two continuous local martingales is MτN −
MτNτ and so this is again a continuous local martingale. □

Lemma 9.13. Let (Ω,G , (Gt)t≥0,P) and let B be a standard Brownian motion
with respect to (Gt)t≥0. Let X be a positive G0-measurable random variable that is
independent of Bt for every t ≥ 0 and writeMt = BtX . Then ρt = tX can be viewed
as a (Gt)t≥0-stopping time and consider the stopping time σ-algebra Ft = Gρt . Then
the following properties hold

(i) Mt is a continuous local martingale with respect to (Ft)t≥0.

(ii) If EX [X1/2] <∞, then (Mt)t≥0 is a martingale.
(iii) ⟨M⟩t = tX.

Proof. Consider the stopping times τn = inf{t ≥ 0 : |Mt| ≥ n} and τBn = inf{t ≥
0 : |Bt| ≥ n}. Then BτB

n is a uniformly integrable martingale and it holds that

Mτn
t = B

τB
n

ρt . Thus it holds by the optional stopping theorem that

E[Mτn
t |Fs] = E[BτB

n
ρt |Gρs

] = B
τB
n

ρs =Mτn
s . (9.1)

Thus it follows that Mτn
t is a martingale and the claim follows.

To show (ii), it holds by using independence,

E[|Mt|] = E[E[|BtX | |σ(X)]] = E
[√

2tX
π

]
<∞

if EX [X1/2] < ∞. Thus Mt is integrable. To show the martingale condition,
we want to apply dominated convergence to (9.1). To do so, note that by the
maximum principle, supt∈[0,s]Mt = supt∈[0,s]BtX ∼ |BsX | = Ms and therefore

E[supt∈[0,s]Mt] = E[|Ms|] <∞. Similarly E[supt∈[0,s]M
−
t ] ≤ E[|Ms|] and therefore

E[supt∈[0,s] |Mt|] ≤ 2E[|Ms|] <∞. Finally notice that |Mτn
s | ≤ supt∈[0,s] |Mt| ∈ L1

and hence

E[Mt|Fs] = lim
n→∞

E[Mτn
t |Fs] = lim

n→∞
Mτn

s =Ms,

having used conditional dominated convergence in the first equality and (9.1) in
the second. This shows that Mt is indeed a martingale.

Finally, to show (iii), we want to show that Nt =M2
t − tX is a continuous local

martingale. Denote Lt = B2
t − t and recall that Lt is a martingale. We proceed as
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in (i). Let τn = inf{t ≥ 0 : |Nt| ≥ n} and τLn = inf{t ≥ 0 : |Lt| ≥ n}. Then it

again holds that Nτn
t = L

τL
n

ρt and

E[Nτn
t |Fs] = E[LτL

n
ρt |Gρs

] = L
τL
n

ρs = Nτn
t .

Therefore Nt is a continuous local martingale and since the quadratic variation is
the unique non-decreasing adapted finite variation process ⟨M⟩ such thatM2

t −⟨M⟩
is a continuous local martingale, it follows that ⟨M⟩t = tX, concluding the proof
of the lemma. □

9.3. Square Integrable Continuous Martingales.

Definition 9.14. We define

H 2,c =

{
continuous martingales (Mt)t≥0 with sup

t≥0
E[M2

t ] <∞
}
.

We recall the following results from the lecture notes:

Proposition 9.15. Let M,N ∈H 2,c. Then the following properties hold:

(i) M is uniformly integrable and therefore M∞ exists and as t→∞, Mt →M∞
almost surely and in L2. Indeed, supt≥0 |Mt| is a square integrable random
variable.

(ii) The inner product

⟨M,N⟩H 2,c := E[M∞N∞] ≤ E[M2
∞]1/2E[N2

∞]1/2 <∞

defines an inner product on H 2,c. Therefore H 2,c is a Hilbert space.
(iii) It holds for all t ∈ [0,∞] that |⟨M,N⟩t| ≤

√
⟨M⟩t ·

√
⟨N⟩t ≤

√
⟨M⟩∞ ·

√
⟨N⟩∞

Lemma 9.16. A continuous local martingale M such that there exists a random
variable Z ∈ L1 with |Mt| ≤ Z for every t ≥ 0 is a uniformly integrable martingale.

We use these results to deduce the following proposition.

Proposition 9.17. Let M,N ∈ H 2,c. Then E[⟨M,N⟩∞] < ∞ and MN −
⟨M,N⟩ is a uniformly integrable martinagle and therefore E[MtNt] = E[M0N0] +
E[⟨M,N⟩t].

Proof. We give two proofs. First we recall that by Theorem 7.24 (i), if X ∈ H 2,c

it follows that X2 − ⟨X⟩ is a uniformly integrable martingale. Note that

2(MN − ⟨M,N⟩) = (M +N)2 − ⟨M +N⟩ − (M2 − ⟨M⟩)− (N2 − ⟨N⟩)

and therefore since M +N ∈ H 2,c it holds that MN − ⟨M,N⟩ is a sum of three
uniformly integrable martingales and hence uniformly integrable itself.

For a second proof, we adapt the proof from Theorem 7.24 of the lecture notes.
By Doob’s L2-inequality,

E[ sup
0≤t≤T

M2
t ] ≤ 4E[M2

T ]

and so letting T →∞,

E[sup
t≥0

M2
t ] ≤ 4 sup

t≥0
E[M2

t ] ≤ C
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for some C > 0. The same holds for N by suitably adjusting the constant C.
Therefore by Cauchy-Schwarz,

E
[(

sup
t≥0
|Mt|

)
·
(
sup
t≥0
|Nt|

)]
≤ E

[(
sup
t≥0
|Mt|

)2
]1/2

· E

[(
sup
t≥0
|Nt|

)2
]1/2

= E
[
sup
t≥0

M2
t

]1/2
· E
[
sup
t≥0

N2
t

]1/2
≤ C.

Furthermore we note that by Proposition 9.15, Cauchy-Schwarz and Theorem 9.9,

E[sup
t≥0
|⟨M,N⟩t|] ≤ E[

√
⟨M⟩∞

√
⟨N⟩∞]

≤ E[⟨M⟩∞]1/2E[⟨N⟩∞]1/2 <∞.
To conclude the proof, we note that for allMtNt−⟨M,N⟩t is bounded from above

by
(
supt≥0 |Mt|

)
·
(
supt≥0 |Nt|

)
+ supt≥0 |⟨M,N⟩t|, which is therefore integrable.

This implies the claim by Lemma 9.16. □

9.4. Concrete Examples of Stochastic Integrals. Suppose that (Bt)t≥0 is
Brownian motion. For a partition π of [0, T ], write ||π|| for the mesh of the par-
tition and 0 = t0 < t1 < . . . < tN(π) = T for the endpoints of the intervals of the
partition.

Lemma 9.18. It holds that

lim
||π||→0

N(π)−1∑
j=0

Btj+1
(Btj+1

−Btj ) =
1

2
(B2

T −B2
0 + T )

in probability.

Proof. Note that

Sπ,1 :=

N(π)−1∑
j=0

Btj+1
(Btj+1

−Btj ) = B2
T −BTBtN(π)−1

+B2
tN(π)−1

−BtN(π)−1
BtN(π)−2

+ . . .

+B2
t1 +Bt1B0.

Similarly,

Sπ,2 :=

N(π)−1∑
j=0

Btj (Btj+1
−Btj ) = BTBtN(π)−1

−B2
tN(π)−1

+BtN(π)−1
BtN(π)−2

−B2
tN(π)−2

+ . . .

+B0Bt1 −B2
0 .

Therefore follows that
Sπ,1 = B2

T −B2
0 − Sπ,2.

Thus we conclude that

2Sπ,1 = B2
T −B2

0 +

N(π)−1∑
j=0

(Btj+1 −Btj )(Btj+1 −Btj )

→ B2
T −B2

0 + T
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as ||π|| → 0 in probability since ⟨B⟩T = T and by the definition of quadratic
variation. □

The Stratonovich integral is defined as∫ T

0

Bs ◦ dBs = lim
||π||→0

N(π)−1∑
j=0

1

2
(Btj+1

+Btj )(Btj+1
−Btj ).

Lemma 9.19. It holds that∫ T

0

Bs ◦ dBs =
1

2
(B2

T −B2
0).

Proof. It holds that 1
2 (Btj+1 + Btj )(Btj+1 − Btj ) = 1

2 (B
2
tj+1
− B2

tj ) and therefore
the claim follows by noticing that the above sum is telescoping. □
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10. B8.2 Class 4

10.1. Stochastic Integrals. We recall some definitions.

Definition 10.1. We define

H 2,c =

{
continuous martingales (Mt)t≥0 with sup

t≥0
E[M2

t ] <∞
}
.

This is a Hilbert space when endowed with the norm

||M ||2H 2,c = E[M2
∞].

Definition 10.2. An adapted right-continuous process A = (At)t≥0 is called a
finite variation process if A0 = 0 and t→ At is of finite variation a.s.

Definition 10.3. Let A be a finite variation process. Then we define L1(|dA|) as
the space of progressively measurable processes such that for all t ≥ 0,∫ t

0

|Kt| |dAt| <∞

almost surely.

A few remarks:

(i) (Proposition 7.13) If K ∈ L1(|dA|), then

(K ·A)t =
∫ t

0

Ks dAs

is a finite variation process.
(ii) (Proposition 7.6) If F ∈ L1(|dA|) and KF ∈ L1(|dA|), then∫ t

0

KsFs dAs = ((KF ) ·A)t = (K · (F ·A))t =
∫ t

0

Ks d(F ·A)s.

(iii) At = t for all t ≥ 0 is a finite variation process. Thus the above definition
generalizes the Lebesgue integral on R.

Definition 10.4. Given M ∈H 2,c we denote by L2(M) the space of progressively
measurable processes K such that

E
[∫ ∞

0

K2
t d⟨M⟩t

]
<∞.

Definition 10.5. For a continuous local martingale M , denote by L2
loc(M) the

space of progressively measurable processes K such that for all t ≥ 0,∫ t

0

K2
s d⟨M⟩s <∞ a.s.

We observe the following:

(i) (Theorem 8.5) The space L2(M) is a Hilbert space when endowed with the
inner product

⟨H,K⟩L2(M) = E[(HK · ⟨M⟩)∞] = E
[∫ ∞

0

HtKt d⟨M⟩t
]
.

Moreover, the map L2(M)→H 2,c
0 ,K 7→ K •M is an isometry, i.e.

E
[∫ ∞

0

K2
t d⟨M⟩t

]
= ||K||2L2(M) = ||K •M ||

2
H 2,c = E

[(∫ ∞

0

Kt dMt

)2
]
.
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(ii) (Theorem 8.12) IfK ∈ L2
loc(M), there exists a unique continuous local martin-

gale, zero in zero, denotedK•M such that for any continuous local martingale
N ,

⟨K •M,N⟩ = K · ⟨M,N⟩.
(iii) (Follows from (i)) if H is a further progressively measurable process and if

KH ∈ L2
loc(M),

(KH) •M = K • (H •M).

(iv) (Follows from (ii)) If τ is a stopping time

(K •M)τ = K •Mτ .

Lemma 10.6. (Generalized Ito Isometry) Let M,N ∈ H 2,c and let K ∈ L2(M)
and F ∈ L2(N). Then for each t ∈ [0,∞],

E
[(∫ t

0

Ks dMs

)(∫ t

0

Fs dNs

)]
= E

[∫ t

0

KsFs d⟨M,N⟩s
]

Proof. Recall (Remark 7.29) that if M ′ and N ′ are in H 2,c
0 , then E[M ′

tN
′
t ] =

E[⟨M ′, N ′⟩t]. Also, K •M and F •N are in H 2,c
0 . Note furthermore that

⟨K •M,F •N⟩ = K · ⟨M,F •N⟩ = K · (F · ⟨M,N⟩) = KF · ⟨M,N⟩.

Therefore, it follows that

E[(K •M)t(F •N)t] = E[⟨K •M,F •N⟩t] = E[(KF · ⟨M,N⟩)t]

concluding the proof. □

Lemma 10.7. Let M be a continuous local martingale and let K ∈ L2
loc(M). Fix

t > 0. Then if E[
∫ t

0
K2

sd⟨M⟩s] <∞, the stopped process (K •M)t is a martingale,

E
[∫ t

0

Ks dMs

]
= 0 and E

[(∫ t

0

KsdMs

)2
]
= E

[∫ t

0

K2
sd⟨M⟩s

]
.

Proof. By Theorem 7.24 from the notes, to show that (K •M)t is a martingale
(bounded in L2), it suffices to show that E[⟨K •M t⟩∞] < ∞. The latter quantity

is equal to E[
∫ t

0
K2

sd⟨M⟩s] and therefore the claim follows. Since (K •M)t is a

martingale bounded in L2 and therefore uniformly integrable,

E
[∫ t

0

Ks dMs

]
= E[(K •M)t∞] = E[(K •M)t0] = 0.

Finally, by Theorem 7.24 ((K •M)t)2 − ⟨(K •M)t⟩ is uniformly integrable and
therefore, since it is zero at zero the final claim follows. □

Lemma 10.8. Let f be a continuous function on [0,∞) and let B be a standard
Brownian motion. Then for t ≥ 0,

Xt =

∫ t

0

f(s) dBs

is Gaussian and cov(Xt, Xr) =
∫ t∧r

0
f(s)2 ds for t, s ≥ 0. Moreover, Xt is a mar-

tingale and a Gaussian process.
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Proof. Fix t ≥ 0. If f is a step function, then Xt is a sum of independent Gaussian
and therefore Gaussian itself. Let (fn)n≥0 be a sequence of step functions such that
fn → f uniformly on [0, t]. Recall that Bt ∈ H 2,c and f, fn ∈ L2(Bt). Then it
holds that

||fn − f ||2L2(Bt) = E
[∫ t

0

(f(s)− fn(s))2 d⟨B⟩s
]

=

∫ t

0

(f(s)− fn(s))2 ds ≤ t · ||f − fn||∞.

Thus fn → f in L2(Bt) and therefore fn •Bt → f •Bt in H 2,c
0 . Thus

||(f •B)t−(fn •B)t||2 = ||(f •B)t∞−(fn •B)t∞||2 = ||(f •B)t−(fn •B)t||H 2,c → 0,

showing that (fn • B)t converges to (f • B)t in L2. Since the space of Gaussian’s
is L2 closed, it follows that (f • B)t is a Gaussian. It holds that E[Xt] = 0 since
E[(fn •X)t] = 0 and by Ito’s isometry,

cov(Xt, Xr) = E[XtXr]

= E[(f •B)t∞(f •B)r∞]

= E[⟨f •B, f •B⟩t∧r
∞ ] =

∫ t∧r

0

f(s)2 ds.

Next we show that Xt =
∫ t

0
f(s) dBs is a martingale. Indeed Xt = (f • B)t is a

local continuous martingale and ⟨X⟩t = (f2 · ⟨B⟩)t. Therefore

E[⟨X⟩t] = E
[∫ t

0

f2(s) ds

]
=

∫ t

0

f2(s) ds <∞.

It follows that X is a martingale by Theorem 7.24.
Finally we show that Xt is a Gaussian process. Indeed if fn → f is again a

approximating sequence of step functions converging uniformly to f , then for each
n the random vector ((fn • B)t1 , . . . , (fn • B)tn) is a multivariate Gaussian since
Brownian motion is a Gaussian process. As ((fn • B)t1 , . . . , (fn • B)tn) converges
to (Xt1 , . . . , Xtn) in L

2, it follows that X is a Gaussian process. □

10.2. Continuous Semi-Martingales and Ito’s Theorem.

Definition 10.9. A stochastic process X = (Xt)t≥0 is called a continuous semi-
martingale if it can be written as

Xt = X0 +Mt +At,

where M is a continuous local martingale, A is a continuous process of finite vari-
ation and M0 = A0 = 0.

Definition 10.10. Let X = X0 +M +A be a continuous semimartingale. Then

L(X) = L2
loc(M) ∩ L1(|dA|)

and for K ∈ L(X) we define

K •X = K •M +K ·A.
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We recall that if X = X0 +M +A is a continuous semimartingale, then

⟨X⟩ = ⟨M⟩.
The main theorem of Stochastic Calculus is Ito’s Theorem, which generalizes the

Fundamental Theorem of Stochastic Calculus.

Theorem 10.11. Let X1, . . . , Xd be continuous semiartingales and F : Rd → R a
C2-function. Then (F (X1

t , . . . , X
d
t ))t≥0 is a continuous semimartingale and up to

indistinguishability,

F (X1
t , . . . , X

d
t ) = F (X1

0 , . . . , X
d
0 ) +

d∑
i=1

∫ t

0

∂F

∂xi
(X1

s , . . . , X
d
s ) dX

i
s

+
1

2

∑
1≤i,j≤d

∫ t

0

∂2F

∂xi∂xj
(X1

s , . . . , X
d
s ) d⟨Xi, Xj⟩s.

In particular, for d = 1, we have that

F (Xt) = F (X0) +

∫ t

0

F ′(Xs) dXs +
1

2

∫ t

0

F ′′(Xs) d⟨X⟩s.

We note that in Ito’s theorem, the integrability of all of the processes involved
follows from continuity of F .

Lemma 10.12. Suppose that (Bt)t≥0 is a standard Brownian motion and let f
and g be C2-functions. Then

Yt = exp

(
f(Bt)−

∫ t

0

g(Bs) ds

)
is a local martingale whenever g(x) = 1

2 (f
′′(x) + f ′(x)2).

Proof. Consider F (x, y) = exp(f(x)−y) and considerX1
t = Bt andX

2
t =

∫ t

0
g(Bs) ds.

Since we can view ds = ⟨B⟩s, X2 is a finite variation process and therefore
⟨X2⟩ = 0 = ⟨X1, X2⟩. Note that∫ t

0

F (X1
t , X

2
t ) dX

2
s =

∫ t

0

F (X1
t , X

2
t )g(Bs) ds

is a process of finite variation.
Thus by Ito’s Theorem and since ∂F

∂x (x, y) = F (x, y)f ′(x), ∂F
∂y (x, y) = −F (x, y)

and ∂2F
∂2x (x, y) = F (x, y)f ′′(x) + F (x, y)(f ′(x))2,

Yt = F (X1
t , X

2
t ) = exp(f(B0)) +

∫ t

0

∂F

∂x
(X1

s , X
2
s ) dBs

−
∫ t

0

F (X1
s , X

2
s )g(Bs) ds+

1

2

∫ t

0

F (X1
s , X

2
s )(f

′′(Bs) + f ′(Bs)
2) ds,

which is a decomposition of Y into a local martingale part and processes of finite
variation. The finite variation part is zero if and only if g(x) = 1

2 (f
′′(x) + f ′(x)2)

for all x ∈ R and therefore the claim follows. □

Lemma 10.13. Let (Bt)t≥0 be a standard Brownian motion. Then

Mt = et/2 cos(Bt)

is a martingale.
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Proof. Let F (x, y) = ex/2 cos(y) and X1
t = t and X2

t = Bt. Then it holds by Ito’s
Theorem that

Mt = F (X1
t , X

t
2) = cos(B0) +

∫ t

0

es/2 cos(Bs) ds

−
∫ t

0

es/2 sin(Bs) dBs −
∫ t

0

es/2 cos(Bs) ds

= cos(B0)−
∫ t

0

es/2 sin(Bs) dBs.

ThereforeMt is a continuous local martingale. Thus to show that it is a martingale,
it suffices by Theorem 7.24 to check that E[⟨M⟩t] < ∞. It follows that ⟨M⟩t =∫ t

0
es sin2(Bs) ds and therefore∣∣E[⟨M⟩t] ∣∣ ≤ ∫ t

0

es ds = et − 1 <∞.

□

10.3. A primer on stochastic differential equations. A stochastic differential
equation determines a process by

dXt = f(t,Xt)dt+ g(t,Xt)dBt,

for two functions f, g : R2 → R. More precisley, Xt is a stochastic process that
satisfies

Xt = X0 +

∫ t

0

f(t,Xt) dt+

∫ t

0

g(t,Xt) dBt.

It can be shown that under weak assumptions on f and g, the process Xt exists, is
a continuous semimartingale and is uniquely determined by f and g.

For simplicity we study in this exposition the stochastic differential equation

dXt = σXtdBt or equivalently Xt = X0 + σ · (X •B)t (10.1)

for σ > 0. This is a model for the price of a stock with volatility σ.
We now apply Ito’s Lemma to understand (10.1). Indeed let F (x) = log(x), then

by associativity of the stochastic integral,

log(Xt) = log(X0) +

∫ t

0

1

Xs
dXs −

1

2

∫ t

0

1

X2
s

d⟨X⟩s

= log(X0) +

(
1

X
•X

)
t

− 1

2

(
1

X2
· ⟨X⟩

)
t

= log(X0) + σ

(
1

X
• (X •B)

)
t

− σ2

2

(
1

X2
·X2⟨B⟩

)
t

= log(X0) + σBt −
σ2t

2
.

Therefore it follows that

Xt = X0 exp

(
σBt −

σ2t

2

)
.

Recall that if Y ∼ N (µ, σ2), then

E[exp(cY )] = exp

(
c2σ2

2
+ cµ

)
.
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We now assume that X0 is constant. Then it follows that E[Xt] = X0 and

Var(Xt) = E[(Xt −X0)
2]

= E[X2
t ]−X2

0

= X2
0 ·
(
E [exp(2σBt)] exp(−σ2t)− 1

)
= X2

0 · (exp(σ2t)− 1).

10.4. Harmonic Functions, the Heat Equation and Brownian Motion. Let
Ω ⊂ Rd be an open bounded subset.

Definition 10.14. A continuous function h : Ω → R is said to be harmonic if
for each x ∈ Ω and r < d(x, ∂Ω) the mean-value property is satisfied

h(x) =

∫
∂Br(x)

h(z) dvol∂Br(x)(z),

where ∂Br(x) = {z ∈ Rd : dRd(x, z) = r}.

We recall that a harmonic function is an eigenfunction of the Laplacian and
smooth.

Definition 10.15. (Dirichlet problem) Given a continuous function f on ∂Ω, does
there exists a harmonic function h with h|∂Ω = f .

The Dirichlet problem can be solved very elegantly by using Brownian motion.
Indeed, we consider the function

h(x) = Ex[f(BT )],

where T is the first hitting time of the boundary ∂Ω. We won’t show that h defined
as above is continuous, yet we prove that it satisfies the mean-value property.

Indeed, let x ∈ Ω and r < d(x, ∂Ω). We consider a Brownian motion starting at
x. Let τ be the first hitting time of ∂Br(x). Then it holds that

h(x) = Ex[f(BT )] = Ex[E[f(BT )|Fτ ]],

as conditioning doesn’t alter the expected value. On the other hand, by the strong
Markov property, conditionally on Fτ the process (Bτ+t)t≥0 is a Brownian motion
starting from Bτ , thus

Ex[E[f(BT )|Fτ ]] = Ex[E[f(BT )|Fτ ]] = Ex[EBτ
[f(BT )]] = Ex[h(Bτ )].

The claim follows since when starting at x the point Bτ is by symmetry uniformly
distributed on ∂Br(x).

In similar vein, we can use Brownian motion to solve the Heat equation. Let
f : R → Ω be a continuous function and assume that f |∂Ω ≡ 0. We now want to
find a continuous solution u : R+ × Ω→ R satisfying for all x ∈ Ω,

u(0, x) = f(x), ∂tu = 1
2∂xxu for all t > 0

and
u(t, x) = 0

for all t > 0 and x ∈ ∂Ω. Then the solution to the Heat equation is given as

u(t, x) = Ex[f(Bt)1{t<T}],

where again T is the first hitting time of the boundary.
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11. C8.2: Class 1

11.1. Markov Processes.

11.1.1. Measures and Operators. We first make some general remarks between mea-
sures and operators. Indeed, we state the following theorem.

Theorem 11.1. (Riesz-Markov-Kakutani representation theorem) Let E be a com-
pact space and let C(E) be the space of real-valued continuous functions on E. Let
Φ : C(E)→ R be a positive linear map, i.e. if f ≥ 0 then Φ(f) ≥ 0.

Then there exists a unique measure ν on E that represents Φ in the sense that
for every f ∈ C(E) it holds that

Φ(f) =

∫
f dν.

In particular we have a bijection

{pos. linear maps on C(E)→ R} 1:1←→ {measures on E}.

Moreover, we can easily restrict to probability measures

{pos. linear maps C(E)→ R with Φ(1E) = 1} 1:1←→ {prob. measures on E},

where 1E is the function being constant ≡ 1 on E.

11.1.2. Definition and general remarks.

Definition 11.2. Let (E,E ) be a measurable space. A Markovian transition kernel
(or a Markov kernel) from E into E is a mapping T : E × E → [0, 1] such that:

(1) For every x ∈ E, the mapping E ∋ A 7→ T (x,A) is a probability measure
on (E,E ).

(2) For every A ∈ E , the mapping E ∋ x 7→ T (x,A) is E -measurable.

Given a Markov kernel T and a bounded measurable function f : E → R we
define

(Tf)(x) =

∫
E

f(y)T (x, dy).

Definition 11.3. A collection (Tt)t≥0 of transition kernels on E is called a tran-
sition semigroup if the following three properties hold:

(1) For every x ∈ E and A ∈ E , T0(x,A) = δx(A).
(2) (Chapman-Kolmogorov identity) For every s, t ≥ 0 and A ∈ E we have

Tt+s(x,A) =

∫
E

Tt(x, dy)Ts(y,A).

(3) For every A ∈ E , the function (t, x) 7→ Tt(x,A) is measurable with respect
to the σ-field B(R+)⊗ E .

Let B(E) be the vector space of all bounded measurable real functions on E,
which is equipped with the norm ||f || = sup{|f(x)| : x ∈ E}. Then the linear
mapping B(E) ∋ f 7→ Ttf is a contraction of B(E). From this point of view, the
Chapman-Kolmogorov identity is equivalent to the relation for every s, t ≥ 0,

Tt+s = TtTs.
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Definition 11.4. Let (Tt)t≥0 be a transition semigroup on E. A Markov process
(with respect to the filtration (Ft)t≥0) with transition semigroup (Tt)t≥0 is an (Ft)-
adapted process (Xt)t≥0 with values in E such that, for every s, t ≥ 0 and f ∈ B(E)
we have

E[f(Xs+t)|Fs] = (Ttf)(Xs).

We note that a Markov process is a martingale if and only if for all t ≥ 0,

Tt1 = 1.

More abstractly, we can also study contraction semi-groups defined as follows.
We use some strong continuity assumptions to make our life easier.

Definition 11.5. A family of bounded operators (Tt)t≥0 on a Banach space B is
called a strongly continuous contraction semigroup if the following properties hold:

(1) T0 = I,
(2) Ts+t = TsTt for all s, t ∈ R≥0,
(3) ||T (t)|| ≤ 1 for all t ≥ 0,
(4) for any z ∈ B the map t 7→ Ttz is continuous.

Proposition 11.6. Let Tt be a strongly continuous semigroup on a Banach space
B and define for t > 0,

At =
1

t
(Tt − I).

Let D(A) = {z ∈ B : limt→0Atz exists}. Then for z ∈ D(A) we define

Az = lim
t→0

Atz =
dTt
dt

∣∣∣∣
t=0

z.

Then A is a densely defined closed operator and it is called the infinitesimal gen-
erator of Tt. Moreover, for any z ∈ D(A) and t ≥ 0 we have that Ttz ∈ D(A)
and

dTtz

dt
= ATtz = TtAz.

Definition 11.7. Let λ > 0. The λ-resolvent of the transition semigroup (Tt)t≥0

is the linear operator Rλ : B(E)→ B(E) defined by

Rλf(x) =

∫ ∞

0

e−λtTtf(x) dt

for f ∈ B(E) and x ∈ E.

Similarly we can define the operator Rλ for a strongly continuous contraction
semigroup. The following then holds:

Lemma 11.8. Let λ > 0 and let (Tt)t≥0 be a strongly continuous contraction
semigroup on a Banach space B. The operator (λ − A) : D(A) → C is invertible
with inverse

(λ−A)−1 = Rλ.

Proof. This is a little exercise with partial integration. □

We can now prove an interesting property the resolvent of strongly continuous
contraction semigroups by knowing they have an inverse.
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Lemma 11.9. Let (Tt)t≥0 be a strongly continuous contraction semigroup and let
Rλ be the associated resolvents. Then for λ, µ > 0 it holds that

Rλ −Rµ = (µ− λ)RλRµ.

Proof. It is clear that Rλ and Rµ commute as Tt commutes and since

RλRµ =

∫ ∞

0

∫ ∞

0

e−λt1−µt2Tt1+t2 dt1dt2.

So it follows on D(A) by the previous lemma that

Rλ −Rµ = RλRµR
−1
µ −RµRλR

−1
λ

= RλRµ(R
−1
µ −R−1

λ )

= RλRµ(µ− λ).

Since D(A) is dense the claim follows. □

Lemma 11.10. Let (Tt)t≥0 be a strongly continuous contraction semigroup and let
Rλ be the associated resolvents. Then if |λ− µ| < ||Rλ||−1, we have that

Rµ =

∞∑
n=0

(λ− µ)nRn+1
λ .

In particular, on D(A) it holds that

(µ−A)−1 = Rµ =

∞∑
n=0

(λ− µ)nRn+1
λ .

Proof. Note that since by assumption ||(λ− µ)Rλ|| ≤ |λ− µ| · ||Rλ|| < 1, it follows
by standard properties of Banach spaces that

(I − (λ− µ)Rλ)
−1 =

∞∑
n=0

(λ− µ)nRn
λ.

By the resolvent equation it follows that

Rλ = Rµ − (λ− µ)RλRµ = Rµ(I − (λ− µ)Rλ).

By the above formula for (I − (λ− µ)Rλ)
−1 it therefore follows that

Rµ = Rλ(I − (λ− µ)Rλ)
−1 =

∞∑
n=0

(λ− µ)nRn+1
λ .

□

Note that by (iii) of the definition of a transition semigroup it holds that the
mapping t 7→ Ttf(x) is measurable and clearly bounded, so the resolvent always
exist in the case of transition semigroups. We now give an alternative proof using
abstractly only properties of the transition semigroup.

Lemma 11.11. Let (Tt)t≥0 be a transition semigroup. If λ, µ > 0, it holds that

Rλ −Rµ = (µ− λ)RλRµ.
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Proof. We calculate

RλRµ =

∫ ∞

0

e−λt1Tt1Rµ dt1

=

∫ ∞

0

e−λt1Tt1

(∫ ∞

0

e−µt2Tt2 dt2

)
dt1

=

∫ ∞

0

e−λt1

(∫ ∞

0

e−µt2Tt1+t2 dt2

)
dt1

=

∫ ∞

0

e−λt1+µt2

(∫ ∞

0

e−µ(t1+t2)Tt1+t2 dt2

)
dt1

=

∫ ∞

0

e−λt1+µt1

(∫ ∞

t1

e−µrTr dr

)
dt1

=

∫ ∞

0

e−(λ−µ)t1

(∫ ∞

t1

e−µrTr dr

)
dt1

=

∫ ∞

0

e−µrTr

(∫ r

0

e−(λ−µ)t1 dt1

)
dr

=

∫ ∞

0

Tr

(
e−µr − e−λr

λ− µ

)
dr,

concluding the proof. □

We give a probabilistic interpretation of the resolvent equation. Denote by
(Zλ)λ≥0 a collection of independent exponential distributions of parameter λ and
denote their densities by fλ. Then a direct calculation shows that the density of
Zλ + Zµ is for x ≥ 0 given by

(fλ ∗ fµ)(x) =
λµ

(µ− λ)
(e−λx − e−µx) =

µfλ(x)− λfµ(x)
(µ− λ)

. (11.1)

To connect this to transition functions we note that

λRλ =

∫ ∞

0

fλ(t)Tt dt = E[TZλ
].

Also it holds that

(λRλ)(µRµ) = E[TZλ
]E[TZµ

] = E[TZλ
TZµ

] = E[TZλ+Zµ
].

We can therefore easily deduce the resolvent equation by using (11.1). Indeed,

λµRλRµ = E[TZλ+Zµ
]

=

∫ ∞

0

(fλ ∗ fµ)(t)Tt dt

=

∫ ∞

0

µfλ(t)− λfµ(t)
(µ− λ)

Tt dt

=
µ

(µ− λ)
Rλ −

λ

(µ− λ)
Rµ,

which easily implies the resolvent equation. Thus from the probabilistic interpreta-
tion of the resolvent, we observe that the resolvent equation is nothing more than
a statement about the product of densities of exponential random variables.
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11.1.3. Cauchy Process. As example, let us discuss the Cauchy process. Indeed
it is given as the process for which Xst − Xs is distributed as a Cauchy random
variable with density

1

π

t

t2 + x2

and increments to disjoint time intervals are independent.
Denote by Tt the expectation semigroup of X that is Ttf(x) = E[f(Xt) |X0 = x].

We note that for t > 0 we have

Ttf(x)− f(x)
t

=
1

π

∫ ∞

−∞

f(x+ y)− f(x)
t2 + y2

dy.

Now assume that f is C2
c (R). Then by Taylor’s theorem for every x, y ∈ R there

exists ξx,y ∈ [x, x+ y] such that

f(x+ y)− f(x) = yf ′(x) +
y2

2
f ′′(ξx,y).

Plugging the latter into the first equation it follows that

Ttf(x)− f(x)
t

=
1

π

∫ ∞

−∞

yf ′(x) + y2

2 f
′′(ξx,y)

t2 + y2
dy

We now observe that yf ′(x)
t2+y2 is an odd function and therefore integrates to zero.

Thus we conclude that

Ttf(x)− f(x)
t

=
1

π

∫ ∞

−∞

y2f ′′(ξx,y)

2(t2 + y2)
dy.

Letting t tend to zero it therefore follows that

lim
t→0

Ttf(x)− f(x)
t

=
1

π

∫ ∞

−∞

f ′′(ξx,y)

2
dy,

which is a description of the infinitesimal generator.

11.1.4. Finite State Spaces. We now consider the case that E is finite and E is the
corresponding power set. We can view the transition probabilities Tt as matrices
and the infitesimal operator Q is a matrix as well and it follows that

Tt = exp(tQ).

Lemma 11.12. In the above setting, the Q = (qij))-matrix satisfies the following
properties:

(1) qij ≥ 0 for all i ̸= j.
(2)

∑
k∈E qik = 0 for all i ∈ E.

Proof. As Q = limt→0
1
ε (Tt − I) it holds that all non-diagonal entries of the right-

hand side are ≥ 0 and therefore (1) follows. For (2) we note that Tt1 = 1 and it
holds that Tt1− I1 = 0 and so the same holds for Q. □

Assume for a moment that we have a basis v1, . . . , vn of eigenvectors of A. Then
we note that if Qvi = λivi it holds that

Ttvi = exp(tQ)vi =

∞∑
n=0

tnQn

n!
vi =

∞∑
n=0

(tλi)
n

n!
vi = exp(tλi)vi.

So an eigenvalue decomposition describes the dynamics of Tt very well.
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For a concrete example suppose now that we have three states {i, j, k} and the
infinitesimal generator Q is given by

Q =

−3 1 2
0 −2 2
2 1 −3

 .

Let’s note that

v1

1
1
1

 v2 =

−12
−1

 and v3 =

 2
2
−3


are eigenvectors of A with eigenvalues 0,−3,−5. So it follows that if v = c1v1 +
c2v2 + c3v3 it holds that

Ttv = cv1 + exp(−3t)c2v2 + exp(−5t)c3v3,

which shows that Tt converges to the uniform distribution. Moreover it holds that1
0
0

 =
4

15
v1 −

1

3
v2 +

1

5
v3

and therefore it follows that

Pi[Xt = i] =
4

15
+

1

3
e−3t +

2

5
e−5t.

11.1.5. Feller Semigroups. In this section we work with compact spaces E. We
note that we can always compactify a metric space (with a finite metric) by adding
a point at infinity.

Definition 11.13. Let E be a compact space and let C(E) be the Banach space of
continuous functions on E. A strongly continuous contraction semigroup on C(E)
with the additional properties:

(1) Tt1 = 1 and
(2) Ttf ≥ 0 for all non-negative f ∈ C(E)

is called a Feller semigroup.

Lemma 11.14. If X is a Feller process and f is a non-negative function, then for
λ > 0

Y λ
t = e−λtRλf(Xt)

is a supermartingale as t ≥ 0.

Proof. We first note that by the definition of a Markov process

Y λ
t = e−λt

∫ ∞

0

e−λr(Trf)(Xt) dr =

∫ ∞

0

e−λ(t+r)E[f(Xt+r) |Ft] dr.
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Therefore by the tower property of conditional expectation and again using the
definition of a Markov process for s ≤ t,

E[Y λ
t |Fs] =

∫ ∞

0

e−λ(t+r)E
[
E[f(Xt+r) |Ft] |Fs

]
dr

=

∫ ∞

0

e−λ(t+r)E[f(Xt+r) |Fs] dr

=

∫ ∞

0

e−λ(t+r)T(t−s)+rf(Xs) dr

= e−λs

∫ ∞

0

e−λ((t−s)+r)T(t−s)+rf(Xs) dr

= e−λs

∫ ∞

(t−s)

e−λrTrf(Xs) dr,

where we have substituted (t− s) + r with r in the last line. Now using that X is
Feller and f is non-negative it follows that

E[Y λ
t |Fs] = e−λs

∫ ∞

(t−s)

e−λrTrf(Xs) dr

≤ e−λs

∫ ∞

0

e−λrTrf(Xs) dr

= e−λsRλf(Xs) = Y λ
s ,

completing the proof. □

11.1.6. Markov generators and Hille-Yosida Theorem.

Definition 11.15. A (usually unbounded) linear operator A on C(E) with domain
D(A) is said to be a Markov pregenerator if it satisfies the following conditions:

(1) 1 ∈ D(A) and A1 = 0,
(2) D(A) is dense in C(E),
(3) If f ∈ D(A), λ ≥ 0 and f − λAf = g, then

min
ζ∈E

f(ζ) ≥ min
ζ∈E

g(ζ).

Lemma 11.16. Let A be a Markov propagator and let f ∈ D(A), λ ≥ 0 and
g = f − λAf . Then ||f || ≤ ||g|| and moreover, g determines f uniquely.

Proof. By applying a minus sign to the defining equation of g we conclude that
(−g) = (−f)−λA(−f) and therefore by (iii) of the definition of a Markov operator
we conclude that

min
ζ∈E
−f(ζ) ≥ min

ζ∈E
−g(ζ),

which implies that ||f || ≤ ||g||. To shows that g uniquely determines f , let f1, f2 ∈
D(A) be such that f1−λAf1 = f2−λAf2. Then it follows that (f1−f2)−λA(f1−
f2) = 0 and therefore by the established properties that f1 = f2. □

Lemma 11.17. Let A be a linear operator on C(E) and assume that that if f ∈
D(A) and f(η) = minζ∈E f(ζ) for η ∈ E, then Af(η) ≥ 0. Then A satisfies
property (3) of the definition of a Markov pregenerator.
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Proof. Let f ∈ D(A), λ ≥ 0 and g = f − λAf . Then g(η) = f(η)− λAf(η) ≤ f(η)
by assumption. Therefore

min
ζ∈E

f(ζ) = f(η) ≥ g(η) ≥ min
ζ∈E

g(ζ).

□

Let’s discuss some examples of Markov pregenerators:

(1) A = G− I where G is a positive operator defined on all of C(E) such that
G1 = 1.

It is clear that (1) and (2) holds. To check (3) we apply Lemma 11.17.
Indeed let f ∈ C(E) and η ∈ E such that f(η) = minζ∈E f(ζ). Consider
then f ′ = f − f(η)1E and note that by construction f ′ ≥ 0. Thus Gf ′ ≥ 0
and it follows by linearity that Gf − f(η)1E ≥ 0. In particular Af(η) =
Gf(η)− f(η) ≥ 0, implying the claim.

(2) E = [0, 1] and Af(η) = 1
2f

′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′(0) = 0 = f ′(1)}.

(1) is clear and that D(A) is dense in C(E) easily follows from the Stone-
Weierstrass theorem. To check (3) we apply Lemma 11.17. Indeed let
f ∈ C(E) and η ∈ E such that f(η) = minζ∈E f(ζ). If η ∈ (0, 1), then
f ′(η) = 0 and we have by assumption that f ′(0) = f ′(1) = 0. So by Taylor’s
theorem it holds that

f(x) = f(η) +
(x− η)2

2
f ′′(ξη,x)

for some ξη,x ∈ [η, x]. As x → η and x ∈ E and since f ′′ is continuous it
follows that f ′′(η) ≥ 0. Thus Af(η) ≥ 0.

(3) E = [0, 1] and Af(η) = 1
2f

′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′′(0) = 0 = f ′′(1)}.

(1) and (2) holds as before. For (2) we again apply Lemma 11.17. Indeed let
f ∈ C(E) and η ∈ E such that f(η) = minζ∈E f(ζ). If η = 0 or η = 1, then
by assumption Af(η) ≥ 0. On the other hand, if η ∈ (0, 1), then f ′(η) = 0
and the same argument as in example (2) applies. Thus the claim follows.

Definition 11.18. A linear operator A on a Banach space B with domain D(A)
is closed if its graph

graph(A) = {(f,Af) : f ∈ D(A)}

is closed. In other words, if fn ∈ D(A) is a sequence such that (fn, Afn) → (f, h)
for some f, h ∈ B, then it holds that (f, h) ∈ graph(A) that is h = Af .

Definition 11.19. Let A be a linear operator on a Banach space B. We say that
A admits a closure if there exists a linear operator A such that D(A) ⊂ D(A),
A|D(A) = A and graph(A) = graph(A).

Lemma 11.20. The following properties hold:

(1) A linear operator is closed if and only if it is its own closure.
(2) A linear operator A admits a closure if and only if for every sequence fn ∈
D(A) such that (fn, Afn)→ (0, y) for some y ∈ B satisfies that y = 0.
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Proof. (1) is obvious and for (2) we note that if A is a closure, then by linearity
y = A0 = 0 and the one direction follows. For the other direction, assume that
the assumption holds. Then assume that for a sequence fn ∈ D(A) we have that
(fn, Afn) → (f, h) for some f, h ∈ B. Then by the assumption h is uniquely
determined by f and so we set Af = h. It is straightforward to check that A is a
closure of A. □

With this lemma at hand, it is quite easy to show that certain operators do not
admit a closure.

Lemma 11.21. Let E = [0, 1] and consider the operator Af(x) = f ′(0) with

D(A) = {f ∈ C([0, 1]) : f ′(0) exists}.

Then A does not admit a closure.

Proof. By the above lemma, it suffices to construct a sequence of functions such
that fn → 0 in C([0, 1]), yet f ′n(0) does not converge to 0, which is obviously
possible, as for example we can take fn = 1

n (1− x)
n. □

Definition 11.22. A Markov generator is a closed Markov pregenerator A for
which Im(I − λA) = C(E) for all λ ≥ 0.

Proposition 11.23. The following properties holds:

(1) For a closed Markov pregenerator A, if Im(I − λA) = C(E) for all suffi-
ciently small positive λ, then A is a Markov generator.

(2) If a Markov generator is everywhere defined and is a bounded operator, then
it is a Markov generator.

Proof. (2) follows from (1). Indeed, for |λ| < ||A||−1 sufficiently small we have that
(I − λA)−1 =

∑∞
i=0 λ

nAn is a bounded operator and therefore for every g ∈ C(E)
we set f = (I − λA)−1g, showing that Im(I − λA) = C(E) for sufficiently small λ.
This implies the claim by (1).

To show (1) consider the set

ρ(A) = {λ > 0 : Im(I − λA) = C(E)}.

We claim that ρ(A) is open and closed, which implies the claim as ρ(A) is non-empty
by our assumption.

We first observe the following. If λ ∈ ρ(A), then by Lemma 11.16 the operator
(I − λA)−1 exists and its operator norm is ≤ 1. Denote by

Rρ = (ρI −A)−1

the resolvent of A whenever it exists. Since (I − λA)−1 = λ−1Rλ−1 it therefore
follows by our assumption that for sufficiently large λ the resolvent Rλ exists, is
bijective and satisfies

||Rλ|| ≤ λ. (11.2)

We first show that ρ(A) is open. Indeed, if λ ∈ ρ(A), then by Lemma 11.10 it
follows that if µ ∈ R>0 with |µ− λ| < ||Rλ||−1 then

Rµ =

∞∑
n=0

(λ− µ)nRn+1
λ

and so µ ∈ ρ(A).
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It remains to show that ρ(A) is closed. Indeed, let λn ∈ ρ(A) with λn → λ. We
recall that by resolvent equation,

Rλ−1
n
−Rλ−1

m
= (λ−1

m − λ−1
n )Rλ−1

n
Rλ−1

m
.

Since by (11.2) and as λn → λ, it holds that supn≥1 ||Rλ−1
n
|| <∞ and therefore the

family of operators Rλn
is Cauchy with respect to the operator norm and therefore

converges to a bounded operator R. It remains to show that R = Rλ−1 , implying
that λ ∈ ρ(A). Indeed, let g ∈ C(E) and consider fn = Rλ−1

n
g. Then it follows

that fn converges to f = Rg as fn = limn→∞Rλ−1
n
g = Rg. Moreover, since by

construction Afn = λ−1
n fn− g it follows that Afn is a Cauchy sequence as well and

converges to a some element h ∈ C(E). Since A is closed we conclude that h = Af
and so Afn converges to Af . Thus it follows that

(λ−1
n I −A)f = lim

n→∞
(λ−1

n I −A)fn = g. (11.3)

By Lemma 11.16 it follows that given g, the solution f is unique and the resolvent
Rλ−1 exists as a bounded operator. This concludes the proof. □

Actually we have established the following:

Corollary 11.24. For a closed Markov pregenerator A, if Im(I − λA) = C(E) for
a single positive λ, then A is a Markov generator.

We now return to the previously discusses Markov pregenerators and aim to
show that the closure of all of them are actually Markov generators:

(1) A = G− I where G is a positive operator defined on all of C(E) such that
G1 = 1. This is a Markov generator as ||G|| ≤ 1 and so the claim follows
by Lemma 11.23 (2).

(2) E = [0, 1] and Af(η) = 1
2f

′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′(0) = 0 = f ′(1)}.
We solve the problem with a standard ODE approach. Indeed, we want to
find a solution to

f − λ

2
f ′′ = g

with appropriate boundary conditions. To do so set α2 = 2/λ. Then the
associated homogeneous equation has solution u(x) = eαx and v(x) = e−αx.
As appears to be standard in the theory of ODE’s, we guess that a solution
has the form f = ϕu+ψv and make the Ansatz ϕ′u+ψ′v = 0. Substituting
to the original equation, we find that ϕ′ and ψ′ shall satisfy

ϕ′u+ ψ′v = 0 and ϕ′u′ + ψ′u′ = −α2g.

It thus follows that by reformulating the terms that

ϕ′ =
−α2gv

u′v − uv′
= −αgv

2
and ψ′ =

−α2gv

uv′ − u′v
=
αgu

2
.

Thus it follows that the general solution to our equation is the of the form

f(x) = eαx
∫ 1

x

α

2
g(y)e−αy dy + e−αx

∫ x

0

α

2
g(y)eαy dy +Aeαx +Be−αx

and we simply choose A and B in such a way that the boundary conditions
are satisfied.
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(3) E = [0, 1] and Af(η) = 1
2f

′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′′(0) = 0 = f ′′(1)}.
One applies a similar method as in the previous case.

Theorem 11.25. (Hille-Yoshida) There is a bijection

{Feller semigroups on C(E)} 1:1←→ {Markov generators on C(E)}.
Indeed, a Feller semigroup Tt is mapped to its derivative A = limt→0

1
t (Tt − I).

11.2. Martingale Problems.

11.2.1. Definition. We use the same notation as in the previous section and denote
by P(E) the set of probability measures on E. We denote by D[0,∞) for the
space of cadlag functions from [0,∞) to E, that is the space of functions that
are right continuous and has left limits. For s ∈ [0,∞), the evaluation mapping
πs : D[0,∞) → E is defined by πs(η) = ηs. Let F be the smallest σ-algebra with
respect to which all the mappings πs are measurable and for t ∈ [0,∞) let Ft be the
smallest σ-algebra on D[0,∞) relative to which all the mappings πs for 0 ≤ s ≤ t
are measurable.

Definition 11.26. Suppose that A is a Markov pregenerator on C(E) and µ ∈
P(E). A probability measure P on D[0,∞) is said to solve the martingale problem
(A,µ) if

(1) P[ζ ∈ D ζ0 ∈ A] = µ(A) for all A ∈ E and
(2)

f(ηt)−
∫ t

0

Af(ηs) ds

is a local martingale relative to P and the σ-algebras {Ft : t ≥ 0} for all
f ∈ D(A).

Theorem 11.27. Suppose that E is compact and separable and that A is a Markov
pregenerator for which the closure A is a Markov generator. Let {Px, x ∈ E} be the
unique Feller process that corresponds to A. Then for each x ∈ E, Px is the unique
solution to the martingale problem for A with initial point x.

11.2.2. Discrete Time Martingales. In the following two example we assume that
the state space is discrete.

Lemma 11.28 (Sheet 2, Exercise 5a). Let E be a compact space and denote by

• B(E) bounded Borel measurable functions on E.
• µ(x,Γ): transition function on E ×B(E)
• {Xn}n∈N sequence of E-valued random variables
• Operator A : B(E)→ B(E) given by

Af(x) =

∫
E

f(y)µ(x, dy)− f(x)
,

suppose that for each f ∈ B(E), the following is a martingale with respect to the
natural filtration generated by (Xn)n:

f(Xn)−
n−1∑
k=0

Af(Xk)
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Then X is a Markov Chain with transition function µ(x,Γ).

Proof. Let Fn be the natural filtration. By the martingale property, we have

E[f(Xn+1)−
n∑

k=0

Af(Xk) | Fn] = f(Xn)−
n−1∑
k=0

Af(Xk)

Note that we have on the right hand side a function depending on allXk for k ≤ n−1
– highlighting that we don’t have Markovianity here.

We rearrange the above to

E[f(Xn+1) | Fn] = f(Xn)−
n−1∑
k=0

Af(Xk) + E[
n∑

k=0

Af(Xk) | Fn] (11.4)

= f(Xn) +Af(Xn) (11.5)

=

∫
E

f(y)µ(Xn, dy) (11.6)

Note that we now have only Xn on the right hand side, so it is Markov. □

Lemma 11.29 (Sheet 2, Exercise 5b). Let X(n), n = 0, 1, . . . , be a sequence of
Z-valued random variables such that for each n ≥ 0,∣∣X(n+ 1)−X(n)

∣∣ = 1.

Let g : Z→ [−1, 1] be a function, and suppose that

X(n) −
n−1∑
k=0

g
(
X(k)

)
is a martingale with respect to the natural filtration generated by X.

Then X is a Markov chain with

P[X(n+ 1)−X(n) = 1 | Fn] =
g(X(n)) + 1

2
.

Proof. Note that we have the two equations

P[X(n+ 1)−X(n) = 1 | Fn] + P[X(n+ 1)−X(n) = −1 | Fn] = 1 (11.7)

P[X(n+ 1)−X(n) = 1 | Fn]− P[X(n+ 1)−X(n) = −1 | Fn] =

= E[X(n+ 1)−X(n) = 1 | Fn] = g(Xn) (11.8)

where we used the Martingale property in the last equality, and used throughout
that the absolute difference between X(n+ 1) and X(n) must be 1.

Solving this yields

P[X(n+ 1)−X(n) = 1 | Fn] =
g(X(n)) + 1

2
, (11.9)

which is all we need to answer the exercise (it’s Markov – the RHS depends only
on X(n) – and the above yields the transition probability right away). □
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11.2.3. Wright-Fisher diffusion. The Wright-Fischer diffusion, which takes values
in [0, 1] has generator

Af(x) =
1

2
x(1− x)f ′′(x),

when restricted to the subset of twice continuously differentiable functions on [0, 1].
By the previous section, the martingale problem

f(Xt)−
∫ t

0

Af(Xs) ds

will be a P-local martingale, with suitable functions f .
We note that by setting f(x) = x, the integral term in the matringale inequality

is zero and therefore it follows that Xt is a martingale itself. Moreover, it is positive
and bounded and therefore uniformly integrable. So X∞ = limt→∞Xt exists and
satisfies E[X∞] = E[X0].

We claim that P[X∞ ∈ {0, 1}] = 1 and therefore P[X∞ = 1] = E[X∞] = E[X0].
To show the claim, we consider f(x) = x(1− x) and so

Xt(1−Xt) +

∫ t

0

Xs(1−Xs) ds

is a positive martingale and therefore converges to a bounded limit. However, this
is only possible if P[X∞ ∈ {0, 1}].

Finally we calculate E[
∫∞
0
Xs(1−Xs) dx]. Indeed, we apply the previous martin-

gale to conclude that E[X∞(1−X∞)]+E[
∫∞
0
Xs(1−Xs) dx] = E[X0(1−X0)]. Note

that E[X∞(1−X∞)] = 0 as P[X∞ ∈ {0, 1}] and therefore E[
∫∞
0
Xs(1−Xs) dx] =

E[X0(1−X0)].
Now take f(x) = 2x log x+ 2(1− x) log(1− x) so that Af(x) ≡ 1 and so

f(Xt)−
∫ t

0

1 ds = f(Xt)− t

is a martingale. We note that f(Xt)−t is negative and therefore unifomly integrable.
Thus by the optional stopping theorem, for τε the hitting time of {ε, 1− ε} it holds
that

E[f(Xτε)− τε] = E[f(X0)].

As f(x) = f(1− x) it therefore follows that

E[τε] = f(ε)− E[f(X0)]

and so as ε→ 0 we conclude that the hitting time of {0, 1} is −E[f(X0)].
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12. C8.2: Class 2

12.1. Stroock-Varadhan theory of diffusion approximation. Sometimes, it
is easier to deal with continuous space processes rather than discrete space processes
– the latter often resulting in tedious recurrence equations. In this section, our goal
is to show how to do such an approximation.

Take a sequence of (discrete space) Markov chains Zh, indexed by h > 0 with
the idea that we will take h ↓ 0. Let Πh be its transition kernel Πh:

PrZh
n+1 ∈ A | Zh

n = z =: Πh(z,A). (12.1)

We rescale time (only time! space stays the same) and define for t ∈ [0, 1]

Xh
t := Zh

⌊t/h⌋ t ∈ [0, 1] (12.2)

with rescaled transition kernel

Kh(x, dy) :=
1

h
Πh(x, dy). (12.3)

Theorem 12.1. If we have ∀R > 0, ϵ > 0:

(1) limh↓0 sup|x|≤R |bh(x)− b(x)| = 0 with bh(x) :=
∫
|y−x|≤1

(y − x)Kh(x, dy)

(2) limh↓0 sup|x|≤R |ah(x)− a(x)| = 0 with ah(x) :=
∫
|y−x|≤1

(y − x)2Kh(x, dy)

(3) limh↓0 sup|x|≤RK
h(x,Bϵ(x)

C) = 0 i.e. for any fixed ϵ > 0, probability of
jumping further than ϵ away goes to 0.

(and some well-posedness conditions + initial condition, for details see lecture
notes) then the sequence of Markov chains Xh

t on [0, 1] converges weakly to a pro-
cess solving the martingale problem M(a,b).

Writing ∆Zh for the space increment at a single jump of the chain, we observe

Kh(x,Bϵ(x)
C) =

1

h
Pr |∆Zh| > ϵ =

1

h
Pr |∆Zh|4 > ϵ4 ≤ 1

h

1

ϵ4
|∆Zh|4 (12.4)

by Markov, so

1

h
|∆Zh|4 −→ 0 as h ↓ 0 (12.5)

is sufficient for (3) of thm:stroock-varadhan-approximation to hold. (This solves
Question 2 on sheet 3).

We now show that two very distinct discrete chains can converge to the same
limiting diffusion as h ↓ 0.
Lemma 12.2 (Sheet 3, Exercise 7). In the neutral Wright–Fisher model a popula-
tion of N genes evolves in discrete generations. Generation (t+ 1) is formed from
generation t by choosing N genes uniformly at random with replacement. In other
words, each gene in generation (t+ 1) chooses its parent independently at random

from among those present in generation t. Let us write X
(N)
t for the proportion of

type a genes in the population at time t under this model.
In the neutral Moran model, generations overlap. At exponential rate

(
N
2

)
a pair

of genes is sampled uniformly at random from the population. One of the pair is

selected at random to die, and the other splits into two copies. Let us write Y
(N)
t

for the proportion of type a genes in the population at time t under this model.

Show that the processes
{
X

(N)
⌊Nt⌋

}
t≥0

and
{
Y

(N)
t

}
t≥0

both converge as N → ∞,

and identify the limiting diffusion.
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Proof. We first consider the wright fisher model. Let Z
(N)
t be the #a-alleles in

generation t ∈ N. Then

Z
(N)
t+1 ∼ N

Z
(N)
t

N
. (12.6)

To get sequence of MCs getting finer and finer, we define

X
(N)
t :=

Z
(N)
t

N
(12.7)

which gives rise to the rescaled transition kernel for y ∈ EN := { k
N : 0 ≤ k ≤ N}

KN (x, y) = NΠN (x, y) = N PrNx = yN = N

(
N

yN

)
xyN (1− x)N−yN (12.8)

Now note that for condition (1): bh(x) is just the expected ∆X(h)/h (started a
point x) [here h = 1/N ]. Since we have

∆X(N) =
Nx

N
− x (12.9)

so

∆X(N)/h = N∆X(N) = Nx−Nx (12.10)

So

b(N)(x) =

∫
(y − s)K(N)(x, dy) = Nx−Nx = 0. (12.11)

Similarly, for a(N)(x) note that

a(N)(x) = N ·(∆X(N))2 =
1

N
Nx = x(1− x) (12.12)

For condition (3), we use the observation above and note that it suffices to check
that ∆X(N) = O(1/N2): The 4-th centered moment of a Bin(n,p) RV is:

Np(1− p)(3p(1− p)(N − 2) + 1) = O(N2) (12.13)

so indeed

(∆X(N))4 =
1

N4
O(N2) = O(1/N2), (12.14)

so condition (3) holds.
Thus, in the limit, the process:

XNt (12.15)

converges to a process solving the MG problem M(a, b) with

b(x) ≡ 0 (12.16)

a(x) = x(1− x) (12.17)

so generator is

Af =
1

2
af ′′ + b′ =

1

2
x(1− x)f ′′ (12.18)

For the neutral Moran model, note that this continuous time Markov chain

Y
(N)
t has state space E(N) = {k/N : 0 ≤ k ≤ N}. While the chain is absorbing

at 0 and 1 (you should verify that and treat that separately) we focus on the case
k ∈ {1, . . . , N−1}. Note that from a state k/N we can either go to state (k−1)/N ,
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stay in state k/N (the killing and birth evened out) or go to state (k + 1)/N . The

first occurs at rate
(
N
2

)
k/N(1− k/N), the second at rate 2

(
N
2

)
k/N(1− k/N), and

the last at rate
(
N
2

)
k/N(1−k/N). We can thus write for the generator of the N -th

refined process:

ANf(y) =

(
N

2

)
y(1− y) (f(y − 1/N) + f(y + 1/N)− 2f(y)) .

Doing a Taylor expansion thereof, we observe that for fixed y ∈ [0, 1] we have

ANf(y) −→
1

2
y(1− y)f ′′(y) as N →∞

where we note that the conditions of convergence are satisfied (exercise: check
that).

We thus observe that both discrete processes above converge to the same con-
tinuous process. □

12.2. Duality. We recall the following theorem from the lecture notes.

Theorem 12.3. (The method of duality) Let E1 and E2 be metric spaces and
suppose that P and Q are probability distributions on the space of cadlag functions
from [0,∞) to E1 and E2 repsectively. Let f and g be two bounded functions for
which the following are true:

(1) For each y ∈ E2, f(·, y) and g(·, y) are continuous functions on E1.
(2) For each x ∈ E1, f(x, ·) and g(x, ·) are continuous functions on E2.
(3) For y ∈ E2,

f(X(t), y)−
∫ t

0

g(X(s), y) ds

is a P-martingale.
(4) For x ∈ E1,

f(x, Y (t))−
∫ t

0

g(x, Y (s)) ds

is a Q-martingale.

Then

EP
X(0)[f(X(t), Y (0))] = EQ

Y (0)[f(X(0), Y (t))].

We can also give the following variant of the duality results. If we denote by AX

the generator of X on E1 and by AY the generator of Y on E2. If instead of the
setting of Theorem 12.3 we have

AXf(x, y) + α(x)f(x, y) = AY f(x, y) + β(y)f(x, y),

then if we assume that
∫ t

0
|α(X(s))| ds < ∞ and

∫ t

0
|β(Y (s))| ds < ∞ and we have

the additional integrability conditions

E
[∣∣∣∣f(X(t), Y (0)) exp

(∫ t

0

α(X(s)) ds

) ∣∣∣∣] <∞
and

E
[∣∣∣∣f(X(0), Y (t)) exp

(∫ t

0

β(Y (s)) ds

) ∣∣∣∣] <∞,
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then the duality formula can be modified to

E
[
f(X(t), Y (0)) exp

(∫ t

0

α(X(s)) ds

)]
=E

[
f(X(0), Y (t)) exp

(∫ t

0

β(Y (s)) ds

)]
. (12.19)

We discuss the following examples as applications.

Wright-Fisher diffusion. We consider the Wright-Fisher diffusion model with gen-
erator

AXf(x) =
1

2
x(1− x)f ′′(x).

We also consider the pure death process Nt 7→ Nt − 1 at rate
(
Nt

2

)
. Indeed, the

generator of the pure death process AY is

AY f(n) =

(
n

2

)
(f(n− 1)− f(n)).

Therefore if we set f(x, n) = xn, then we can take g(x, n) =
(
n
2

)
(xn−1−xn), and

we conclude that

E[XN0
t ] = E[Xn

0 ].

Wright-Fisher diffusion with mutation. The Wright-Fisher diffusion model with
mutation is discussed next. The model is uniquely characterized by the generator

AXf(x) =
1

2
x(1− x)f ′′(x) + (a− bx)f ′(x)

with a < b. Denote by X(t) the associated Markov process. Now let’s consider the
function f(x, n) = xn for a positive integer n. Then we have

g(x, n) = AXf(·, n) =
(
n

2

)
(xn−1 − xn) + anxn−1 − bnxn

=

(
n

2

)
(xn−1 − xn) + an(xn−1 − xn)− (b− a)nxn.

We can write this in the form of (12.19). Indeed, we set Nt to be the pure death

process Nt at rate
(
Nt

2

)
+ aNt, so the corresponding operator is

AY f(n) =

((
n

2

)
+ an

)
(f(n− 1)− f(n)).

Then α(x) = 0 and β(y) = (b− a)y. Since the integrebility conditions are clear, it
follows that

E[XN0
t ] = E

[
XNt

0 exp

(
−
∫ t

0

(b− a)Ns ds

)]
.

Setting N0 = k, it follows that all of the moments of Xt are determined and
therefore, as Xt is compactly supported, it is uniquely determined. Moreover, since
N is a pure death process with strictly non-zero rates, it will hit zero in finite
time with probability one, and so the right hand side of the previous equation is
independent of X0 as t→∞. Therefore Xt converges in distribution to a limiting
distribution which does not depend on X0.
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Absorbing and Reflecting Brownian Motion. Denote by A1 the generator of Brow-
nian motion on [0,∞) with absorbing boundary condition, that is A1f = 1

2f
′′ and

with

D(A1) = {f ∈ C2 : f ′′(0) = 0}.
We take A2 to be the generator of reflecting Brownian motion on [0,∞) so A2f =
1
2f

′′ and with

D(A1) = {f ∈ C2 : f ′(0) = 0}.
We denote byXt absorbing Brownian motion and by Yt reflecting Brownian motion.

Let h : R→ R be C2 such that h(z) = −h(−z) for z ∈ R. Consider

F (x, y) = h(x+ y) + h(x− y).

Note that since h is odd, h′′(0) = 0 and therefore

∂F

∂x2

∣∣∣∣
x=0

= (h′′(x+ y) + h′′(x− y))|x=0 = 0.

Thus for a fixed y, F (·, y) ∈ D(A1). Similarly, for each fixed x,

∂F

∂y

∣∣∣∣
y=0

= (h′(x+ y)− h′(x− y))|y=0 = 0

and so F (x, ·) ∈ D(A2). Moreover A1F (x, y) (as a function of x) equals A2F (x, y)
(as a function of y) and they are both equal to h′′(x+ y)+h′′(x− y). Thus (3) and
(4) is satisfied by Theorem 11.27 and therefore it holds that

Ex[h(Xt + y) + h(Xt − y)] = Ey[h(x+ Yt) + h(x− Yt)].

Now take

g(x) =


− 1

2 x < 0,

0 x = 0,
1
2 x > 0,

or rather a twice continuously differentiable approximation to this. If Xt > y, then
g(Xt + y) + g(Xt − y) = 1 and if Xt ≤ y then g(Xt + y) + g(Xt − y) = 0. Similarly
if x > Yt we have that g(x + Yt) + g(x − Yt) = 1, whereas if x < Yt we have
g(x+ Yt) + g(x− Yt) = 0. The result follows.

12.3. Theory of Speed and Scale. Assume that a one-dimensional Markov pro-
cess (Xt)t≥0 is governed by the infinitesimal generator

Af(x) =
1

2
σ2(x)f ′′(x) + µ(x)f ′(x)

for f a twice continuously differentiable function on (a, b). We assume that µ and
σ are bounded and locally Lipschitz on (a, b) with σ2(x) > 0 on (a, b).

In this setting the scale function is defined as

S(x) =

∫ x

x0

exp

(
−
∫ y

η

2µ(z)

σ2(z)

)
dy,

where x0, η are arbitrary chosen points in (a, b) The density of the speed function
is given by

m(ξ) =
1

σ2(ξ)S′(ξ)



NOTES ON EXERCISE SHEETS IN PROBABILITY 91

and we write

M(x) =

∫ x

x0

m(ξ) dξ.

We then consider

u(x) =

∫ x0

x

M dS, v(x) =

∫ x0

x

S dM.

We are interested in the behaviour of u and v at a. We recall that we call a to be
a regular boundary if u(a) <∞ and v(a) <∞.

12.3.1. Wright-Fisher diffusion with mutation. We are now interested in theWright-
Fisher diffusion model with mutation, with generator

Af(x) =
1

2
x(1− x)f ′′(x) + (ν2 − (ν1 + ν2)x)f

′(x).

We calculate

S′(p) = exp

(
−
∫ p

p0

2µ(z)

σ2(z)
dz

)
= exp

(
−
∫ p

p0

2ν2(1− z)− 2ν1z

z(1− z)
dz

)
= Cp0

exp(−2ν2 log p− 2ν2 log(1− p))
= Cp0p

−2ν2(1− p)−2ν1 ,

where the constant C depends on p0. We then have

m(p) =
1

σ2(p)S′(p)
= C−1

p0
p2ν2−1(1− p)2ν1−1.

Thus ∫ 1/2

0

M dS =

∫ 1/2

0

∫ 1/2

x

ξ2ν2−1(1− ξ)2ν1−1 dξ x−2ν2(1− x)−2ν1 dx

which is of the same order as∫ 1/2

0

(c1x
2ν2 + c1)x

−2ν2

which is finite if and only if 2ν2 < 1. In the other order,∫ 1/2

0

∫ 1/2

ξ

dS dM

one checks that the resulting term is finite for ν2 > 0 and infinite for ν2 = 0. Thus
the boundary is regular for 0 < ν2 < 1/2.

12.3.2. Bessel process. We now consider the Bessel process with parameter α ≥
0, which is determines as the one-dimensional diffusion process on [0,∞) with
generator

Af(x) =
1

2
f ′′(x) +

α− 1

2x
f ′(x).

When α is an integer, this is the norm of a Brownian motion in Rα. We now find
expressions for the speed and scale.

Note that

exp(−
∫ η

1

α− 1

z
dz) = η1−α
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and so the scale function is

S(ξ) =

∫ ξ

1

η1−αdη =

{
1

2−α (ξ
2−α − 1) if α ̸= 2,

log ξ if α = 2.

and therefore
m(η) = ηα−1.

Substituting these expressions, we obtain, by doing the calculation for α ̸= 0,

u(0) =

∫ 1

0

∫ 1

ξ

m(η) dη S′(ξ) dξ

=

∫ 1

0

1

α
(1− ξα)ξ1−α dξ

=
1

α

∫ 1

0

ξ1−α − ξ dξ
∫
−ξ log ξ if α = 0,

1
α (

1
2−α −

1
2 ) if α ∈ (0, 2),

∞ if α ≥ 2.

One similarly checks that v(0) is finite if and only if v > 0. Combining these
observations:

The boundary at 0 is


an entrance boundary for α ≥ 2,

a regular boundary if α ∈ (0, 2),

an exit boundary if α = 0.


	1. B8.1 Class 1
	2. B8.1 Class 2
	3. B8.1 Class 3
	4. B8.1 Class 4
	5. B8.1 2023 Exam
	6. B8.1 2024 Exam
	7. B8.2 Class 1
	8. B8.2 Class 2
	9. B8.2 Class 3
	10. B8.2 Class 4
	11. C8.2: Class 1
	12. C8.2: Class 2

