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1. B8.1 Crass 1

1.1. Motivation for Measure Theory. In integration theory, one usually first
learns the Riemann integral. While the Riemann integral is intuitive, it has several
disadvantages:

(1) 1gnpo,1) is not Riemann integrable. But we want this function to have
integral 0.
(2) It is desirable to have

/ lim f,dp = lim /fn du
n—oo n—oo
under suitable assumptions. No result like monotone convergence or dom-
inated convergence holds for the Riemann integral.
(3) Does not generalize easily to other spaces or ways of measuring the space.
(4) The space of Riemann integrable functions is not complete, i.e. not every
Cauchy sequence converges.
Integrating functions is related to measuring sets. Indeed if p is a measure and
g is a simple function , i.e. g =) . a;14, is a finite sum of characteristic functions,

then we define
/fdu = Zaiu(Ai).

This allows us to define the integral of a positive function f as

/fdu::sup{/gd,u : gsimpleandogggf}.

In an ideal world, we would be able to measure every set. But this is not possible
for R as the following example shows. Denote by Z(R) the set of subsets of R.

Theorem 1.1. (Dystopia of Measure Theory) There is no function A : Z(R) —
[0, 0] satisfying the following properties:

(1) X([a,b]) =b—a for all a <b.

(2) M(A+z)=XA) for all A e Z(R) and z € R.

(3) If Ay, Aa, ... is a sequence of disjoint sets in P (R), then it holds that

AM U4 =D M4A).

i>1 i>1

Proof. The proof is by contradiction. Assume that such a function exists and
consider the quotient R/Q. Then for every equivalence class ¢ € R/Q, using the
axiom of choice we choose an z. € [0,1] representing that class, i.e. such that
¢=2z.+ Q. Denote V = {z. : c€ R/Q} C[0,1].

Let ¢1, q2, . . . be an enumeration of the rational numbers in [—1, 1] and note that
the sets V +¢; are all disjoint. Indeed assume that z € (V 4¢;)N(V +¢;) for some i
and j. Then there are equivalence classes ¢, ¢’ € R/Q such that z = z.+¢; = o +¢;.
It follows that ¢ = ¢’ and thus z. = . and therefore ¢; = g;.

Also it holds that [0,1] C |J;~; V 4+ ¢ C [—1,2]. Therefore by (1) and (2)

1< AV +ag)=> AV)<3.

This is a contradiction however as >, A(V) is either 0 or co. O
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1.2. o-algebras. By Theorem [I.] if we want measure subsets of R, it only makes
sense to work with a subset of &(R). This leads to the definition of a o-algebra.

Definition 1.2. Given a set €, a collection of subsets &/ C P(Q) is called a
o-algebra if the following properties hold:

(1) (Non trivial) §,Q € o

(2) (Complements) If A € of then A° € .

(3) (Countable unions) If A1, Az, ... are in o/ then |5, A; € o.

We remark the following:

(1) As (UA4:)° = NAS, it follows that a o-algebra is stable under countable
intersections.

(2) An arbitrary intersection of o-algebras is again a o-algebra.

(3) A union of o-algebras is not necessarily a o-algebra. Indeed, if Q = {1, 2,3},
Then consider the o-algebras

o =1{0,9,{1},{2,3}} and o = {0,9Q,{2},{1,3}}.
Then @A U o4 is not a o-algebra as {1,2} = {1} U {2} is not in o/ U .
We give the following list of important examples:
(1) {0,9Q} and {0,9, A, A°} for any A € Q are basic examples of o-algebras.
(2) On a topological space X, the Borel o-algebra Z(X) is the smallest o-
algebra that contains all open sets of X.
(3) The set constructed in Theorem 1.1 is an example of a set not in Z(R).
4) The power set & () is a o-algebra, but it is sometimes not useful.

(4)
(5) Let P = (P;);j>1 be a partition of a set Q. Then the collection of sets U(P)
consisting of all possible unions of P is a o-algebra.

Lemma 1.3. If Q is countable, every o-algebra arises from a partition.

Proof. Let o7 be a g-algebra on ). For each z € 2, we define

[m]d = ﬂ A.

Aedl x€A

We claim that [z], € /. Indeed for each element y € Q\[z], there is some set
A, € &/ such that x € A, and y € A,. Therefore

o= () 4

yEQ\[z]

and so [x] is a countable intersection of elements in o/ and therefore itself in 7.

Note that if for two elements z,y € X we have that [z], C [y, then [z]y =
[y]er as otherwise it holds that y € A = [y]x\[z] and therefore x € A° and [z]y
and [y] are disjoint. The latter implies that [z]. is a partition of Q. Indeed, if
[#] o N [y]or is non-empty for some x,y € 2, then there is some z € [x]y N [y]or. It
follows that [2] C [z]er as well as [2] C [yl and therefore [r]y = [2]o = [Y]w-
Moreover, every set A € % is a union

A= | [z]a
z€A

This concludes the proof that <7 arises from a partition. ([
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1.3. Measures. Recall the following definition.

Definition 1.4. Let o/ be a collection of subsets of  containing the empty set
0. A set function on A is a function p : o with p(@) = 0. We say that p is
countably additive, or o-additive, if for all sequences (A,)n>1 of disjoint sets in o
with J,,~, An € &/ we have

] U An | = Zﬂ(An)

n>1

Lemma 1.5. Let p : & — [0,00) be an additive set function on an algebra o
taking only finite values. Show that u is countably additive if and only if for every
sequence (Ap)n>1 of sets in o with A,, | 0 we have lim,,_,o p(Ay,) = 0.

Proof. If v is countably additive, consider B,, = Q\ A,, and note B,, T Q. It follows
that lim, o0 1(By,) = 1(€2) (which are all finite) and therefore lim,,_, o u(Ay,) = 0.
On the other hand, if the claim holds, then let (A4,,),>1 be a sequence of disjoint

sets in & with A =J,5; 4n € &. Then set C,, = A\ <U1§i§n Ai> and note that
Cp 1 0. Thus the claim follows since p is additive and therefore

n

wA) =p | | A | +n(Cn) =D n(A) + 1(Cn),

1<i<n i=1
implying the claim by sending n — oo and using that u(C,) — 0. |
1.4. -\ systems Lemma. We first recall the following definitions.

Definition 1.6. A collection of sets < is called a m-system if it is stable under
intersections, i.e. A, B € &/ implies ANB € <.

Definition 1.7. A collection of sets A is called a A-system if the following prop-
erties are satisfied:
(1) Qe #,
(2) If A,B € 4 with A C B then B\A € 4,
(8) If A1 C Ag C ... is an increasing sequence of subsets of M , then |J,~, Ai €
M. B

We note the following;:

(1) A collection of subsets is a o-algebra if and only if it is a 7-system and a
A-system.

(2) (m-) systems Lemma) Let .# be a A-system and & be a m-system. Then
it @ C .# it holds that o(&/) C A .

An example where the 7m-A-systems lemma is useful, is the following lemma.

Lemma 1.8. Let uy and uo be finite measures on a measurable space (Q, F) with
w1(Q) = p2(R). Then the collection of sets {A € F : p1(A) = p2(A)} is a A-
system. In particular, if p1 and ps agree on a w-system of with o(&/) = F then
they agree on the whole % .

Proof. The second claim follows from the first and the m-A-systems lemma. To
show the first, denote by # = {A € .Z : p1(A) = p2(A)}. Then by assumption
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Q € #. Next consider A,B € .# with A C B. As A and B\A are disjoint, it
follows that

1 (A) + pi(B\A) = p(B) = pa(B) = pa(A) + p2(B\A).
As p1(A) = p2(A) by assumption, we conclude pq (B\A) = pa(B\A) and therefore
B\A € . Finally, if Ay C A2 C ... is an increasing sequence of subsets of ./,
then writing A = | i>1 Ai by continuity from above,

pr(A) = lim pn(An) = lim po(An) = pa(A).
This concludes the proof. (I
We recall the monotone class theorem.

Theorem 1.9. (Monotone Class Theorem) Let 5€ be a class of bounded functions
from Q to R satisfying the following:

(1) S is a vector space.

(2) The constant function 1 is in .

(3) If (fu)n>1 is a sequence in H such that fn, T f for a bounded function f,
then f € 3.

If € C S is stable under pointwise multiplication, then € contains all bounded
o(€)-measurable functions.

Theorem 1.10. On a measurable space (2, F), let X1, ..., Xy be random variables
and let 4 = o(X4,...,Xy). Consider

k
d:{ﬂXﬂMﬁ:&eﬂw%.
i=1

Then o is a w-system and o(H) =¥ .
Moreover, if Y is 4-measurable, then Y = F(Xy,...,Xy) for some measurable
function F : R* — R.

Proof. The collection &/ is a m-system since if By = ﬂle X;l(ALZ-) and By =
ﬂle X;l(Ag,i) are in 7 for Ay ;, As; € B(R) for 1 <4 <k, then

k
BiN By = ﬂ Xfl(ALi NAsz;).
i=1

Moreover, o(</) = 4 since </ contains X, *(A) for every A € B(R) and 1 <i <k
and therefore o(&7) D ¥4. Also & C ¢4 and so o(&) C 0(¥9) = ¥, showing that
o(&/) =%. We observe that we have not used the m — A-systems lemma here.
Consider . to be the class of bounded function of the form F(Xq,...,X}) for
some measurable F' : R¥ — R. The class /7 satisfies the assumption of the Mono-
tone Class Theorem since if Y,, = F,(X1,..., X%) with ¥, T Y for Y a bounded
function, then we can take F' = limsup,,~; F), and check that Y = F(Xq,..., X).
We furthermore define ¥ = {lc : C € &/}. Then ¥ C J since if C =
ﬂle X[l(Ai) then 1o = Hle 14,0X; . As &7 is a m-system and 14 - 15 = 1ansp,
the set € is stable under pointwise multiplication and since o (%) = ¢ it holds that
o(€) = 4. Therefore by the Monotone Class Theorem, 5 contains all bounded
¥ = 0(%) measurable functions. On the other hand, since every function in . is
%-measurable, the class 77 is exactly the set of ¥-measurable bounded functions.
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It remains to deal with the case of unbounded functions. Without loss of gen-
erality by writing Y = max(Y,0) — max(—Y,0), we can assume without loss of
generality that Y is positive. Given a ¥-measurable positive function Y : Q — R,
we consider Y,, = max(Y,n). Thus there is a measurable function F,, : R¥ — R
such that Y,, = F,(X1,...,Xk). We set F' = limsup,,~; F,. Then F is measurable
and we claim that ¥ = F(Xy,...,X}). Indeed if for given 2 € Q we have that
Y (xz) < n for some n > 1 then Y;(x) = Y (z) for all £ > n and hence

Y(z) =supYy(x) = sup Fo(X:(x),..., Xip(x)) = F(X1,...,Xn)

>n £>n

showing the claim. (I

1.5. Product Algebras and Product Measures. Given probability spaces (€2;, .%;)
for 1 < i < k be measurable spaces. Consider the space = Qq x ... x Q. Then
the product o-algebra % = .77 X ...x %} is the smallest g-algebra on ) containing
the sets

A x ... x A

with A; € %, for 1 <i < k. A few comments:

(1) Consider the projections m; : @ — ;. Then .# is the smallest o-algebra
such that the maps m; are measurable.

(2) Warning: The notation % X ...Xx % is slightly confusing as not all sets are
of the form A; x...x A;. Indeed, on R? every open set is Borel measurable.

I also want to simplify a Lemma from the lecture notes and the exercise sheet.

Lemma 1.11. Let (Qq,.%1) and (Q2, F2) be measurable spaces and consider (, F ) =
(1 x Qa,. 71 X F). Let f: Q — R be a measurable function and let w1 € Q.
Then the map

wo f(wl, LUQ)

is measurable.
Proof. Consider the injection

L1 QQ — Q, Wy (wl,wg).
Then ¢; is measurable since

A27 w1 € Ala

(A A) = {@ wi ¢ Ay

Thus the map in question is the composition ¢1 o f and therefore measurable as the
composition of measurable maps is measurable. (Il

Given now probability spaces (2;, %;,P;) for 1 < i < k, there is a unique prob-
ability measure P on (£2,.%) satisfying

P(A; % ... x Ag) = P(A1) - P(Ay).
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1.6. Random Variables and Distributions. Let (Q, % ,P) be a probability
space. A random variable is a measurable map X : (Q,.# ) — (R, 4(R)). Each
random variable X determines a probability measure px on (R, Z(R)) defined by

jix (4) = B(X € A) = P(X~'(4))

for A € B(R). In other words, px is the push forward of P under X. The measure
px is called the distribution or the law of X. If two random variables X and Y
(not necessarily defined on the same probability space) have the same distribution,
then we write X ~ Y.

So we arrive at a map

Dq : {random variables on (Q, .#,P)} — {probability measures on (R, Z(R))},
X — Hx.

This map is highly non-injective and sometimes surjective. Indeed consider the
probability space ((0,1), 2((0,1)),m,1)) and the random variables

Yi(w) = 1(0,0.5)(“’) - 1[05,1)(”),
Ya(w) = 1(0,0.25)(w) + Ljo.75,1) (W) — 1j0.25,0.75) (w)-

Then the distribution of Y7 and Y5 are both (§; + d_1)/2. Indeed, for example,
1% (1) = m(o’l)((O, 05)) =0.5 and My, (—1) = m(o’l)([0.5, 1)) =0.5.

A further thing to notice is that to each measure y on R, we can define the
distribution function

Fu(x) = p((—o0,z]).

The function F), is increasing, right continuous and satisfies

lim F(z)=0 and lim F(z)=

Tr—r—00 T—>00
It was proved in the lecture that
{probability measures on (R, B(R))} +— {distribution functions},
4 F.

is a bijection. For a random variable, the cumulative distribution function
(CDF) is defined as the distribution function of px, i.e.

Fx(z) = px((—o00,2]) = P[X < a].

Consider now ® : R — (0,1) to be the cumulative distribution function (CDF)
of the standard normal random variable, i.e.

T 1 P

—_z_
e 2 dx.

®(z) = PIN(0,1) < ] :/_ on

Then ® : R — (0,1) is a bijection and consider ¥ = ®~1. We define the random
variable X on ((0,1), 2((0,1)),m(,1)) as X (w) = ¥(w). We have that X ~ N(0,1)
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since
Fx(x) = m1)(X <x)
= m(o,1)(X " (—00,2))
= m0,1)(P(—00,2))
= My, 1)((‘1’( 00), ®(7))
= ®(z)
=PN(0,1) < z].

Given two random variables X and Y that are defined on the same probability
space (€,.%7,P) the joint distribution of X and Y is defined by

1xyy(Ax B)=PX €AY € Bl =P(X ' (A) nY!(B)).

As above, the joint distribution is determined by the joint cumulative distribution
function

Fixyy(z,y) =PX <z,Y <y

We observe that it is a well-known fact that

pex,y)y = px X py ifand only if  Fix y)(z,y) = Fx(z) - Fy(y) Vz,y € R,
(1.1)

If the latter property holds, the random variables X and Y are called independent,
an important topic discussed later on.

Returning to our concrete examples, we now want to study the joint distributions
(X,Y1) and (X,Y3). We could calculate the cumulative density function, but it is
a bit easier to calculate the measures directly. We note that if < 0 then

pxyy) (oo ] x {1}) =m 1) (X <,Y1 =1)
=mpn{{we (0,1) : X(w) <z
=m,1)({w € (0,1/2) : X(w) < z})
= O(x).

Similarly if > 0,
t(xv) (=00, 2] X {=1}) = mo1)({w € (1/2,1) : X(w) <a}) = @(2) — 5.

Moreover, to calculate the distribution of (X,Y3) note that for z < ¥(1/4) or
x> U(3/4),

O(x) for x < ¥(1/4),

pexv) (00, 2] x {1}) = {(I)(x) —U(3/4) + U(1/4) for z > V(3/4).

One similarly shows that i (x,y,) is supported for y = —1 in the range W(1/4) <
x < ¥(3/4). Indeed, for such an z,

x, vy (—00,a] x {—1}) = ®(z) — ¥(1/4).
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Finally we want to consider the random variable | X|. We note that for z € R

Fix(@) = pyx (o0, 2])
=me(w e (0,1) : [X(w)] <)

)0 if x <0,
| 2®(z) -1 ifx>0.

and furthermore for y € R,

0 ify < -1,
Fy,(y)y=<1/2 if —1<y<1,
1 ify>1.

We claim that the joint distribution of (|X|,Y1) is px| X py,. To show the latter,
we prove Fix|y, (z,y) = Fix|(x)Fy, (y) for all ,y € R which is sufficient by (L.1J).
For z > 0, we note that

Fuixivy (@, —1) =men({w € [1/2,1) : [X(w)| < x})
=PIN(0,1) € [0,2)]

= B(x) ~ § = Fixy() P (1)

One checks the same observation in all the other relevant ranges, which implies the
claim.
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2. B&.1 CLaAss 2

2.1. Borel-Cantelli Lemmas. First we recall the Borel-Cantelli Lemmas.

Theorem 2.1. (First Borel-Cantelli Lemma) Let Ay, As, As, ... be events in a
probability space (Q, F,P) and assume that

Then
P(limsup A;) = 0,
where

limsup A; = {w : w € A; for infinitely many i} = ﬂ U Aj.
i—00 i>15>4
To state the second Borel-Cantelli Lemma recall that a sequence of events
Ay, As, As, ... in a probability space (2, #,P) are called independent if
P[A;, N...N Al =P[A;,] - P[A;]

for all 41,...,%; € N. It is important to note that it does not suffice to check
pairwise independence, meaning that P[A; N A,] = P[A;]P[4;] for all ¢ and j, to
conclude that (Ay),>1 are independent.

Theorem 2.2. (Second Borel-Cantelli Lemma) Let Ay, Ag, As, ... be independent
events in a probability space (Q, F,P) and assume that

Z]P’(Ai) = 0.

Then
P(limsup A;) = 1.

First we study the records of independent uniform random variables.

Lemma 2.3. Let X1, Xs,... be independent uniform [0,1] random variables. Let
A, for n>1 be event that X,, is the record among X1,...,X,, i.e.

A, ={X, > max(Xy,..., X,-1)}.

Then almost surely infinitely many records occur, i.e. A, happens infinitely many
often.
Also denote

D, = {Xn > X1 > max(Xl, .. .,ang)}

forn > 2 the event that a double record occurs at n. Then with probability one only
finitely many double records occur.

Proof. Consider the sets A,. We first want to calculate P[4,,]. We claim that for
each permutation o : {1,...,n} — {1,...,n},
1

P[Xa(l) >0 > Xo(n)} = E
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This follows as P[X; = X;] = 0 for ¢ # j and as the probability density function of
(X1,...,X,) is invariant by permutation since the variables are independent (see
Lemma [2.8] for more details). Therefore it follows that

_#loron)=n} (-1 1

PlAn] n! n! n

)

and

P[Dn]:#{a:U(n):an("—l)zn—l}_ 1

n! n(n—1)
Thus it follows that > -, P[D,] < co and hence by the first Borel-Cantelli Lemma,
with probability one, only finitely many double records occur.

On the other hand ), - P[4,] = co. Therefore to show that A,, occurs infinitely
often almost surely, by the second Borel-Cantelli Lemma, it suffices to show that the
sets A, are independent. We give two proofs of this. First, we give the following
intuitive argument. Notice that given J C {1,...,n — 1}, consider the set A =
N e A;. Since a record happening at n, has no influence on records happening
before, it holds that
P[AN A,]

P[A,]
Therefore the claim follows by induction on n.

For the second proof we only treat the case A, N A,,. The general case is similar
and left to the reader. We need to show that

P[A]|A,] = = P[A].

PlA, O Ayp] = ——
n-m
for any n # m. Without loss of generality we assume that n > m. By the above
observations, the claim reduces to counting the permutations o : {1,...,n} —
{1,...,n}such that o(n) = nand o(m) > o(1),...,0(m—1). The condition o(n) =
n reduces to counting permutations o : {1,...,n — 1} = {1,...,n — 1} satisfying
o(m) > o(1),...,0(m—1). We can first choose the elements o(n—1),...,0(m+1)
freely of which we have in total (n —1)--- (m+ 1) many choices. Then the element
o(m) is determined and the remaining elements o(m — 1),...,0(1) can be chosen
freely resulting in (m — 1)! more choices. Therefore there are indeed (n — 1)!/m
many such permutations and hence
(n—1)! 1

1

O

Next we show for the law of large numbers to hold, the variables need to have
the same variance.

Lemma 2.4. Let (X,,),>2 be a sequence of independent random variables such that

1 1
and P[X,=0=1

P(X, =n] =P[X, = —n]

:2n10gn "~ nlogn’

Denote S, =Y i o X;. Then ‘S;L converges to 0 in probability but not almost surely.

Proof. By Chebyschev’s inequality, since .S, has mean zero,

1

P[[Sal 2 en] < ——

Var(S,,).
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Moreover, by independence

Var(S,,) = Z Z E[X; X;]
J=2 1,j>2
- D2 DL n?
:Z Ziloz: lozglon
=2 i—p 1108 — 98 8
since 152 l(‘ffgxx_)% and is therefore increasing for z > e.
Thus,
P[|S,| > n] < —— Var(S,) < ——
n| > en] < ar(S,) < —
n2e2 e2logn
and so S; converges to zero in probability.

We now show that 22 does not converge to 0 almost surely. Indeed notice that

Sn+1 Sn S7L+1 - Sn + Sn Sn

(n+1) =n (n+1) n
Sn+1 - Sn Sn Xn+1 Sn

(n+1)  nn+1) (+1) nn+1)

Thus if S Sa 5 0, then it follows that £2 — 0. However this is not the case as almost
surely, by the second Borel-Cantelli Lemma, X, is £n infinitely many often. Indeed
denote A,, = {X,, = £n} and note that (A, ),>2 are independent as the (X,,)n>2

are. Then
1
P[A,] = =
> P anogn o0
n>2 n>2

since by the integral criterion it suffices to show

< 1 1
/ dx:/ —dy =
2 .TlOgI log2y

by substituting y = log «x. (Il

2.2. Standard Random Walk on Z. We now give an extensive deduction that
the standard simple random walk on Z visits every point infinitely many often.
We first show that there exists a sequence of independent coinflips. This follows
abstractly from the following lemma.

Lemma 2.5. Let py,pa,... be a sequence of probability measures on R. Then
there exists a sequence of independent random variables X1, Xs, ... such that X; is
distributed as p; for all © > 1.

Proof. Consider Q = R®N endowed with the product o-algebra and the product
measure 1 = Q)5 fi- Setting X; to be the i-th coordinate map, the proof is
concluded. B (]

We can also give the following explicit construction.
Lemma 2.6. On ([0,1], #([0,1]),m[o,1)) denote
A, ={we0,1] : [2"w]} is odd}.
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Then the sequence of random variables X, = 14, 1is independent identically dis-
tributed with

Proof. Note that

A — 1 2 3 4 2n -1 27
n — 27,27 U 27,27 U...U 271/ 7? .

So these are 2"~! many intervals of length 2=". This implies that P[X,, = 1] =
P[X,, = 0] = 1/2. To show that the sequence of random variables is independent,
it suffices to show that the sets A; are independent.

For simplicity, we first consider the case of A,, N A,,. We note that

k k+1
An ﬁ Am = on’  on ’
1<k<2™ odd
k odd mod 27~ ™*!

which easily implies independence. [l

Let now be (X,),>1 be a sequence is independent identically distributed real
random variables such that

P[X, = 1] = P[X, = —1] = 1/2.

Let So = 0 and, for all n > 1 denote S, =Y _; X.
For z € Z let
A, ={S,, = z for infinitely many n},

B_ = {liminf S,, = —c0} and By = {limsupS, = oco}.
n—oo n—o0

Let 9 = 0(Xkt1, Xkt2,...) and T = ﬂk21 T, which is a o-algebra since it is

the intersection of o-algebras. We note that By € .7 for all k > 1 since being in

By only depends on the values of Xy11, Xiyt2,.... More formally,
By = {liminf S,, = oo} = {liminf Sy4,, = +o0}
n—oo n—oo

and the map -
P : Q — R, w — liminf Sk,
n—oo

is 0(Xg41,...) measurable since each of Sk, is. Thus By = ®,'(£1) and the
claim follows.

By Kolmogorov’s 0-1 law, we conclude P[By] € {0,1}. By symmetry it follows
that P[B4] = P[B_]. More formally, {liminf,, oo (—S,) = —co} = {liminf, o Sp =
oo}. Since (X,,) and (—X,,) have the same distribution, so do liminf,, . (—Sy)
and liminf, .. S,.

The event that S,,4+x — S, = k is equivalent to X,,4+1 = ... = X4+ = 1, which
has probability 2% Denote by A, = {Xpk+1 = ... = Xpger = 1}. Then the
sets A,, are independent (since the X; are independent) and all have probability
2%. Thus it follows by the second Borel-Cantelli Lemma that A,, happens infinitely
many often and therefore for all £ > 1,

limsup (Sp4x — Sp) =k

n—oo

almost surely. This implies that P[B N B] = 0 and hence P[B,] = P[B_] = 1.
Therefore for all x € Z, P[A4,] = 1.
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Now we suppose that (X,,),>1 are i.i.d. random variables but with P[X,] = p
and P[X,, = —1] = 1 — p for some p # 1/2. Then we claim that P[A4y] = 0.

First note that {Sa,41 = 0} = 0 for all n > 0 since one needs an even number
of steps to return to 0. Observe further that

Plsen =01 = ()1 -

Note that since 4" = (1 +1)2" = iio (2,:’) and therefore (25) < 4™ So P[Ss, =
0] < (4p(1 —p))™ and as 4p(1 — p) < 1 if p # 1/2 the quantity P[Sa, = 0] decays
exponentially fast, showing that > > P[S2, = 0] < co. Thus the claim follows by
the first Borel-Cantelli Lemma.

2.3. Holder’s Inequality. Let (©2,.#,P) be a probability space. Let X : Q@ — R
be a random variable and denote for p € [1,00) by

1
11|, = |pr(/|x )P dP(w )

Recall that the Cauchy-Schwarz inequality states that for random variables X
and Y we have

XYl < [IX[l2|[Y]]2-

Holder’s inequality generalises the Cauchy-Schwarz inequality and states that for
p,q € [1,00) with % + é =1 we have

XY < [IXTp11Ylg-
Using the Holder inequality, we can prove the following lemma.
Lemma 2.7. Let X andY be two positive random variables such that for all x > 0,
2PX > 2] <E[Y1x>ul.
Then it holds that || X ||, < q||Y||p for anyp > 1 and g =p/(p — 1).

Proof. We assume that Y € LP as otherwise the claim is obvious. Notice that since
X is positive, using Fubini since X and Y are positive,

E[X?] = IE[ / ]pxpldx]
[ [ teexippe dodee)

—/ P[X > z|pa?~ ! dx
0

< / ]E[lezz]pmp*2 dx
0

b'e
Y / paP =2 dx
0

S R Y] = ¢E[XP" Y.

=E
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If || X||, < oo, then note that || XP~1||, = IE[X?’]Z%1 = [|X[[5~" is also finite and it

follows by Holder’s inequality since % + 1% = (pp%l) + % =1 that

E[X?] < qE[XP7Y] < ql|XP7H [V ]],-

The claim of the lemma follows in this case since
E[X?P] E[X?] 1
< = T =E[XP]'" 7 =||X]],.
1XP=Hlq  E[xee-1]a

For the general case, we use the standard trick of truncation. Indeed, consider
X, = X An. Notice that the assumed inequality also holds for X,, and Y. Then
the claim follows as by monotone convergence, lim,,_,o || Xy ||, = || X]||p- O

2.4. Interchangeability of Random Variables. A measure g on R is called
absolutely continuous if there is a function p € L*(R) (with respect to the Lebesgue
measure) such that

u(4) = [ pla) dma(z).

The function p is called the density function of p. By the Radon-Nikodym theorem
this is equivalent to pu(IN) = 0 for every Lebesgue null set N. We say that a random
variable is absolutely continuous if its distribution is. For example, uniform random
variables and normal random variables are absolutely continuous.

Lemma 2.8. Let X;, Xo,... be independent identically distributed absolutely con-
tinuous random variables. Then for any permutation o : {1,...,n} — {1,...,n} it

holds that

1

P[Xg(l) >0 > Xo(n)] = m

Proof. Let p be the density function of the X;. Then by independence

n

po(@1,. . mn) = [ [ pla:)

i=1
is the density function of X = (Xy,...,X,), which is permutation invariant.

Notice that the set {z € R? : z; = x;} with ¢ # j has Lebesgue measure zero.
Therefore P[X; = X;] =0 for all ¢ # j and it follows that

P [U{Xa(l) >0 > Xo(n)}‘| = Z]P [Xo(l) >0 > Xo(n)] =1

Moreover,

o0 Igl wg(nfl)
P[Xa(l) > ... >Xa(n)] Z/ / / pn(xl,...,mn) dma(1)~-~dxa(n).

As p,, is permutation invariant and since the map ®, : R? — R?, z + o () preserves
the Lebesgue measure, the latter integral does not depend on ¢. This concludes
the proof. ([l

Remark 2.9. In this proof we only used that p,, is permutation invariant and that
P[X; = X;] = 0. The former follows since the X; are independent, while in the
latter we used that X; is absolutely continuous.
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The following question remains: If the X; are not absolutely continuous, is it
still the case that P[Xy1) > ... > Xy ()| does not depend on o7 Indeed, does it
hold that
P[(X1,...,X,) are distinct]

n! '
We leave it as an exercise to the reader to prove this.

]P’[Xg(l) >0 > Xg(n)] =
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3. B8.1 CLaAss 3
3.1. Conditional Expectation.

Definition 3.1. Let X be an integrable random variable on (2, .%,P) and let o C
F be a sub-o-algebra. Then the conditional expectation of E[X|</] € L1(X, o/, P)
is uniquely characterized by

E[E[X|e]1a] = E[X14]
forall A e o .

The conditional expectation is the expectation (or average) of X with the infor-
mation from .%. We first discuss the following important example.

3.2. Properties of conditional expectation.

Lemma 3.2. Let (2, #,P) be a probability space and let &7 = {A1, As,...} be a

countable partition of Q0 with P[A;] > 0 for all i > 1. Then for a random variable

X and Ae 2,

E[X14]
P[A]

EX|o]= ) A
AeZ

Proof. We note that for any A € & it holds that
EE[X|e]14] = E[X14].

Moreover, since E[X |/ is &/-measurable, it must be constant on the sets ..
Therefore for each A there is ¢4 such that ¢y = E[X|2/]14 and hence
ca-PA] = E[E[X|#]14] = E[X14],
implying the claim. ]
We can deduce the following corollary.

Corollary 3.3. Let X andY be discrete random variables. Then for anyy € Im(Y)
and w € (Q,
EX1iy—yl

EX[Y]= ) B

yeIm(Y)
In particular, for w € {Y =y},

BX|Y)(w) = el o 5 ZPE Sk =),

z€lm(z)

We note that one often uses the notation E[X|Y = y|, which means the condi-
tional expectation E[X|Y] evaluated on the set {Y = y}.
The following properties of conditional expectation were discussed in the lecture.

Lemma 3.4. Let X and Y be an integrable random variables on (Q, . F,P) and let
o C F be a o-algebra. The following properties hold:
(i) E[E[X|/]] = E[X]
(ii) The conditional expectation is linear.
(iii) Elc- lo|le/] = ¢~ 1q.
() If X is o/ -measurable, then E[X|«/] = X.
(v) If X is independent of o7, then E[X|</] = E[X].
(vi) If Y is o/ -measurable, B[ XY |o/] = E[X|Z]Y .
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(vii) If X <Y a.s., then E[X|o] <E[Y|] a.s.

Lemma 3.5. (Conditional Markov Inequality) Let X be an integrable random vari-
able, 4 C % be a o-algebra and Z a strictly positive 4 -measurable random variable.
Then almost surely,

1
E[ljx2719] < SEX]|9].

Proof. Note that Z - 1¢x|>z} < |X| and hence using Lemma (v) and (vi),
7. E[1{|X|2Z}‘g} =E[Z- 1{|X|2Z}‘g] < E[|X]|¥],

implying the claim by dividing by Z and using that Z is positive. ([l
3.3. Further explicit examples.
Lemma 3.6. Let X,Y be independent random variables. Then the following prop-
erties hold:

(i) E[X|X,Y]=X.

(i) Eh(X, V)| X+Y,X —-Y]=h(X,Y).
(iii) If X andY moreover have the same distribution,

E[X|X + Y] =E[Y|X +Y] = %(X +Y).

Proof. (i) follows since X is o(X, Y )-measurable. (ii) follows since (X +Y) + (X —
Y)=2Xandsoo(X+Y,X-Y)=0(X,Y) and hence E[A(X,Y)| X +Y, X -Y] =
ER(X,Y)|X, Y] =h(X,Y) as h(X,Y) is 0(X,Y)-measurable.

Finally we prove (iii). We first give a heuristic deduction and then give a rigorous
proof that the claim holds. We recall from Theorem 1.27 of the notes there are
Borel measurable functions f1, fo : R — R such that E[X|X +Y] = f1(X +Y) and
EY|X 4+Y] = fo(X +Y). By symmetry E[X|X + Y] and E[Y|X + Y] must have
the same distribution. Therefore (heuristically) we have E[X|X +Y] = E[Y|X +Y]
almost surely and hence since

EX|IX+Y]+EY|X+Y]=EX+Y|X+Y]=X+Y
the claim follows.

We now give a rigorous argument that indeed E[X|X + Y] = $(X +Y). Since
the m-system {{X +Y < ¢} : ¢ € R} generates o(X +Y), it suffices to show that

EXTixyv<e)) =E[Y1ix y<gl- (3.1)
Indeed this shows that E[X1;xiy<q] = E[%l{xﬁgc}}, which implies the
claim. To show , we apply Lemma below to the function f(x,y) =
Yla+y<c}- -
Lemma 3.7. Let X andY be independent identically distributed random variables

and let f : R?2 — R be a measurable function such that w — f(Y (w), X (w)) and
wr f(X(w),Y(w)) are integrable random variables. Then

E[f(X,Y)] = E[f(Y, X)].
Proof. Consider f = 14« p for A, B measurable sets in R. Then since X and Y are
independent and have the same distribution it follows that
E[f(X.Y)] = P[X € A,Y € B] = ux(A)uy (B)
— uy (A)ux(B) = PIY € 4, X € B] = E[f(Y, X)).
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By the m-A-lemma, the claim follows for all characteristic functions f = 1¢ with
C a measurable set in R2. Moreover, by linearity, the claim holds for all positive
simple functions and hence by taking pointwise limits for all positive measurable
functions. Finally, writing f = f+ — f~ the claim follows. O

3.4. Independence and conditional expectation.

Lemma 3.8. Let X and Y be bounded random variables on (0, .%,P). Then each
of the following statements implies the next:

(i) X andY are independent.
(i1) E[XY] = E[X]E[Y].
All of the other implications fail in general.
Proof. That (i) implies (ii) is implied by Lemma (iii). To show that (iii) follows
from (ii), we calculate

E[XY] = E[ELXY[Y]] = BE[X|Y]Y] = E[E[X]Y] = EIX]E[Y],

where we have used (v) from Lemma

To give counterexamples for the converse directions, we consider the probability
space € that has equal probability on three events. To give a counterexample of (iii)
implying (ii), consider (X,Y’) mapping to (0,1),(1,0) and (0, —1). Then E[XY] =0
and E[Y] = 0 so (iii) holds but (ii) does not hold. Finally to give a counterexample
to (ii) implying (i) consider (X,Y’) mapping to (1,1),(—1,1) and (0,0). Then it is
easy to check that (ii) holds, yet (i) doesn’t as

IP’[X:O,Y:O]:%7éé:]P’[X:O}]P’[Y:O].

To give another example that (iii) does not imply (i) consider a Gaussian X with
mean zero and variance 1 and let Z be a coin flip (i.e. P[Z =1] =P[Z = —-1] =0)
independent of X. Then consider Y = XZ. Then note that by independence
E[Y] = E[X]E[Z] = 0 and E[XY] = E[X2Z] = E[X2]E[Z] = 0. On the other hand,
X and Y are not independent since Y is also distributed like a standard Gaussian
and

1
IP[X>1,Y>1]:IP[X>1,Z:1]:§IP[X>1}7&P[X>1]2:IP[X>1,Y>1].
O

Lemma 3.9. Let X and Y be integrable random variables on (2, .7 ,P) such that
EX|Y]=Y as. and E[Y|X]=X a.s.
Then P[X =Y] = 1.

We first observe that if X and Y are in L?, then by Cauchy-Schwarz XY is
integrable and it holds that

E[XY] = E[E[XY|X]] = E[X?]
and by symmetry E[XY] = E[Y?]. Thus it follows that
E[(X - YY)} =E[X?] +E[Y? - 2E[XY] = 0,

which implies the claim. For general X and Y we offer the following argument.
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Proof. First note that
EXf(Y)] =EEXf(Y)|Y] =E[Y f(Y)]
and likewise E[Y f(X)] = E[X f(X)]. Now let f(x) = Lyse, which gives
E(X —Y)ly> ] =0=E[(X —Y)lx>.]
Writing out the first term, we have
0=E[(X - Y)ly>] =E[(X = Y)ly>eox] + E[(X = V)lyzc x>c]-

Note that the first term is non-positive the second one has to be non-negative. But
we also have

0=E[(X - Y)lx>] =E[(X - Y)lxsesy] + E[(X = Y)ly>e x>

and now we conclude that the second term on the right has to be non-positive.
This means that
E[(X = Y)ly>ex>c] =0

and hence also E[(X —Y)1ly>¢>x] so that in particular P(Y > ¢ > X) = 0 for any
¢ € R and hence also

IP(Y>X)—IP’<U{YZC>X}> =0.
ceR

We conclude, by symmetry, that ¥ = X a.s. O

Lemma 3.10. Let (Q,.%,P) be a probability space and consider three o-algebras
G, %, 9 C F. Assume that o(%,%s) is independent from % and let X be a
“s-measurable random variable. Then

E[X|o(%,%)] = E[X|%] (32)
Proof. We need to show that if A € 0(4,%), then
EE[X|0(%,%)|14] = E[X14] = E[E[X|4]14].

Consider the m-system, & = {A; N Ay : A € 4 and % }. Since the collection of
sets that satisfy the above are a A-system, it suffices to check the claim on <7 (by
the -\ lemma). So consider A; € 4; and Ay € 4%. Then

E[E[X|4]14,n4,] = E[E[X|%]14,14,]
=E[E[X14,[%]14,]
=E[E[X14,|%]] - E[14,]
=E[X14,] E[l4,]
=E[X14,14,]
=E[X14,n4,]
= E[E[X|0(%1,%)]14,n4,]
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We now want to give an example showing that assuming that % and ¥ are
independent is not sufficient to conclude the claim. To see this, consider two inde-
pendent random variables ¢ and 1 with exponential distribution with parameter 1,
i.e. their cumulative distribution function is
1—e™ ifz >0,

0 if x <0.
LetXl :57 X2:$ andX3=f+77.
Note that
E[Xs| X1 ] =E[f +nl¢] =E[p] + £ =1+¢
whereas
E[X5lo(X1, X2)] = E[X3]0(§,n)] = X5 = +n.

It remains to show that X5 and X3 are independent. Indeed to show this consider

the map
x
flz,y) = (Wa$+y)

so that (X2, X3) = f(&,m). The map (z,y) — f(z,y) = (u,v) takes (0,00)% —
(0,1) x (0,00). The inverse is given by = uv and y = v(1 — u) and therefore the
Jacobian is J(u,v) = v. Therefore for all (u,v) € (0,1) x (0,00) we have

XX (0, 0) = fe(a,y)|J (u,0)| = e~ D) g (4, 0)] = ve™.
So the joint density factories and it follows that Xo ~ UJ[0,1] and X5 ~ I'(2,3)
independently of each other.

3.5. Stopping Times.

Definition 3.11. Let (Q2,.%,P) be a probability space and let (F,)n>1 be a filtra-
tion. A stopping time is a map 7 : Q — N such that {T =n} € %,.

We remark that in the definition of a stopping time we could also equivalently
require that {r <n} € .Z,.
Recall that for a stopping time 7 we define

Fr={Ae F. : An{r =n} € %, for all n > 0}.
Lemma 3.12. For a stopping time 7, the collection of sets F. is a o-algebra.
Proof. Tt is clear that .%, contains () and Q. If A € .Z,, then

An{r<n}=JAn{r=k}e .7,
k<n

and therefore AU {7 >n} = (AN{r <n})° € %,. Let By = A°U {7 > n} and
= AU{r > n}, Then B;UB; = Q and B; N By = {7 > n}, so both of these sets
are in Fn. Since By is also in .Z., it follows that By = Q\(B1\(B1 N Bs)) € %,.

Therefore A¢ € %, as A°N{r <n}=(AU{r >n})* = BS € F#,.
Finally if (Ag)r>1 is a collection of events in %, then so is A = (-, A since
An{r =n} = N>, A{T = n} € F, as F, is a o-algebra. - O

Lemma 3.13. If 7 < p are two stopping times, then &, C F,.
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Proof. Let A € .. Note that {p < n} ={r <n,p <n} ={r <n}n{p <n}
Therefore for n > 0,

Aﬂ{p<n}:Aﬂ{7'<n}ﬁ{p<n}€<93n

as by assumption AN {7 <n} € .%, and {p <n} e .%,. So A€ .%, and the claim
follows. =

Lemma 3.14. Let 7 be a stopping time such that for some K > 1 and € > 0 we
have for every n > 0, almost surely

Then it holds that E[T] < 0o
Proof. The assumed condition is equivalent to P[t > n+K | %] = E[l{;5>n4 k) | Fn] <

(1—¢) almost surely. For m = 0, the claim is obvious since P[r > 0] <1 = (1—¢)°.
For the inductive step we calculate,

]P[T > mK] = E[1{7—>mK}]

Lirsmi i irsm-1)K}]

E[
E[ Lr>mrtlirsm-1) K} F -]l
=Elfr>m-1) Ky Elr>m-1) g+ &3 F (m-1)K]]
<A =)El{rsm-nxy] = A =e)P[r > (m -1)K] < (1—¢)"
We finally deduce that E[7] < co. Indeed,
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4. B8.1 Crass 4
4.1. Martingales.

Definition 4.1. An adapted and integrable stochastic process (My)n>1 is called a
martingale if

IE[]\/‘[n-',-1|fgn} =M,
forn > 1.

4.1.1. Bellman’s Optimality Principle. Consider (gp,)p>1 i.i.d. random variables
with distribution

]P)[gn:l]:p and P[fn:—l]:q:l—p

with p € (1/2,1). We now want to create an investment strategy by betting on the
outcome of €,. Denote %, = o(e1,...,&,). Let Zy > 1 and consider

Zn = Zn—l + EnVny

where V,, is .%,,_1-measurable and strictly between 0 and Z,,_.

The goal of this example is to maximise the interest rate E[log (2 )] We note
that

Zn+1 Vn+1 VnJrl VnJrl
E|l > O\n =pl 1 — I 1— —— = ,
|:Og<Z7l >|J:| p0g< * Z’n +qog Zn f Zn
where f(z) = plog(1l+ x) + qlog(1l — ). We note that
/ _ b g
(=)= 1+2 11—z
A straightforward calculation shows that f(x) is increasing on (0,p — ¢] and is

decreasing on [p—gq, 1]. The function f has its maximum at p—qg and a« = f(p—¢q) =
plog(2p) + qlog(2q) is its maximum. Therefore it follows that

E {log <Zg+1> |ﬁn} < a.

Thus M,, =log Z,, — na is a submartingale and

Z
E [log (;)] < na.
0

Thus to maximise the interest rate we want M,, to be a martingale. In order for
this to be the case, we need f(*4**) = a, which holds if and only if “2: = (p— q).
Thus we require V,,41 = (p — q)Z,, which then maximises the interest.

4.1.2. Random Walks and Harmonic Functions. Let A C Z? be a finite set of points
in a square lattice and let B (the boundary) be the sets of points in Z™\ A with at
least one (horizontal or vertical) neighbour in A. Denote by 7 the hitting time of
the boundary.

Given any function g : B — R, we consider the function

f(’U) =E, [g(XTB)]7

defined on A U B, where X is a standard random walk on Z? starting on v. Then
it holds for every v € A, that

fw) =1 3 fw)

wn~v
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Indeed, this follows since

F0) = 7 S B0 1X0 =l = § 3 Bulo(X,,)] = 3 fw)
w~v w~v w~v
Now we consider a simple symmetric random walk (X,,),>1 on Z? and X, € A.
Then we claim that M,, = f(X,ars;) is a martingale with respect to the natural
filtration %, = o(X1,..., Xn).
Notice that if X,, € A, then

FX) =7 3 fw) = Elf(Xue) Xa] = B (Xni)| 5]

w~ Xy,

We give a more formal argument for a similar equality in the discussion after (4.1)).
Therefore it follows that,

E[f(XnJrl/\‘rB)‘yn] = E[f(Xn+1/\TB)1{TB>n}‘yn] + E[f(XnJrl/\'rB)l{'rBSn}lyn]
= 1{TB>n}f(Xn) + 1{75§n}f(XTB)
= f(Xn/\TB)-

4.2. Martingale Convergence Theorems. The following results were proved in
the lecture.

Theorem 4.2. (Doob’s Forward Convergence Theorem) Let (M,)n>1 be a sub
or super-martingale that is bounded in L', i.e. sup,; E[[My,|] < co. Then M,
converges almost surely to a limit Mss and My, € L.

Theorem 4.3. Let (M,),>1 be a martingale. The following properties are equiv-
alent:
(1) (My)n>1 is uniformly integrable.
(2) There is some Fo-measurable random variable Mo, such that M, — My,
almost surely and in L'.
(8) There is an F s -measurable random variable Mo such that M,, = E[Mu|%#,]
almost surely for all n.

Furthermore, under these conditions, if M, € LP for p > 0 then the convergence

M, — My, also holds in LP.
We can deduce the following LP-convergence theorem.

Corollary 4.4. (L?-convergence theorem) Let (My,)n>1 be a martingale that is
bounded in LP for p > 1, i.e. sup,>; E[|M,[P] < co. Then then M, converges
almost surely and in LP to a random variable My, € LP.

Proof. Let q = p’%l such that %4—% = 1. Then by Hoélder’s inequality ||My||1 =
E[|M,|] < [|Mu|lpl|1llq = [|Mall, = E[|M,|P]*/P. Thus M, is bounded in L'. We

claim that M,, is uniformly integrable. Indeed, notice that by Holder’s inequality
E“MHHA} < ||Mn||p”1A||q = ||Mn|‘pP[A]1/q —0

as P[A] — 0. Thus by Proposition 5.22 from the lecture notes, it follows that M,
is uniformly integrable.
We furthermore notice as M,, — M, almost surely, it follows by Fatou’s lemma
that
E[|Mac|?] = Eflim inf [1, 7] < lim inf E[|M, 7] < co.

Therefore M., € LP and the claim follows by Theorem O
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4.3. Consistency of Likelihood ratio. Consider a sequence of i.i.d. tosses of a
coin with X; denoting the outcome of the ith toss. These random variables are
defined on some (§,.%) on which we have two probability measures P4 and Pp
and we assume that the X; are i.i.d. under both measures. Under hypothesis A,
P4 is the true measure, and the probability of a head on any toss is p = a. Under
hypothesis B, the measure is Pg and p = b, for some a,b € (0, 1).

Let Pa(x1,...,x,) denote the probability of a sequence of outcomes (z1, ..., z,)
under hypothesis A, i.e. Pa(x1,...,2,) = Pa[X1 = 21,..., X, = x,] with the
analogous definition for Pp.

Lemma 4.5. With the above notation,

n

Pa(Xy,...,X5)
Zn: =
Pp(X1,...,Xn) E

P4(Xi)

Pp(X;)

is a martingale under Pg under the filtration %, = 0(X1,...,X,). Moreover, Z,
converges almost surely to 0 if a # b.

Proof. Note that Z, =Y ---Y,,, where Y; are independent random variables with
distribution
PlY,=4¢]=b and P[Y;={=g]=1-b.
As E[Y;] = 1, it follows that Z,, is a martingale with respect to .%,, as
E[Zni1|Fn) = Zn - BlYni1| Fnl] = Zn - BlYni1] = Zn.

Since Z,, is positive, it is bounded in L'. Therefore by Doob’s Martingale conver-
gence theorem (Theorem an integrable limit Z., almost surely exists. If a = b,
then Z,, = 1 and thus Z, = 1.

On the other hand, if a # b, then Y; is bounded away from 1. We claim that
Zso = 0 almost surely. Indeed, if Z,, is non-zero and finite, then the tail

m
ZooZn = Y Zn/Zn = lin 1] ¥
i=n+1

must converge to 1. Yet this can only be if the Y; converge to 1. Indeed, if
| Zm/Zn — 1| < € for all m > my, then Z,,11/Z, = Yini1Zm/Z, and hence

Zm+1/Zn c l—¢e 1+4¢
Zm|Zn 14+e’l1—¢

This contradicts Y; being bounded away from 1. Therefore, Z,, = 0 almost surely.
To give an alternative argument that Z., = 0 if a # b almost surely, we note
that since log is strictly concave,

Ellog(Y;)] = blog ¢ + (1 — b)log =% < log1 = 0.

Y1 = ]=1+0@.

Therefore by the law of large numbers, it holds almost surely that

log Z,,
lim —22" — E[log(Y;)] < 0.
n—o0o n
Thus log Z,, -+ —oo and therefore Z,, — 0 almost surely. O

We note that Z,, if a # b is an example of a martingale that converges almost
surely but not in L' to Zo, = 0. Indeed, E[Z,] = E[Z;] = 1 for all n > 1 and
therefore Z,, cannot converge to 0 in L*.
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4.4. Polya’s Urn Model. At time 0 we have an urn with two balls, one white
and one black. At each successive time, we draw at random one ball from the urn
and return it back along with another ball of the same colour. This way, at time
n, we have n + 2 balls in the urn of which B,, are black and W,, = n + 2 — B,, are
white. Note that B, € {1,...,n+ 1}.

Lemma 4.6. (Polya’s Urn Model) With the above notation,

1
P|B, =k| =
[Bn ] n+1
for k € {1,...,n+ 1}. Moreover, M, = f& ts a martingale with respect to

Fn =0(B1,...,By) that converges to M, being the uniform [0,1] variable.

Proof. The first claim is proved by induction. Indeed, the claim holds for n = 0 and
n = 1. Assume now the claim holds for time n—1. Then we have for k € {1,...,n},

P[B, = k|Bn_1 ={] - P[Bn_, = {]

]
S5
3
I
=
I
[

=1
1
= —(P[B, = k|Bp-1 =k|+P[B, =k|B,—1 =k —1])
n
_L(ntlok k-1) 1
n n+1 n+l) n+1
In addition,
P[By = n+1] = P[By = n+1|Bus = nP[Byy = n] = —— . £ = 1
n="n - n=T"n n—-1=T"7 nfl—n—n+1 Tl_n+1
This concludes the proof the first claim.
To show that M,, = nBi:Z is a martingale, we denote by
X 1 if the ith ball is black,
" 10 if the ith ball is white.
Then it holds that B, =1+ > | X;. We note that
B[22t | 7] = — g (Bu+ E[Xoa| 7))
nt3 [Znl = e Pn n+1|Fn))-
Since X, 11 only depends on B,
E[X, 1| Z2] = E[Xoa|Ba] = 22 (11)
n+2

This implies that M,, = nBJ:Z is a martingale.

We give a more precise argument for (4.1). Indeed, we can express X, 1 =
ZZ:% Xn+11{B,=k}y and note that since the distribution of X,,;1 depends only on
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the value of B,,, the function E[X,,+1|-%,] is constant on the sets 15, _. Therefore
E[Xni11{B,=k}]
P[B,, = k]
_ Ell{x, =131 (B.=1]
(Bn=k} P[B, = k|
P[B,y1 =k +1,B, = k|

E[Xni11{B,=k}|Fn] = 1B, =k}

= o=k P[B, = k|
1_k_
— 1{Bn:k} n 7i+2
= LiBu=k) n+2
Therefore
n+1 n+1 k‘ B
E[Xpi1]Fn] = ZE[XTL+11{Bn=k}|yn} = Z 1{Bn=k}n T2 = nt2

k=1 k=1

The same argument shows that E[X,,11|B,] is the same function.

As M,, is uniformly bounded, it is uniformly integrable and hence by Theorem[4.3|
converges almost surely and in L! to a random variable M.,. Notice that for
x €[0,1)

n+2)x
P[Mnéf]:%%%
as n — 00. So M, converges in distribution to a uniform [0, 1]-variable and hence
also in L' and almost surely. (Il

4.5. Galton-Watson branching process. Let (X, ,)nr>1 be an infinite array
of independent identically distributed random variables, each with the same distri-
bution as X, where

PIX = k] = pi
for k =0,1,.... Denote u = E[X] and 02 = Var(X) and assume that 02 < co. The
sequence of random variables (Z,,)n>¢ is defined by Zy =1 and

Zn=Xn1+.. +Xnz, ..

We note that

k
E[Z7 1 [{Zn =k} =E Z Xni1,iXnt1,; | = ko® + k*p®.

ij=1
Therefore
BIZ2 1| ) = EIZ2 0| Z0) = 0% - Zo 142 22,
To calculate E[Z2], we recall that E[Z,] = u™ and therefore
E[ZTQL-‘Fl] = ]E[]E[Zr21+1|<gn]]
=0” E[Z,] + p* - E[Z;]
= o*u" + p* - E[Z;).
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Notice that E[Z3] = 1, E[Z?] = u? + 02 and E[Z2] = p* + o%(p + p?). More
generally we claim for n > 1 that
E[Z2] = p®" + o (u" 4+ u™ + .+ P 2).
It is a straightforward calculation to check that this formula indeed satisfies the

inductive relation. We conclude since p > 1,

Z2
E[M?] =E {”} =142+ 4p ) <14

‘u2n

0_2

Therefore M,, is bounded in L?. Hence, by Theorem M, converges in L? to a
random variable M., and hence also in L!.

4.6. Gambler’s Ruin. We are going to use the following theorem:

Theorem 4.7. (Optional Stopping Theorem) Let (My)n,>1 be a martingale on a
filtered probability space and let T be an almost surely finite stopping time. Assume
that either

(1) (My)n>1 is uniformly integrable, or
(2) E[r] < oo and

<sup E[|Mp+1 — M, | ﬁﬂ) < 00
n>1
almost surely.

Then
E[MT] = E[MO]

In this section we are going to discuss the gambler’s ruin problem. Let (X,)n>1
be an i.i.d. sequence of random variables with

with p € (0,1). Suppose that a and b are integers with 0 < a < b and consider
Sp=a+X1+...+4X, and 7=inf{n>1:S5,=0o0rS, =>b}.

Then 7 is a stopping time.
We denote py = P[S, = 0] and p, = P[S, =]

Lemma 4.8. It holds that E[7] < oc.
Proof. Let Ay for k > 1 be the event that
A = {X(k—1)~b+1 =...=Xgp = 1}

Then P(A) = p® for all k > 1 since the X; are independent. If A; happens, then
7 < k - b since either we were below 0 some time before k - b or we are at b before
k - b. Therefore it follows that

{ren}<(@-yltl<emen

for suitable constants ¢. Therefore

E[r] = inP[T =n| < inP[T >n] < inefcn < 0.
n=1 n=1 n=1
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We make one important remark that shows we need to be careful with the
assumptions in the optional stopping theorem. Indeed, if p = ¢ note that S, is a
martingale. Consider now the one-sided stopping time

' =inf{n>1:5, =0}

We note that the conclusion of the optional stopping theorem does not hold as
0 = E[M,/] # E[Mp] = a. The stopping time 7’ is almost surely finite, as we have
seen in previous sheets. So we conclude that .S, is not uniformly integrable. Also
we note that E[|S,+1 — S]] < 1 as we move by one step at each time. Thus it must
follow that E[7'] = cc.

We note that if E[7'] was finite, would could easily make arbitrage in unbiased
financial markets, which I encourage the reader to ponder about.

4.6.1. Biased Gambler’s Ruin. Assume that p # ¢q. Throughout this section write
v = p/q. We aim to calculate E[7], pg and p.

Lemma 4.9. The stochastic processes
M, =~ and N, =S, —n(p—q)
are martingales.

We note that if v = 1, then M, is always 1.

Proof. We first show that IV,, is a martingale. Indeed,
E[Nyy1|#] = Sn — (n+1)(p — q) + E[Xp41|%n] = N,
since E[X,,41|%n] = E[X,41] = p — ¢. For the second claim, we calculate
E[Myi1|Fn] = 7% - E[y*"+] = My,
since E[yX»+1] = E[yX»+1] = py + ¢y = ¢ + p = 1. This concludes the proof. O
We note that E[r] < oo and that |N,41 — N,| < 2 and therefore E[| N1 —
Np| | ] < 2. So we can apply the optimal stopping theorem to N,,, which implies
b-pp — E[r](p — q) = E[S-] - E[r](p — q) = E[N;] = E[No] = So = a

On the other hand, none of the assumption of the optional stopping theorem are
satisfies for M,,. Yet we can use the following trick. Namely, we consider stopped
the stochastic processes

M:l- = Mn/\‘ra
which was shown in the lecture to be a martingale. Note that 0 < M < max {1, yb},
so it is uniformly bounded and hence uniformly integrable. Thus we can apply the
optional stopping theorem to conclude that

po + 17" = pon’ + oy’ = E[M] = E[Mo] = .
Using that pg + pp = 1, it follows that

,yb_,ya
-1

_ -l
o B

Moreover, by the above

Db and po=1-p, =

_bpy—a
p—q

E[7]
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4.6.2. Unbiased Gambler’s Ruin. We assume in the following that p = ¢ = 1/2.
Then S, is a martingale that satisfies the assumption of the optional stopping
theorem. Since po + pp, = 1 and as bpy = E[S;] = E[Sy] = a, it follows that

a b—a

a
= — d a:]_— :1——_ .
Py b an p Po b b

We observe that the above studies martingale M,, = v~ is not useful in the unbi-
ased case. To deduce the equation for E[7], note that 02 = 1 and recall that S% —n
is a martingale. Thus by optional stopping,

ab — E[r] = b*p, — E[1] = E[S?] — E[r] = E[S?] = a*.

So E[r] = ab — a®> = a(b — a). This calculative approach does not work in the
unbiased case.

4.6.3. Alternative approach using polynomial method. We give an example where
an alternative approach to some of the above problems. We review the method
of characteristic polynomials to solve recurrence relations. Indeed, assume we are
given a recurrence relation with ag, ..., aq_1 to be fixed and

Ay = Q1Ap_1+ ...+ 0Qgq0n,_q
for n > d. Then we consider the equation involving the characteristic polynomial
A — al)\d_l — ag)\d_Q —..—ag=0

Let A1, ..., A\x be distinct real roots of the above polynomial. Then any sequence

k
an = E CiAY
i=1

satisfies the equation as one readily checks.

Example 4.10. Assume that we are in a biased random walk with

PXi=1=> and E[Xi=-1]=_.

We start at n and denote by p,, the probability that we ever hit 0. Then it holds

that
1
Proof. Let p, be the probability that we hit 0. We then have py = 1 and the
recurrence relation 5 )
Pn = gpn+1 + gpnfl
or equivalently

_3 1
Pn = 2pn—1 2pn—2~
Therefore the characteristic equation is
3 1 1
M- A+-=0-1DA-2).
A5 === 3)
Thus it follows that 1

We give an alternative solution by using the results from section Indeed
consider the previous example with p = % and ¢ = % such that % = % Let 7 be
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the hitting time of {0,b} for b > n and assume that the random walk starts at n.
Write p, 0 = P[S; = 0]. Then it holds that

11

2b on
Pn,o = 1 1 .

P

The probability in question is thus

1
= 1 = —,
Pn bggo Pn.,0 on
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5. B8.1 2023 ExAM
5.1. Question 1. Let (Q2,.%,P) be a probability space.

5.1.1. Question 1 a). Recall that a m-system is a collection of sets that is closed
under intersections. A A-system is a collection of sets .# such that

(1) Qe ..

(2) f A,B € .# and AC B then B\A e .Z.

(3) If (Ay)n>1 C A is a collection of sets with A,, C A, 41 for all n > 1, then
Uns14n € 4.

Lemma 5.1. Let o/ and a5 be two w-systems in & and let G, = o (<) fori=1,2.
Then ¢ and % are independent if

P[A N B] = P[A]P[B]

for all A € oy and B € o.
Proof. Consider

My ={ACQ : P[AN B] = P[A]P[B] for all B € a4}.
We claim that .#) is a A-system. Indeed, it is clear that 2 € .#. Assume now that
Ay, Ay € A with A1 C As. Then it holds that
P[(42\A1) N B] = P[4; N B] — P[4y 1 B] = (P[A3] — P[A1])P[B] = P[A,\A1]P[B]
and therefore A3\A; € .. Finally, if (A,,),>1 is an increasing sequence of sets in

o/ then write A = UnZl A,,. It holds by monotone convergence that
P[ANB] = lim P[A, N B] = lim P[A4,]P[B] = P[A]P[AB].
n—r oo

n—oo

So A € # and so we have shown that .Z is a A-system.

By our assumption & C .#; and therefore by the m — A-systems lemma, it
follows that o(&#)) =% C .

We next consider

My ={B CQ:P[ANB] = PIAP[B] for all A € %).

Then as before .#5 is a A-system and by the first step @% C #5. By the m — \-
systems lemma it follows that % = o (%) C .#5, which concludes the proof. O

5.1.2. Question 1 b). Now suppose that Yp,Y,... are independent random vari-
ables with

1
PlY, =1] = 3= PlY, = —1]
for all n > 0. For n > 1 we define

We claim that Xy, X5, ... are independent.
‘We now consider

and
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For every n, we have Yy = Y, 7' --- Y, X,,. Therefore, since all of the random
variables Y1, ..., Y, and X, are o(), T,,)-measurable and as the product of measur-
able random variables is again measurable, it follows that Y} is (), 7, )-measurable.
As n was arbitrary, Yy is G-measurable.

We now want to show that Y; is independent of H so it suffices by a) to show
that

P[{Yy =i} N AN B] = P[Y, = {|P[A]P[B]
fori=1,—1and all A € Y and B € ﬂn21 T.. By the Komlogorov 0 — 1 law (as
the X; are independent), every element of ﬂn21 T, has either measure 0 or 1. So

if P[B] = 0, the above claim is obvious so we can assume that P[B] = 1 in which
case it suffices to show that

P[{Yo = i} N A] = P[Yp = i]P[A],

which follows as Yj is independent from ) by construction.

5.1.3. Question 1 c¢). Let (M,)n,>1 be a martingale relative to a given filtration
(Fn)n>o0 and such that |M,11 — M,| < L for all n > 0 and some constant L.
Assume that My = 0.

(i) Let 7 = inf{n >0 : M,, < —K} for K > 0. Then we claim that lim,,_, M,
exists on {7 = oo}. Indeed, note that 7x is a stopping time as it is the first hitting
time for an adapted process. Also note that (Mpar, + K + L)p>0 is a non-negative
martingale and therefore converges almost surely. So M,, converges on T = oo.

(ii) Therefore M,, converges on |Jx_, {7k = 0o} = {liminf M,, > —oo}. Apply-
ing the same argument for —M gives the same conclusion for lim sup M,, < co. So
we have shown that M,, converges on the set lim inf M,, > —oo and lim sup M,, < oo,
which implies the claim that

A ={lim M, exists and is finite}
n—oo

B ={limsupM,, =oc and liminf M, = oo}
satisfies P[AU B] = 1.

5.1.4. Exercise 1 d). Consider a sequence of events (By,),>1 and let F,, = o(Bu,..., By)
for n > 1 and %, = {0, Q}.

(i) Now consider (X,,)n,>0 the submartingale given by Xy = 0 and X, =
Y peqlp, for all n > 1. Recall that the Doob decomposition of X,, is the de-
composition X,, = M,, + A,, where M,, is a martingale and A,, is a predictable
process. The martingale M, is given as

M, = (X — E[Xx|Fia]) = Y (I, — E[lp,[Fe-1]).
k=1 k=1

(ii) Note that |M,, — M,,_1| < 2 and let A and B the the sets from c). From c) we
conclude that ifw € A, then "7 15, (w) = coifand only if Y ;2 | E[lp, |Fn—1](w) =
00. When w € B then M,, oscillates and therefore we must have Y ;- | 1p, (w) = 0
then it must also hold that Yy | E[1p, |F,—1](w) = co. This implies

[e.9]

P[ nlO Z 1Bk|]:n 1 ) 0
k=1
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(iii) To prove the second Borel-Cantelli lemma, we note that if By, Bs,... are
independent, then E[lp,|F,_1](w) = P[By] and so if > ;- P[Bx] = oo, then
P[B, i.0.] = 1.

5.2. Question 2. Let (Q2,.%,P) be a probability space.

5.2.1. Question 2 a). (i) Let X be a random variable and let B(R) denote the Borel
o-algebra on R.

Lemma 5.2. It holds that
o(X) = {Xﬁl(A) : Ae BR)}.

Proof. The right hand side is a o-algebra since it clearly contains 2 and it holds
that X 1(A°) = X71(A4)¢ and X 1 (U;>14;) = Ui>1 X 1(A;) for any sets A and
A; in B(R). By definition, o(X) D {X~!(A) : A € B(R)} and since the right hand
side is a o-algebra, o(X) C {X~1(A) : A € B(R)}. This concludes the proof. [J

(ii) For the next exercise we recall the statement of the monotone class theorem.

Theorem 5.3. (Monotone Class Theorem) Let 7€ be a class of bounded functions
from Q to R satisfying the following:
(1) H is a vector space.
(2) The constant function 1 is in .
(3) If (fu)n>1 is a sequence in J such that fn, T f for a bounded function f,
then f € 2.

If € C S is stable under pointwise multiplication, then 5 contains all bounded
o(€)-measurable functions.

Lemma 5.4. If a bounded random variable Z is o(X)-measurable, then Z = g(X)
for some measurable g : R — R.

Proof. Consider 4 to be the class of bounded functions of the form g(X) for some
measurable map g : R — R. The class J# satisfies the assumption of the Monotone
Class Theorem since if Y,, = ¢,(X) with Y,, 1Y for Y a bounded function, then
we can take g = limsup,,~; g, and check that ¥ = g(X). We furthermore define
¢ ={lc : C € 0(X)}. Then € C J since by the previous lemma C' = X ~*(A)
for some A € B(R) and so we can set g = 14. As 0(X) is a o-algebra and therefore
a m-system and 14 - 1p = 14np, the set € is stable under pointwise multiplication.
Therefore by the Monotone Class Theorem, % contains all bounded ¢(%) = o(X)
measurable functions, concluding the proof. (I

5.2.2. Question 2 b). Consider f : [0,1] — R an L-Lipschitz function, that is

|f(u) = f(v)] < Llu—v| for all u,v € [0,1]. Suppose X has a uniform distribution

on [0,1] and define

[2"X]
2n

for all n > 1, where |z] denotes the integer part.

(i) We note that for all w € Q it holds that X, (w) € [X(w) — 27", X(w)] and
therefore for all w € Q, | X, (w) — X (w)| < 27™ and thus the converegnce is almost
surely, in probability and in L2.

(ii) We next claim for any n > 1 that

o(Xn, Xnt1,...) = o(X).

Xn = and  Z, =2"(f(X, +27") - f(X4))
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It is clear that o(X,,) C 0(X) since X,, is o(X)-measurable. To show the converse,
it holds as X = lim,,,o, X, that X is o(X,,, Xy+1,...)-measurable and therefore
the claim follows.
(iii) A family of random variables {X; : ¢ € I} is uniformly integrable if
lim su?E[\XZ—|1‘X|>K] =0.

K—o0 ;¢
The family (Z,)n>1 is indeed uniformly integrable as
|Zn(w)] = 2"[f (Xn(w) +277) = f(Xn(W))] < 2"L|Xp(w) +27" = Xp(w)| < L

for all n > 1 as f is L-Lipschitz. So Z,, is bounded and hence uniformly integrable.

(iv) Finally, consider F,, = o(Xy,...,X,) and let h : [0,1] — R be a bounded
measurable function. Then by construction 7, = {X ~1([55, &) : 0 < i <27—1}
and so F,, is a partition of . For convenience denote by 4; = X ~!([, &) for
0 <7 < 2™ and thus for w € Q, almost surely

P
" 2’L
S T R

5.2.3. Question 2 c). (i) We now show that Z,, is a martingale relative to the
filtration (F,)n>1. Note that
|27+ x|

e € (X, Xn

1
XTL+1 = W}

and each of these cases happens with probability 1/2. Therefore
1
E[f (Xnt1)Fn] = 5 (f(Xn) + F(Xn + 5arr))-

2
Thus it follows that

E[Zn+1|]:n] = 2n+1E[f(Xn+1 + Qn%) - f(Xn-f—l)‘]:n}
— 2K+ )+ S+ ) = F(X + r) = £X)
= 2n(f(Xn + 2%) - f(Xn)) = Zn.

Thus (Z,,)n>1 is a martingale.

(ii) The martingale convergence theorem for Ul martingales states that if (M, ),>1
is a sequence of Ul martingales then there is a F, random variable M, such that
M,, — My, almost surely and in L' and M,, = E[M|F,]. Applied to Z, it follows
that there is a o(X)-measurable random variable Z., such that Z, — Z., almost
surely and in L'.

(iii) By a) it holds that Z,, = g(X) for a Borel measurable function g : [0,1] — R.
Thus by b), we have almost surely,

Xp427"

Zn = BlZw|F) =Blg(|F =2 [ T gla)da,
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By the definition of Z,, it therefore follows that
Xn_,'_z—n

F(Xn+27") = f(X,,) = / o) d.

X’I’L
Thus we conclude by a telescoping sum that

i

() - 10 = [ st au

for all 0 <i < 2"™. As n — oo and since f is continuous,

£@) = £0) = [ glu)du
0
for almost all € [0, 1].
5.3. Question 3. Let (Q2,.%,P) be a probability space.

5.3.1. Question 3 a). Three players start with a,b and ¢ tokens respectively. In
each round, two players are selected, uniformly at random from the players in play,
and then one of them, selected uniformly at random, gives the other one a token.
Each choice of a player is made independently of everything that has happened so
far. When a player has no tokens left, she stops playing. When one player gathers
all the tokens she wins and nothing else happens in the subsequent rounds of the
game.

We denote X,,, Y, Z, the number of tokens owned by each of the players after the
nth round. In particular, Xg = a, Yy = b and Zy = ¢. We let F,, = o(Xg, Y, Zk :
0<k<n).

(i) and (ii) Let 7 be the first time one of the players has no tokens left, which is
clearly a stopping time. Let

M, = XY, Zn + g(a+b+c)

for n > 0. Then we claim that (Mpar)n>1 is @ martingale. Indeed, we note that
while X,,,Y,, and Z,, are all non-zero it holds that

1
Xn+1Yn+1Zn+1 =X YnZn + g(Xn +Y, + Zn)

This implies the claim.
(iii) We observe that M,, is not a martingale itself as when 7 happens, X,,Y,,Z,
is zero but % (a + b+ c) still grows. So M, is a submartinagle since

E[Mn+1|<gzn] = E[Mn+11n<7'|gn] + E[Mn-&-llq—gn'yn]

n+1
= Mn1n<7’ + 37(0 +b+ C)lrgn

> Mylucr + 5
— M,

(iv) Finally, we compute E[r]. It clearly holds that E[r] < co since
Pir > (a+b+c)n] <e "

for some constant ¢ > 0. Therefore, as |M,,+1 — M, | < L for some constant L > 0,
it follows that

a+b+c)l<y,

Bl abey = B[ML] = B[My) = abe
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and therefore
3abc

Elr]| = ——.

7] a+b+c

5.3.2. Question 3 b). Let X be an integrable random variable and G be a sub-o-
algebra of F. Let Y = E[X|G] and suppose that X and Y have the same distribu-
tion.

(i) Assume for the moment that X is square integrable. Then so is Y and it
holds that

E[(Y — X)?] = E[Y?] + E[X?] - 2E[XY]
= 2E[Y?] - 2E[E[XY|G]]
= 2E[Y?] — 2E[YE[X|G]]
=2E[Y?] - 2E[Y?] = 0,
having used in the first line that X and Y have the same distribution. So it follows
that X =Y almost surely.

(ii) We next claim that E[X A a|G] = Y A a. almost surely for any a > 0.
Indeed, by monotonicity of conditional expectation, E[X A a|G] < E[X|G] =Y and
E[X Aa|G] < E[a|G] = a. So it follows that E[X Aa|G] < Y Aa. Also, since X Aa and
Y Aa have the same disribution, it follows that E[E[X Aa|G]] = E[X Aa] = E[Y Ad]

and therefore E[X A a|G] =Y A a. almost surely.

(iii) Similarly one argues that that

E[(X Aa)V (—a)|G] = (Y Aa) V (—a)

almost surely for any a > 0 and therefore by the L2-case it follows that (X A a) V
(—a) = (Y Aa) V (—a) almost surely. Sending a — oo it follows that X =Y almost
surely.

(iv) Now consider T : Q — Q be a F-measurable map and assume that PoT =P
and that X is such that

E[XZ] =E[X(Z o T)]

for any bounded measurable random variable Z. We claim that X = X oT P-almost
surely. Write G = T~ (F). Then

E[(XoT)(ZoT)] = E[XZ] = E[X(Z o T)] = E[E[X(Z o T)|G]] = E[E[X|G](Z o T)],

having used T-invariance of P in the first equality and that Z o T' is G-measurable
in the last. By considering Z to be characteristic functions and since X o T and
E[X|G] are both G-measurable, it follows that X o T = E[X|G] almost surely. Also
X and X oT have the same distribution as T preserves P. Thus it follows from (iii)
that X = X oT almost surely with respect to P.
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6. B8.1 2024 ExAM
6.1. Question 1. Let (Q, F, (Fy,)n>0,P) be a filtered probability space.

6.1.1. Question 1 a). Let (X,,),>0 be a submartingale and fix A > 0.
(i) Recall that a stopping time is a random variable 7 :  — N such that for all
n>1,
{Tr=n}eF,.
The random variable 7 = inf{n > 0 : X,, > A} is a stopping time since
{r=n}=X [\ o)) €F,

since X,, is F,-measurable by our assumptions.

(ii) Consider now the process Y, = (X,, — X;)1{,<,} for n > 0. We claim that
Y, is a submartingale. To prove this, write X, = maxy<n X, and consider the
predictiable process Vi, = 1{;<p_1} = 1{§n712)\}. Then it holds that

(VoX)=> Vi(Xx— Xp-1) = Xnvr — Xr = (Xp — X:)1{r<n},
k=1
which is a submartingale as V' o X always is.
(iii) We now prove Doob’s maximal inequality, i.e. that for n > 1,

APlmax Xy > M| < E[Xo max,<,, x3] < B[ Xal]

To prove this, we further note that since X; > X\ we have that (X; —A)1{;<,} is an
adapted integrable and nondecreasing process and therefore a submartingale. Thut
it follows that Z, = (X, — A)1fr<n} = (Xn — M) 1{max,<, X, >2} i @ submartingale
and therefore

0 < E[Z]
< E[Z,]
= E[(Xn = M{maxi<, xi2]
= E[Xn 1 fmaxp<, X120} — AP[I]??;(Xk > Al

showing the first inqueality. The second inequality follows as

E[an{maxkgn Xk>k}] < ]E“Xnu{maxkgn Xk>>\}] < EHX"”

This concludes the proof of Doob’s maximal inequality.
(iv) Now let &1,&,... be a sequence of independent random variables with
E[¢?] < oo and E[§;] =0 for all i = 1,2,.... Let

So=0 and S,=> & n>L

i=1

We claim that S? is a submartingale. Indeed, by the conditional Jensen inequality
since x — 2 is convex,

E[S} 1| Fn] = E[(Sn + &nt1)?| Fn
> (E[Sn + &ny1lFn])?
= (Sn + E[€n+1])2 = S?m
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since E[¢,+1] = 0. Thus it follows by Doob’s inequality that
P < AT2E[S2].
(s, 1520 > 1) < A~2E[s2
(v) Assume further that Y ;- E[¢?] < co. We claim that S, converges almost
surely to a finite limit. Indeed, we note that .S,, is a martingale and is bounded in
L? since

E[|S,] < VE[SZ] < | > El¢l]

and so by Doob’s forward convergence theorem the claim follows.

6.1.2. Question 1b). Let Zy, Zs, ... be a sequence of independent random variables.
Fix A > 0 and let n; = Z;j1{z,)<xn},% = 1,2,.... Consider the following three
conditions:

(D) 22 PZi] > ) < oo,
(IT) >°2, E[n;] converges,
(III) Y02, var(n;) < oo,
where var(n;) is the variance of 7;.
(i) We first claim that if conditions (I), (II), and (III) hold, then ) .o, Z; con-
verges a.s. Indeed, consider & = n; — E[n;]. Then E[§;] = 0 and Y ;o E[¢?] <
by (III). Thus S, = Y., & converges and therefore by (II)

Zni =5+ ZE[W]
=1 1=1

also converges almost surely. Finally, by the first Borel-Cantelli Lemma it follows
from (I) that Z; = »; for sufficiently large ¢ almost surely. Thus it follows that
>-ooy Z; converges from the observation that Y=, 7; does.

(ii) Now we suppose that Y .°, Z; converges a.s. Then we claim that (I) holds.
Indeed, assume for a contradiction that (I) does not hold. Then by the second
Borel-Cantelli lemma, |Z;| > A infinitely often almost surely, which is not possible
if Y272, Z; converges.

(iii) Again assume that > =, Z; converges a.s. and that (III) holds. Then we
show that (IT) holds. Indeed, by (ii) we have that (I) holds and so by the argument
of (i) we have that ) ;" | & converges almost surely. Also >, ; converges almost
surely since Zf; Z; converges a.s. and 1; = Z; for sufficiently large ¢ almost surely.

Thus we conclude that
n n n
ZE[W] = Zm - Z&‘
i=1 i=1 i=1

converges.
6.2. Question 2. Let (2, #,P) be a probability space.

6.2.1. Question 2 a). Let (Q,.%,P) be a probability space and G C F be a o-
algebra.
(i) Let X be an integrable random variable. Then the conditional expectation
E[X|G] is the unique G-measurable integrable random variable such that
E[X1p] = E[E[X|G]15]
for all B € G.
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(ii) For A € F we write P[A|G] = E[14|G]. Then for sets A, B € F we have

PlAlo(B)] = ng + W

Indeed, this follows as the left hand side clearly satisfies the uniqueness property
written above. For example,

. ng[;]m et Mﬁ[gf : 136) 13} —F [Wb}
— P[AN B] = E[la15)].

1Bc.

The same holds for B¢ and hence the claim follows by uniqueness of conditional
expectation.

(iii) It follows by monotonicity and linearity of conditional expectation that
0 < P[A|G] < 1 and P[)|G] = 0 and P[Q|G] = 1.

(iv) Let Ay, As, ... be disjoint events in F. Then almost surely

lim_ §P[Ai|g] = lim gEDAAQ]
= lim E lz 1a, g]

i=1
> g] =P | JA
i=1 i>1

having used that the sets are disjoint in the second line and conditional monotone
convergence in the third.

(v) We note that this does not suffice to conclude that A — P[A|G](w) is a
probability measure since we have no control on the null set of the various unions.

=K g N

6.2.2. Question 2 b). Suppose that Q is another probability measure on F that is
absolutely continuous with respect to P, that is if P[4] = 0 for any A € F then
Q[4] =0.

(i) The Radon-Nikodym theorem states that under these assumption there exists
a positive function D¥ € L'(Q, F,P) such that for all A € F,

Q(A) = /ADf dP = Ep[D7 1,4].
(ii) Now let G C F be a sub-o-algebra. Then let DY be the Radon-Nikodym
derivative of QQ with respect to IP on G. We claim that
DY = E[D7|G].
Indeed to show this we note that for B € G,
Ep[D715] = Q(B) = Ep[DY15].

Therefore the unique characterisation of conditional expectation is verified and the
claim follows.

(iii) Now let (Fy,)n>1 be a filtration on (2, F,P) such that Foo = 0 (U,,>1 Fn) =
F. Assume that Q is absolutely continuous to P on each F,,, but we no longer
assume that this holds for 7. Denote by D,, = D7n.
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We now claim that that Q is absolutely continuous to P on F is equivalent to
D,, being uniformly integrable. We note that D,, is a martingale since by (ii) we
have that

E[Dy+1|Fn] = Dy

We recall the following result from the lecture notes:

Theorem 6.1. (Theorem 8.32) Let (My,),>1 be a martingale on a filtered proba-
bility space (Q, F, (Fp)n>0,P). Then (My)n>1 is uniformly integrable if and only
if there is an Foo-measurable random variable Mo, such that

M, = E[My|F,]
almost surely.

Indeed, if D,, is uniformly integrable, there exists a limit D such that D,, — D
in L'. So if A € F, then

Q[A] = Ep[D14] = lim Ep[Dy14].

Thus if A € J,,~; Fn and P[A] = 0, then the same holds for Q[A]. Since the
collection of sets with P[A] = 0 is a m-system, it follows that the same holds for
all sets in F. Converesely, if Q is absolutely continuous to P on F, there exists
a density such that by (ii) D,, = E[D|F,] and D, is uniformly integrable by the
above result.

(iv) Consider o(7) the o-algebra generated by the sets {r = n} and

Fr={AeFsx : An{r=n} e F, foralln>1}.

Since {r = n} is a partition, it is obvious that o(7) C F,. To give an easy
example where the inequality is strict, we can simply consider the constant stopping
time 7 = 1. Then o(7) = {0, Q} is the trivial o-algebra and F, = F;. So we simply
take a filtration where F; is not trivial, as for example the simple random walk.

6.3. Question 3. Let (2, F,P) be a probability space.

6.3.1. Question 3 a). (i) Let A C Q. Then we claim that
o(F,A)={(BNA)U(CNA®) : B,C € F}.

It is clear that D holds. For the other direction denote the left hand side by H. If

D e F,then D € F since D = (DN A)U (DN A®). Also A € H. So it suffices to

show that H is a o-algebra. We next show that H is closed under complements so
let E=(BNA)U(CN A be aset in H with B,C € F. Then

EC=(BNAN(CNA)=(B°UA)N(C°UA) = (B NA)U(C N AY
so H is indeed closed under complements. Finally we show that it closed under

countable untions so let E,, = (B, NA)U(C, N A°) be a sequence of sets in H with
B,,C, € F. Then

U En = (Un>1Ba N A) U (Up>1C 0 A°)

n>1

so |J,,»; € H since F is a o-algebra. Thus we have shown that H is indeed a
o-algebra and hence the claim follows.

(ii) Let X,Y be two independent random variables uniformly distributed on [0, 1]
and write U = min{X,Y} and V = max{X,Y}.



NOTES ON EXERCISE SHEETS IN PROBABILITY 42

Note that for 0 <u < v <1,

PU <u,V <0v]=2P[X <u,X <Y <]

—2//dyd:c

=2u(v —u) = 2uv — v,
So the joint density satisfies

0? 9
fwvy(u,v) 8uale’[U <u,V<ov]=2 on {(u,v)€[0,1]°:u<v}

Thus it follows that

Jufwwy(w,Vydu [ 2udu v
[ oy Vydu [V oqy 2

E[Ulo(V)] =

and
Jvfwvy(U,v)dv ]EQUdU 1-U? 1+U
ElV|e(U = =
Vie(@)] = fo,v) ,v) dv fl}Zdv 2(1-0) 2

6.3.2. Question 3 b). Let X7, Xo,... be a sequence of i.i.d. random variables with
P(Xy =3j) =p; >0, =0,1,2,..., Z;iopj = 1. The sequence is revealed
one at a time, so that by time n, the values of X,...,X,, are known. Let F,, =
o(X1,...,Xn) with Fo = {0,Q}.

(i) Let 7 be the first time that the pattern 1,1,5,7,1,1 is observed. It is clear
that 7 is a (F,,)n>0 stopping time and we claim that P[r] < co. To show this we
prove that for n > 1,

E[r > 6n] <e™ "
for some small constant ¢ > 0. Indeed, for k > 1 consider the event
Ay = (Xok, Xok+1, Xok+2, Xok+3, Xok+4, Xok+s) = (1,1,5,7,1,1).

Then the events (Ax)r>1 are independent since the X; are and it holds that P[Ax] =
p‘fp5p7 > 0. Thus we have that

Plr > 6n] <PATNASN...NA,] < (1 -PlA])" <e

for a sufficiently small constant ¢ > 0. So we conclude that

:Z]P’[Tzn] §6ZP[726n] < 00

n>0 n>0

(ii) Consider a casino which offers fair bets according to the sequence (X,).
Specifically, if a gambler bets stake a on the outcome of the n'" bet being j, i.e.,
on X,, = j, then they lose their stake with probability 1 — p; or, with probability
a(l—p;)

Pj

p;, they get their stake a back and win more (so in total the player receives

ﬁ). Consider a sequence of gamblers: they all start with a capital of 1 and the i*®
J

gambler starts betting at time 7 on the pattern (1,1,5,7,1, 1) at subsequent rounds
they bet all of their capital until they either see the sequence and retire, or they
lose earlier and are out.
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For i > 1, let ;! denote the capital of the i'! gambler after round n, n > 0. We
claim that (Y,"),>0 is a (F,)n>o-martingale. First note that ¥,;! =1 for 0 < n < i.
Then it holds that

}/ii = i1Xi=i7 )/zl-l—l = £1X¢+1=1’ Yzl-&-Q = @1){“&:5,
i b1 b5
ete. and finally V! =Y} 5 for all n > i+ 5.
Indeed, this follows as the game is fair. More precisely, if i — 1 <n <i+4,

i v, v, i
Bl = B |2 15,017 = 2Bl sl ] = Vi
Thus concludes the claim since for the other n we ave Y,/ ;| = Y.
(iii) Assuming the above gamblers are the only players in the casino. Denote by
M, the total winning of the casino’s profit and loss by time n. Then it holds that
My=n— Y +Y '+ Y 24V 4yt + Y0,

M, is a sum of martingales and therefore a martingale it self. Then it holds by the
optional stopping theorem since |M, 1 — M,| is uniformly bounded as at most 6
players are in the casino at the same time and as E[7] < co that

E[T] - (YTT + YTTil + YTT72 + YTT73 + YTT74 + YTT75) = ]E[MT] = ]E[MO] =0

At time 7 we have that

1 1 1
T—5 T—1 T
T = ’ YT = YT =
p1psp7 Y4 P
and Y74 =0=Y7"2=Y7"2. So it follows that
1 1 1
E[r]

=Tt
b1 P11 PiDPspPr
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7. B8.2 CLass 1

7.1. Consequences of the Monotone Class Theorem. Recall the following
result.

Definition 7.1. Let Q be a set. A collection of subsets .4 C P(Q) is called a
monotone class if the following properties hold:
(1) Qe #.
(2) If A,B € # and A C B, then B\A € .4 .
(3) If (An)n>1 is an increasing sequence subsets of Q with A, € A for all
n > 1, then
U Ane.

n>1

Theorem 7.2. (Monotone Class Theorem) If € C () is stable under finite
intersections and € C M for M a monotone class, then o(€) C M .

Lemma 7.3. Let (X;);cr be a collection of random variables on (Q,.7%,P). Let
H=0c(X; :i€l)andlet 9 C F. Then 9 is independent of H if and only if G
is independent of ' = o(X; : i € I') for every finite I' C I.

Proof. 1t is clear that if 4 and .7 are independent, then so is &4 and %" for every
finite I’ C I. So assume that 4 and .77’ are independent for every finite I’ C I.

Consider # = {A € . : Ais independent from ¢}. Then one readily checks
(using the monotone convergence theorem) that .# is a monotone class. We note
that by assumption o(X;) C . for all i € I. Thus consider % to be the class of
events that depend on only finitely many X;, i.e.

¢= |J oXi:iel)
I'CI finite
Then ¢ C .# by assumption and it is closed under finite intersections. Therefore by
the monotone class theorem o(X; : i € I) C (%) C A4 and the claim follows. O

Lemma 7.4. Let (X;)icr be a collection of random wvariables on (2, %, P). Let
H=0(X; :i€l)andlet 9 C.F andletY be a bounded random variable. Then
E[Y|o(X,,)] = EY|#] if E[Y|o(X;,)] = E[Y|o(X4,, ..., X;,)] for every finite set
of indices {i1,...,ix} C I.

Proof. Clearly E[Y|0(X;,)] is #-measurable. The collection .# of sets A € F
such that E[1,4Y] = E[14E[Y]|o(X;,)]] is a monotone class. To check that it is
closed under monotone limits, one uses the dominated convergence theorem. As
before, we note that the m-system % of events which depend on finitely many X;
is contained in .#. Thus the claim follows by the monotone class theorem. O

Lemma 7.5. Let (X;)icr be a collection of random variables on (2, .F,P). Assume
that I = U;—, I; and denote by 7 = o(Xs : s € I;) for 1 < i < n. Then
A, ..., K, are independent if and only if for every finite collection of subsets I| C I
with 1 <14 < n the collection if o-algebras (A )1<i<n with ! = o(X, : s € 1)) is
independent.

Proof. We proceed by induction. For n = 1, there is nothing to show. Assuming the
inductive hypothesis, it follows that %, ..., .5, are independent. Denote 7' =
o(H,...,5,)=0(Xs : s€lU...UIL,).
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To conclude the lemma, we show that 4 and J#’ are independent. It follows
from Lemma that o(X; : ¢ € I{) for a finite subset I{ C I; is independent
from #’. Let .# be the monotone class of sets in % independent from J#’.
Moreover, consider € to be the collection of events that only depend on finitely
many X; with ¢ € I;. Then it follows that € C .# and it is clear that & is closed
under finite intersections. Therefore, by the monotone class theorem, it follows that
S C o(€) C A and therefore 5 and S’ are independent. O

As another application of the monotone class theorem, we can prove the following
lemma.

Lemma 7.6. Let (Q, #,P) be a probability space and let 54, ..., 5, be indepen-
dent o-algebras. Then 47 is independent from o (5, ..., 5,,).

Proof. Let # ={A € F : Ais independent from J4 } be the sets independent of
. Then as in Lemma [7.3] .# is a monotone class. Consider

¢ ={BaN...NB, : B; € 5 for 2 <i<n}.

We note that € C .#. Indeed, let B; € . for 2 < i < n. Then since J4, ..., 7,
are independent, of any A € J#,

P[AN ByN...N By] = PIAJP[By] - - - P[B,] = PIAJP[B; N ... N By (7.1)

Thus Bo N ...N B, € .#. Moreover, € is stable under finite intersections and
Ho, ..., H, C €. Thus it follows by the monotone class theorem that o(%) =
o(H, ..., ) C A, implying the claim. O

Corollary 7.7. Let Xy, X5 ..., X, be independent random variables, i.e. the o-
algebras o(X1),0(X3),...,0(X,) are independent. Then o(Xy) is independent
from o(Xs,... X,).

Proof. Follows directly from Lemma [7.6 (]
7.2. Brownian Motion and its properties.

Definition 7.8. Let (Q2,.%,P) be a probability space. A collection of o-algebras
(Ft)e>0 with t ranging in [0,00) and Fy C F for allt € [0,00) is called a filtration
if F C Fy forallt < s.

Definition 7.9. A (continuous-time) stochastic process (My);>o on a filtered prob-
ability space (0, F, (F1)i>0,P) is a collection of random variables My : Q — R such
that My is F;-measurable for all t > 0.

Definition 7.10. A stochastic process (By)i>¢ is called a Brownian motion if there
is some constant o > 0, such that

(i) (Zero at zero) By = 0.
(i) (Normally distributed) For each s > 0 and t > 0, the random variable Bgys —
B, is normally distributed with mean zero and variance o°t.
(iii) (Independence of increments) For each n > 1 and any times 0 < tg < t; <
... < t, the random variables By,, By, — By, ..., B, — By, _, are independent.
(iv) (Continuity) By is continuous in t > 0.

When 0% = 1, we say that we have a standard Brownian motion.

Lemma 7.11. Suppose that (By)i>0 is a Brownian motion. Then (—By)i>o and
(cByje2)e>0 for any ¢ > 0 are Brownian motions as well.
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Proof. The first claim is obvious. For the second claim, denote My = cBy /2. Then
My = 0 and M; is continuous. Also Mgy — My = c(B(s41)/c2 — Bs/e2) is normally
distributed with variance o2t. Finally the independence follow similarly. (Il

Lemma 7.12. It holds that lim,,_, %Bn =0 almost surely and in L.

Proof. Denote X; = B; — B;_1 for i > 1. Then we can express B,, = Z?Zl X; as a
sum of independent random variables of mean 0. Thus by the law of large numbers,
1B, — E[X;] = 0 almost surely and in L'. O

We now aim to show that lim;_, %Bt = 0. In order to do so, we need the
following preliminary calculation.

Lemma 7.13. Let X be a normally distributed random variable with mean 0 and
variance 1. Then it holds for x > 0,

—x2/2

PX > 2] < .
2rx

Proof. Applying integration by parts,

I Y
PX >z = Nt e dy

1 < —y?/2
:E : Yy~ - (ye ) dy

e v’ 2™ 1 IS d
S — R — . 6 -
V2my V2 S, 4 4

—z2/2

x

€

Rl

Lemma 7.14. It holds that supy<,<, By is distributed as |B,|.
Proof. This is proved in section 5 of the lecture notes. (I
Lemma 7.15. It holds that lim;_, %Bt = 0 almost surely.

Proof. We first show that

Bn _ Bn
lim sup —2H " —
n=00 4c(0,1) n
almost surely. Indeed, denote M, = sup,c(y1) Bntt — Bn. Consider the event
A, = {M,, > /n}. Moreover, by Lemmam M,, is distributed like |B;|. Thus
by Lemma

\/5 efn/2
VTN

> P[A] < o
n>1
Therefore by the first Borel-Cantelli lemma (which does not require independence),

almost surely, A, only occurs finitely many often and thus % < ﬁ for large

PlA,] =P[|B1| > Vn] <

and so

enough n almost surely. This implies the claim.
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To show the main claim, we calculate,

o 1B = i (BBl By
lim B, = | ( o +LtJ>

t—00 t—oo ¢
B, — B B
<1imm< sup ! M—&- LH>:0
te(

Ttooo ey Lt 2]
almost surely. This implies that lim;_, . % < 0 almost surely. Applying the same
conclusion to — By, concludes the proof. (Il

By arguments from the appendix, we can further show that the M, are inde-
pendent, for which we need to show that My, ..., M, are independent. The claim
follows from Lemma Indeed, denote %, = o(Bg+s — By : s € [0,1)) and
observe that it suffices to show that 4, ..., 7 are independent. By Lemma
it suffices to show that for a finite collection of times 0 < t5; < ... <, <1 for
0 < k < n the o-algebras J4] = 0(Bgyt,,, — Br : 1 < j <iy) are independent. To
see this we note that

!
My, = 0(Brrtyy = By Bt = Beatins -+ Bevtn iy, = Brtn, 1)

and the claim follows form the independence of increments.

7.3. Modifications and Indistinguishable Processes.

Definition 7.16. Let (X)i>0 and (Yi)i>0 be two stochastic processes defined on a
common probability space. Then we say that:

(i) X is a modification of Y if for allt > 0 it holds that X; =Y; almost surely.
(i) X is indistinguishable from 'Y if

P[X; =Y, for allt € Rxo] = 1.

Lemma 7.17. Let (X)i>o and (Yi)i>0 be two stochastic processes. Assume that
X and Y have almost surely right continuous paths and are modifications of each
other. Then X and Y are indistinguishable.

Proof. Since X and Y are indistinguishable and Q is countable, it follows that
PX, =Y :t€Qs0] =1
The claim then follows by right continuity. (]

Lemma 7.18. Brownian motion is indistinguishable from a ~y-locally Hélder con-
tinuous process for order  for every v € (0,1/2).

Proof. By the above lemma and since Brownian motion is continuous, it suffices
to show that Brownian motion is a modification of a y-Holder continuous process.
Recall that Kolmogorov’s continuity criterion states the following. Assume that a
stochastic process (X;);>o satisfies

E[| X, — X,|*] < C|t — s|'T#

for all s,t > 0 and some strictly positive constants a,3,C > 0. Then X; has a
~-locally Holder continuous process for every v € (0, 8/«).
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To show the claim, we note that for s,¢t > 0 the random variable B, — By is
normally distributed with mean zero and variance |t — s|. Thus |t —s|~'/?(B, — B,)
is a normally distributed standard Gaussian. Therefore it follows that

|t— s|7n/2

E[|B: — Bs|"| =E | +——F——
1B~ B =E | o

|By — Bs|"| < Clt — S‘n/Qa

where C,, = E [|t — s|™"/2|B; — B,|"], which is finite and strictly positive since a
standard Gaussian has moments of arbitrary degree. Thus B; admits a modification
with v € (0, "/2_1). The claim follows as lim,, n/i_l =1/2. O

n

7.4. Gaussian Processes.

Definition 7.19. A multivariate Gaussian is a multivariate random variable X =
(X1,...,X,) such that for every u € RY it holds that

J4
(u, X> = Z uiXZ-
=1

is a Gaussian random variable. We say that X is centred if (E[X1],...,E[X,]) = 0.
Multivariate Gaussians have the following very useful property.

Lemma 7.20. Let X = (X1,..., Xy) be a multivariate Gaussian. Then the random
variables X1,...,X, are independent if and only if the covariance matriz (I'x);; =
cov(X;, X;) is diagonal.

Proof. If the random variables are independent, then for i # j it holds that
cov(X;, X;) = 0. For the other direction, we assume without loss of generality
that X is centred. So (u, X) = Y7, u;X; is a centred random variable with vari-
ance ul T xu.

To prove the claim, we consider the characteristic function u + E[e( and
recall that X is independent whenever E[e?(“X)] = [T_, E[e*****]. We note that if
Y ~ N(0,02), E[¢'Y] = ¢=2°t*/2. By assumption, write ['x = diag(A2, ..., A2) with
A? = Var(X;) and therefore (u, X) is a centred Gaussian with variance >, _, Afu}.
Thus it follows that

u,X}]

E[ef(wX)] = ¢=2 Zian M uk =

n n
e*)\iui/2 _ H ]E[eiuka].
- =1

k=1

Thus the claim follows. O

It is important to note that it is necessary to assume that the Gaussian is mul-
tivariate. It is a classical fallacy in probability theory to assume only that the
marginals are Gaussian, as the following example shows.

Example 7.21. We give an ezample of two uncorrelated random variables X and
Y that are both distributed as N'(0,1), yet that are not independent.
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Indeed consider X be a N(0,1)-distributed random wvariable and let Z be an
independent uniform {1} variable. Denote Y = X -Z and note Y ~ N(0,1) since

1 1
PIY <] = PY <e|Z=1]+ 3P <z|Z=-1]

— LPIX <a] 4 LPl-X <]
= 1 (B(a) + B(—0)) = B(a),
where ®(x) = P|X < z] is the CDF of N(0,1) and we use that ®(z) = ®(—z). In
addition X and Y are both uncorrelated since
cov(X,Y) = E[XY] = E[X?Z] = E[X?|E[Z] = 0.

However, X andY are not independent as for x <0,
1
PX <z,Y<z|=PX <z, Z=1]= §<I>(:1c)7

which is not equal to ®(x)? for x < 0.

Definition 7.22. A continuous stochastic process (Xi)i>o is called a (centred)
Gaussian process if for every finite set {t1,...,t,} C Rsq it holds that the random
variable

X: (th,Xt27...,Xt )

n

is a multivariate (centred) Gaussian.

Lemma 7.23. Let (X;)i>0 be a Gaussian process, let {t1,...,t,} C Rso be a finite
set and write X = (Xy,, Xy,,...,Xy,). Let B € My, (R) be a matriz. Then the
random vector BX is a multivariate Gaussian.

Proof. Let u € R*. Then (u, BX) = (BTu,X) and therefore it follows that BX is
a multivariate Gaussian. O

Lemma 7.24. Brownian motion is a Gaussian process.

Proof. Let {t1,...,tn} C Rso be a finite set, write X = (By,, Bt,, ..., B:,) and let
u € R™. We want to show that

n
<U, X> = Z u’th1
i=1
is a Gaussian random variable. Without loss of generality we assume that ¢; <
. <t,. Notice that
<u7 X> = un(Btn - Btn71) + (’u,n,1 - un)(Btn—l - Btn72) +...
. + Cn—l(Bt2 — Btl) + ant1

for suitable constants c¢;. Thus (u,X) is a sum of independent Gaussians and
therefore a Gaussian itself. d

Lemma 7.25. (Characterization of Brownian motion) Let (X;);>0 be a continuous
centred Gaussian process with Xo = 0. Assume that cov(X:, Xg) = min{t, s} for
t,s € R>g. Then X; is a standard Brownian motion.
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Proof. We first show that for each n > 1 and any times 0 < t) <t; < ... <t, the
random variables By, By, — By,,..., B, — By, , are independent. Indeed, write
X = (Bt By, — Biy,---,Bt, — By,_,) and we calculate the covariance matrix.
Indeed, notice that for 1 <i < j,

COV(Bti — Bt Btj — Btjfl) = COV(Bt“Btj) — COV(Bti,laBtj)
—cov(By,, By,_,) 4+ cov(Bs,_,, By;_,)
=t;—t;1—t;+t;_1=0.

i—17

Moreover if j > 1,
COV(BtO, Btj — Btj—l) = COV(BtO, Btj) - COV(Bt07 Btj—l) = t() - to =0.
Thus we have shown that the covariance matrix of X is zero and therefore by

Lemma it follows that By, By, — By, ..., B, — By, , are independent.
Moreover, by Lemma X1t — X, is a centred Gaussian and

var(Xsir — Xs) = cov(Xeqt — X, Xopt — Xs)
= cov(Xgit, Xett) — 2c0v(Xg1t, Xs) + cov(Xs, Xy)
=s+t—25s+s=1.
This implies the claim. [

7.5. Applications of Gaussian Processes.

Proposition 7.26. The stochastic process (tBy:)¢>0 is a Brownian motion.
Proof. Write X; = tBy. Since (0,00) > t — % is continuous, it follows that
t — X, is almost surely continuous on (0,00). By the Lemma it holds that
lim; 9 Xy = 0, so the process is also continuous at zero and zero at zero.

It is clear that X; is a centred Gaussian process and note that
cov(X;, X,) = tsmin{, 1} = min{s, t}.

st

Therefore by Lemma X; is a Brownian motion. [l

For the purposes of the next lemma, we define the conditional variance of a
random variable X defined on (Q,.%,P) with respect to a o-algebra & C F as

Var(X|«/) = E[X? | &/] — E[X|«]?.

Lemma 7.27. Let (By);>0 be a Brownian motion. Fiz 0 < s < t < co. Then
conditionally on By and By it holds that BSTH is normally distributed with mean

1(Bs + By) and variance 3(t — s).
Proof. Consider the random variable
1 1 1

Note that Y is a sum of independent mean-zero Gaussian. Therefore it is a Gaussian
itself, E[Y] = 0 and

1 1
Var(Y) = ZVM(BST“ — By) + ZVar(B%t — By)

1 /s+t s+t t—s
4( y T 2 ) 4
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We show below that Y is independent from B, and B;. Assume for the moment,
that this is the case. Then the distribution of Y conditioned on B, and B; is the
same as the distribution of Y, which is a Gaussian with mean zero and variance
22 Then E[Y|B;, B;] = E[Y] = 0 and thus

1 Bs;+ B
E[B.yt|Bs, Bl =E | 5(Ba + By) | B, Br| = =

Similarly, Var(Y|B,, By) = Var(Y) = 1% and therefore

Var(Buy: | By, By) = Var(Base —E[B.st| By, B))| By, By)

1
= Var(BsTth - i(Bs + Bt)|Bsa Bt)

= Var(Y|Bs, Bt)
_t—s
2

showing the claim.

It remains to show that Y is independent of B, and B;. We first show that Y
and By are independent. Indeed by Lemma (Y, B;) is a multivariate Gaussian.
Thus by Lemma it suffices to show that cov(Y, Bs) = 0. Note first that for
r1 # 7o it holds that cov(B,,, B,,) = min{ry,r2}. Indeed, assuming without loss
of generality that r1 < ro,

cov(B,,, By,) = cov(By,, By, — B, + B,,)
= cov(By,, By, — By,) + cov(B,,, B;,) = 0+ Var(B,,) = 1.
We calculate
cov(Y, By) = cov(BsTH,BS) - % (cov(Bs, Bs) + cov(B;, Bs)) =s— % (s+s)=0.
Similarly,

1
cov(Y, By) = cov(Bust, By) — 3 (cov(Bs, By) + cov(By, By))

s+t 1
= — — t = U.
5 5 (s+t)=0
In particular, Y, By — By and B; is a collection of independent random variables
as their covariance matrix is zero. Thus by Corollary [7.7] it follows that Y is

independent of o(Bs — By, B;) = o(Bs, By). This concludes the proof. O
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8. B8.2 CLaAss 2
8.1. Stopping Times.
Definition 8.1. Let (Q,.Z,(%#)i>0,P) be a filtered probability space. A stopping

time T is a measurable map T : Q — [0, 00] such that
{T < t} S c@t
for allt > 0.

Lemma 8.2. Let (,.Z,(%)i>0,P) be a filtered probability space and let T be a
stopping time. Then for any t > 0 it holds that

{r >t} {r <t} {r >t} € %#.

Proof. As {1 >t} = {7 < t}°, the first claim follows. Similarly since {7 < t}¢ =
{T >t} it suffices to show that {7 < t} € .%, which follows since

{r<ty=J{r<t-Lres
n>1

O

Lemma 8.3. Let (Q,.%,(%)i>0,P) be a filtered probability space and let T and p
be stopping times. The following properties hold:

(i) T A p=min{T, p}, 7V p =max{r, p} and T + p are all stopping times.

(i) The collection of sets

Fr={AeF : An{r <t} e F foralt>0}
s a o-algebra.

(i) If T < p then F, < .

() Fepp = FrNF, and {1 < p} is Frpp-measurable.

Proof. To show (i), note that {7 Ap <t} ={r <t}U{p <t} and {rVp <t} =
{r <t} N {p <t} implying that 7 A p and 7V p are stopping times. It remains to
show that 7+ p is a stopping times. To see this, observe

{r+p>t}={r=0,p>t}U{p=0,7>t}U U ({r>stn{p>t—s}) € F.

seQ
s€[0,t]

Indeed this inequality of sets holds since if 7+ p > ¢, then, as Q is dense in R, there
is € > 0 such that 7+ p — e > ¢ and s = 7 — ¢ is rational. The claim follows since
{t+p<t}={t+p>t}"

Next, to show (ii) observe that it is clear that .%, contains § and Q and that
it is closed under countable unions. To show that it is closed under complements,
notice that for any set A and ¢t > 0 we have a disjoint union.

{r<t}=(An{r <tHu(A°n{r <t}).
Therefore if A € %, we conclude
An{r <t} ={r <t \An{r <t}) ={r<t}n(An{r <t})¢ e %
and the claim follows.
To show (iii), let A € %#,. Then since {p <t} C {r < t},

An{p<ti=An{p<tin{r<tl=An{r<thnip<tl e 7
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as An{r <t} e %#.
For (iv), observe it follows by (iii) that %, ., C %.N%,. For the other direction
let Ae Z.N%, Then

An{rAp<t}=An{r<t}U{p<t}) =(An{r <t}HUANn{p <t}) € %.
Therefore A € #;5,. Finally, note that
{r<pin{r<tt={rAt<patin{r <t} e #,

where it follows that {TAt < pAt} € F; since both 7 At and pAt are .Z;-measurable
functions. Similarly,

{r<pin{p<tt={rant<pntin{r<tIn{p<t}.
Therefore {7 < p} € Fp,. O
Let (Q, %, (#)i>0,P) be a filtered probability space. Denote

Frp =) Fe-
e>0
Note that %, is a o-algebra as it is an intersection of o-algebras. Recall that we
say that the filtration (.%;);>¢ is right-continuous if %, = %, for allt > 0
Given an adapted stochastic process (X;);>0, for a Borel-measurable subset I' C
R denote
Hr =inf{t > 0,X; € T}.

Lemma 8.4. Let (Q, . #,(%)i>0,P) be a filtered probability space and let (X¢)i>0
be an adapted stochastic process. Then the following holds:
(1) If (X¢)i>0 has right-continuous paths, then for an open set T', Hr = inf{t >
0 : X; €T'} is a stopping time relative to (Fiy)i>0-
(i1) If (Xi)i>0 has continuous paths, then for a closed set I', Hp = inf{t > 0 :
X € T'} is a stopping time relative to (Fi)i>0.

Proof. For (i) we want to show that {Hr < t} € .%;.. Note that it is enough to
show that {Hr < t} € .%; since then for any k > 0,

~ 1

{Hr <t} =) {Hp<t+n} €Fi1

n=k

and hence {Hp <t} € F;.
Now since (X;);>0 is right continuous and I is open, if X, € I' then necessarily

X, €T for some s > r and s € Q. Thus it follows that

{Hr <t} = J{x.eT}= J {X.eT},
s<t s<t,s€Q
which is in .%; as required.
For (ii) we first introduce the distance between a point z € R and a subset
I' € R. We define

d(z,T) = ;rel{“ d(x,7).

If T is closed then it holds that

d(z,T) = gleurl d(z,T). (8.1)
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Indeed, if 7,, € T is a sequence with d(x,v,) < d(z,T) + % then v, ranges within a
compact set. Thus we can pass to a converging subsequence, showing that there is
v € I with d(z,T") = d(z,7).

Returning to (ii), we will first use that T is closed, to show that

{Hr <t} = { inf d(X;,T)= O} . (8.2)
s€[0,t]

Indeed, we note that C in is clear and for the other direction let w € 2 be
an event such that inf,cp 4 d(Xs(w),T') = 0. Then there is a sequence s,, € [0, 1]
such that lim, . d(X, (w),I') = 0. Using that [0,¢] is compact, we can assume
without loss of generality that s, converges to a limit point s € [0,¢]. Thus, as
X has continuous paths it follows that d(X,(w),T') = 0. Finally, by (8.1)), there is
v € T with d(X,(w),v) = 0 and hence X,(w) =~ € T.

We finally deduce (i) from (8.2). Indeed, since X, has continuous paths it holds
that

{Hp<t}—{ inf d(XS7F)—O}

s€0,t],s€Q
= U{xs e BL(D)},
n>1 s<t,
seQ
where B1(I') = {z € X : d(z,I) < 1}. As {X, € B.(T)} € Z,, the claim
follows. 0

Assuming that X, is continuous and (%;)¢>o is right-continuous, we can use
Lemma [B:4] to conclude that the hitting time of a Borel-measurable sets is also a
stopping time.

Theorem 8.5. Let (Q,.Z,(%:)i>0,P) be a filtered probability space with right-
continuous filtration and let (X;)i>0 be a continuous adapted stochastic process.
Then for every Borel measurable set A, the hitting time H 4 is a stopping time.

Before proving the result, we establish the following lemma:

Lemma 8.6. Let (2, %, (Z1)i>0,P) be a filtered probability space with right-continuous
filtration and let (T,)n>1 be a sequence of stopping times. Then

inf 7, and sup 7
n>1 n>1

are stopping times.
Proof. As in the proof of proposition it suffices to show that {liminf, . 7, <
t} € F for all t > 0. Note that inf,_,o 7, <t whenever 7,, < s infinitely often for

some s < t enabling us to write

oo o0 o0

{gflmt}zu N U {mm<t—1}

k=1n=1m=n

which is in #;. A similar argument applies to sup,,> 7, concluding the proof. [

Proof. (of Theorem It suffices to show the claim for Borel measurable sets.
Consider the collection of sets

o ={ACR : Hy and H 4. are stopping times}.
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By Lemma[8.4] o/ contains all open subsets of R. It therefore suffices to show that
o is a o-algebra.
It is clear that ), R € &/ and that & is closed under complements. To show that

&/ is closed under countable unions, let (A,),>1 be a collection of sets in &7 and
write A =J,,»; A, and Uy, = Uﬁzl A,. Then by Lemma (i), Hy, is a stopping
time and observe that H4 = limy_o Hy, = sup,>; Hy,. Thus by Lemma

it follows that H, is also a stopping time. A similar argument applies to H 4,

concluding the proof. O
8.2. Optional Stopping Theorem.

Theorem 8.7. (Optional Stopping Theorem) Let (My)i>o be a uniformly integrable
martingale and let 7 be an almost surely finite stopping time. Then

E[M;] = E[Mo].

We note that a bounded martingale is uniformly integrable. To apply the op-
tional stopping theorem, the following proposition is useful.

Proposition 8.8. Let (M,;);>0 be a martingale with right continuous paths and let
T be an almost surely finite stopping time. Then the stopped process M™ = M,y is
also a martingale.

Lemma 8.9. Let (B:)i>0 be a Brownian motion. Then

limsupB; =00  and liminf By = —c0
t—00 t—o0

almost surely.

Proof. By symmetry it suffices to show that for every M > 0,
Plsup Bs > M| = 1.
s>0
Let 6 > 0 and recall that Bf = Byz2;/0 is a standard Brownian motion. Thus
]P’{sup BS>M5]IP sup Bgy/d > M| =P| sup B>M|.
0<s<1 0<5<1/52 0<5<1/52

Letting 6 — 0, the right-hand sice converges to P[sup,>, Bs > M] whereas the
left-hand side converges to P [supogsgl By > O] =1, as seen in the lecture.

Alternatively the claim follows from the reflection principle, or the fact that if
Sp = >, X; with (X;);>1 independent N (0, 1)-random variables then lim sup,_, ., S», =
oo almost surely. ([

Let B; be the standard Brownian motion. Denote by H, = inf{t > 0 : B, = a}.

Lemma 8.10. Let a <0 <b. Then By, am, ts distributed as
b —a
—dq Op-
b—a + b—a ’
Proof. Note H, N Hy, < oo almost surely by Lemma Therefore By, nm, is
distributed like pd, + (1 — p)d, for some p € [0,1]. Moreover, by the optional
stopping theorem, since B#«" s is bounded and therefore uniformly integrable,

p-a+(1—p)-b=E[By,nn,] =E[Bj '] = E[Bo] = 0.

This implies p = b% and (1 —p) = —2. O

a b—a
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Lemma 8.11. For a, A > 0 it holds that

E[e~*e] = e~ VA
Proof. Since M = eBr=a®t/2 ig 5 martingale and M« is bounded it follows from
the optional stopping theorem,

1= E[BD‘BHa,*QQHa/Q] — eaaE[efoL?Ha/ﬂ'
Therefore E[e=%"Ha/2] = ¢=2@_ Setting a = v/2X implies the claim. O

Lemma 8.12. For a, A > 0 it holds that

E[e—)\Ha/\H,a _ 1

cosh(av/2X)’

Proof. Denote by A = {H, NH_, = Ho} = {Bu_an_, = a}. Then it holds that
A® = {H,NH_, = H_,} = {By,rg_, = —a} and by Lemma we have
that P[A] = P[A°] = 1/2. Also by symmetry we have that, E[e~*fa"H-a|4] =
E[e Mo -a| A¢] = E[e~ M« H-a] Indeed this follows since

IE:[e—,\HuAH,u] _ E[e_)‘H“AH*“|A]P[A} 4 E[e—kHQAH,u‘Ac]]P;[Ac].

Recall that for any « > 0 it holds that M; = eaBi=a’t/2 ig 5 martingale. Since
MH« NHb i hounded, it follows by the optional stopping theorem,

1= E[eaBo] _ ]E[eo‘BHa/\Hfu70‘2(H0/\H—G)/2]

[eaBHaAH_a—az(Ha/\H,a)/2|A]P[A}

E
E[eaBHaAH7a7a2(HaAH,a)/2|AC]P[AC]

+
= %E[E_QZ(HGAH—G)/2|A] + € E[e_az(H“AH_“)/2|AC]
= cosh(aa)E[e—azHQ/\H_aﬂ].
Therefore E[e_QZHQAHfa/Z] = —1__ and setting o = v/2\ implies the claim. [

cosh(aa)
8.3. Reflection Principle.

Theorem 8.13. (The reflection principle) Let (B)i>o be a standard Brownian
motion and let T be a stopping time. Then the process

’ Bt ’Lft < T,
B, = :

2B7— — Bt th 2 T
is a standard Brownian motion.

Proof. This follows rather immediately from the strong Markov property. (I

Corollary 8.14. Let S; = supy<,<; Bs. Then for a > 0 and b < a we have for all
t>0

P[S; > a, B, < b] = P[B; > 2a — b).

Moreover, Sy and |By| have the same distribution.
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Proof. We apply the reflection principle with the stopping time H, and B’ the at
T reflected process:

where we used that as 2a — b >> a we have that {B, > 2a — b} C {T,, < t}.
To show the claim about the distribution of S; we calculate

P[St Z a] = P[St Z a,Bt Z a] +]P[St 2 a,Bt S CL]
= QP[Bt Z (L]

Lemma 8.15. Let a # 0. Then the probability density function of H, is

Proof. By symmetry, H, ~ H_, and therefore it suffices to assume a > 0. Denote
Si = supg<s<; Bs and observe that by continuity {H, <t} = {S; > a}. Write

—2*/2 gy

By) = PO <4l = [ =

Then upon applying a substitution
PIN(0,0%) < y] / e = (/o)
07) Syl = N = o
Y —0 V2mo? Y

Therefore it holds that P[H, < t] = P[S; > a] = P[|B| > a] = 1 — 2®(a/+/t). Thus
the probability density function of H, is

d d / -3/2 __ a —a?/2t
GPHe <8 = G (1=20(a/ VD) = =20'(a/VE(=1/Dat™* = —ge™ /2.

We observe that Lemma [8.15]is a rather elegant result. The hitting times of the
standard random walk on Z don’t have as explicit a closed form.

Lemma 8.16. Let a # 0 and U, = sup{t > 0 : By = at} be the last time that
Brownian motion hits the line at. Then U, = 1/H, in distribution.
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Proof. We assume a > 0. Denote Wy = sB;,. Then for r € R,

P[U, < 7] =Plsup{t >0 : By = at} <]
=Plsup{t >0 : By = at} <7]
=P[1B; #a for all t > 7]
=P[sB,1 #a for all s~ > 7]
=P[W, # a for all 7 > ]
=Fl, e o <
=1-PH, <r '|=PH," <],

having used in the second line that P[B, = ar] = 0. O

We note that U, is not a stopping time, since the event {U, < t} does not only
depend on the values of (Bs)o<s<i-

Lemma 8.17. It holds that E[U,] = 25 and therefore E[By,] = ElaU,] = 1.

la

Proof. Again we assume a > 0. Note that £e~¢ /2t = %e‘“ /2t Therefore by
Lemma [8.15] and partial integration,

E[U,] = E[;1] = / Lnwa

= e~ /2t gt

2
a —a?/2t
— - —€ dt
av2m Jo \/f 22

b 7

1 [ a

8.4. An Exercise on Gaussian Processes.

Lemma 8.18. Let (By);>0 be a Brownian motion. Fiz 0 < s <t < co. Then
conditionally on Bs and Bi for o € [0,1] it holds that Bysy(1—ay i normally
distributed with mean aB, + (1 — «) By and variance a(l — a)(t — s).
Proof. Consider the random variable
Y = BO(S+(1—Oc)t —aBs— (1 70[)Bt = a(Bas-i-(l—a)t - Bs) + (]— - a)(Bozs+(1—o<)t 7Bt)~
Note that Y is a sum of independent mean-zero Gaussian. Therefore it is a Gaussian
itself, E[Y] = 0 and
Var(Y) = o?((a— 1)s + (1 — a)t) + (1 — a)?(at — as) = a1 — a)(t — s).

We show below that Y is independent from B, and B;. Assume for the moment,

that this is the case. Then the distribution of Y conditioned on Bs and B; is the

same as the distribution of Y, which is a Gaussian with mean zero and variance
a(l — a)(t — s). Then E[Y|Bs, By] = E[Y] = 0 and thus

E[Bas+(1—a)t|st Bt] =K [CMBS -+ (]. — Oé)Bt | Bs, Bt] = OéBS + (1 — OZ)Bt
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Similarly, Var(Y'|Bs, B:) = Var(Y) = a(1 — a)(t — s) and therefore
Var(Bast(1—a)t|Bs, Bt) = Var(Bast(1—a)t — E[Bast(1—a)t|Bs, Btl| Bs, Bt)
= Var(Bas4(1—a)t — a@Bs — (1 — ) By)| B, By)
= Var(Y|Bs, By)
=a(l —a)(t—ys)
showing the claim.
It remains to show that Y is independent of By and B;. We first show that Y

and B, are independent. Indeed (Y, B;) is a multivariate Gaussian and so it suffices
to show that cov(Y, Bs) = 0. We calculate

cov(Y, Bs) = cov(Bgst(1—a)ts Bs) — a - cov(Bg, Bs) — (1 — «) - cov(By, By)
=s—as+(1—a)s=0.
Similarly,
cov(Y, By) = cov(Bast(1—a)ts Bt) — acov(Bs, Bt) — (1 — a)cov(By, By)
=as+ (1 —a)t—(as+ (1 —a)t)=0.
In particular, Y, B, — B; and B; is a collection of independent random variables as

their covariance matrix is zero. Thus it follows that Y is independent of o(B, —
By, B) = 0(Bs, B;). This concludes the proof. O

Lemma 8.19. Let B, be a standard Brownian motion on (Q, F, (F)i>0,P). Con-
sider for 0 <t <1, -

X =2(1—t)+yt+ (B: —tBy).
Then X is a continuous Gaussian process with mean x(1 —t) + yt and variance
t(1 —t). Moreover, X; has the same law as (By|By = x,B1 = y).

We note that X; is not adapted to the filtration .%;, which would imply that
B, is .%; measurable. However this is not possible since if this was the case then
By = E[By|#] = B; for 0 < t < 1, which is a contradiction. Also B; is not
a Z{X-Brownian motion. If it were, then B; would be .#;X-measurable since B,
would be adapted. Therefore again By = E[B;|.%#;], which contradicts B; being a
ZX-Brownian motion.

Proof. We note that Xg = z and X; = y. Moreover, since Brownian motion is a
Gaussian process, it follows that X; is a Gaussian process. Note that

E[X,] = 2(1 —t) + yt
and
Var(X;) = Var(B; — tBy)
= Var((1 —¢)B; — t(By — By))
=(1—t)’t4+t2(1 —t) =t(1 —1).
By Lemma it follows that X; has the same law as (B;|By =z,X; =y). O
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9. B8.2 CLaAss 3

9.1. An exercise on stopping times.

Lemma 9.1. Let M be a positive continuous martingale converging almost surely
to zero as t — oo. Let M™ = sup;~o M. Then for x >0

M,
PIM* > x| %] = min <1,O> .
x
Moreover, the distribution of M* is distributed as Mo/U for U an uniform [0, 1]
variable independent of M.

Proof. Denote 7, = inf{t > 0 : M; > x}. Then we note that the process Y; =
Mipr, is bounded by max(x, Mp) and hence is a uniformly integrable martingale.
We note that since M; — 0 almost surely,
Yoo = Mo - Lipto>ay + % 1ir, <o} - Lino<a)
= Mo - Limo>a) + % Linresay - Yimo<a)
Therefore it follows that
Yoo = My - Linsy>a)

Linre>ay - Lingg<ay = -

Finally using that E[Ys | %0] = My, we conclude that
PIM* > 2| Fo] = E[1{ar+>a} | Fo)
= Ellgarzay (Lpto<ay + Lntozay) | F0l

T

90] + Lino>a}
M,
= 701{]Vlg<ac} + 1>y

. ( Mo)
=min (1,— |,
T
showing the first equation.
To show the final claim, we notice that

PM* > z] = E[l{M*Zm}]
= E[E[1{p->2) | F0]]

o )

and furthermore,

showing the final claim. O
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Lemma 9.2. Let a > 0 and Bf = a+ B; be a Brownian motion starting at a. Let
T = Ho(B?) = inf{t > 0 : B} = 0}. Then the distribution of Y = sup,., B is
a/U with U a uniform [0, 1] random variable.

Proof. Consider the positive continuous martingale M, = By, .. Since M; is pos-
itive, it is bounded in L' and therefore there is M., € L' such that M; — My
almost surely. We note that 7 is almost surely finite and therefore M, = 0 almost
surely. The distribution of sup,~q M; is the same as the one of Y = sup,., Bf and
thus by the previous lemma it holds that YV is distributed as a/U for U ‘a uniform
[0, 1] variable. O

9.2. Continuous Local Martingales and Quadratic Variation.

Definition 9.3. An adapted process (My)i>o is called a continuous local mar-
tingale if My = 0, it has continuous trajectories a.s. and if there exists a non-
decreasing sequence of stopping times (Tp)n>1 such that 7, T oo a.s. and for each
n, M™ = (Mr, at)t>0 is a martingale. We say (7,)n>1 reduces or localizes M.
More generally, when we do not assume that My = 0, we say that M is a
continuous local martingale if Ny = My — My is a continuous local martingale.

The most important property of continuous local martingales is that they have
quadratic variation processes.

Theorem 9.4. Let M be a continuous local martingale. There exists a unique (up
to indistinguishability) non-decreasing, continuous adapted finite variation process
(M) = ((M, M)¢)t>0, starting in zero, such that (M?— (M, M);)¢>o is a continuous
local martingale. The process (M) is called the quadratic variation of M.

9.2.1. Characterisation of the quadratic variation being zero. It is important to note
that local martingales and finite variation processes are orthogonal to each other.

Theorem 9.5. Let M be a continuous local martingale with My = 0. Then the
following properties are equivalent:

(i) M is indistinguistable from zero.
(i) (M), =0 for allt > 0.
(iii) M is a process of finite variation, i.e. t — M; has finite variation almost
surely.

We draw the following corollary of the previous theorem.

Corollary 9.6. Let M be a continuous local martingale and let 7y < 1o be two
stopping times. Then the following are equivalent:

(i) M is a.s. constant on [11,T2].

(ii) (M): =0 is a.s. constant on [T1,T].

Proof. Consider M, = M™ — M™ = Mga;, — Msar,. Then by Proposition 7.27
from the lecture notes,

<M/>s = <MT2>S + <MTI>S - 2<MT2aMTl>s
= <M>S/\T2 + <M>s/\‘r1 - 2<M7 M>s/\7'1/\‘r2
= <M>sATz - <M>5/\Tl'

Since M, = 0, the claim follows from the previous proposition. [
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Lemma 9.7. Assume that the filtration (F;)i>o is right continuous. Let'Y be a
continuous stochastic process and let t € R>g. Then

T, =inf{s >t : Y, #Y;}
18 a stopping time.
Proof. We give two proofs, first we consider the continuous process X = 1454(Ys —
Y:). Then T; is the first hitting time of the open set R\{0} and hence since the
filtration is right continuous it follows that T} is a stopping time.

Let T > 0. If T < t, then {T} < T} =0 € %r so we assume that T > ¢. Then
it holds that

(T, < T} ={T, > T}
= N v.=v}

s€(t,T]

m {Ys =1},
s€[t,T)
seQ

using in the last line that Y; is continuous. Since {Y; = Y;} € %, it thus follows
that {T; < T} € Z#r. To conclude the proof we notice that for any k > 0,

~ 1
{T<Th= (L <T+-}eTryp
n=~k
Therefore the claim follows by right continuity of the filtration. ]

Proposition 9.8. Let M be a continuous L?-bounded martingale. Then the in-
tervals of constancy for M and (M) coincide. More precisely, if S < S" are two
random times then for almost every w € ) it holds that

M, (@) = Msguy(w) for all s € [S(w), §'(w)
if and only if for almost all w € 2 it holds that
(M)s(w) = (M)g)(w) for all s € [S(w), S (w)].

Proof. By the previous corollary and lemma, the claim holds for (¢,7;) for any ¢.
Assume that the first claim holds. Let Q' C Q be the set of full measure such that
every w € Q) satisfies M, (w) = Mg (w) and (M), (w) = (M)(w) for all t € Q.

Fix any w € €Y. Either the interval [S(w), S’(w)] consists of a single point, in
which case there is nothing to show, or it contains a rational ¢ and hence S’ (w) <
Ti(w). However, since w € ' it holds that s — (M)s(w) is constant on [¢, T3 (w)]. As
t is an arbitrary rational, this implies that s — (M)4(w) is constant on (S(w), S’ (w)].
Finally since s — (M)4(w) is continuous, it cannot vary at a single point, so it is
constant on [S(w), S (w)]. A similar argument applies for the converse direction. [

9.2.2. Quadratic Covariation. Another useful property is the following.

Theorem 9.9. Let M be a martingale with My € L?. Then E[(M)s] < oo and
M? — (M) is a uniformly integrable martingale.

Definition 9.10. Let M and N be continuous local martingales. Then we define
the quadratic covariation of M and N as

(M,N) =5 ((M+N,M+N)—(M,M)—(N,N))

1
2
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Proposition 9.11. Let M and N be continuous local martingales. Then the fol-
lowing properties hold:
(1) (MyNy— (M, N);) is the unique finite variation process that is a continuous
local martingale and that is zero at zero.
(2) The mapping M, N +— (M, N) is bilinear and symmetric.
(3) For any stopping time 7 and t > 0,

<MT>NT>t = <MT7N>t = <M7NT>t = <M’N>t/\7"

Lemma 9.12. Let M and N be continuous local martingales and let T be a stopping
time. Then

M™(N—-NT)=M"N—-MTNT"
is a continuous local martingale.

Proof. By Proposition (i) it holds that M"N—(M",N) and M"N™—(M7™ NT7)
are continuous local martingales. Also by Proposition (ii) (M™,Ny = (MT™,NT7)
and therefore the difference of these two continuous local martingales is M™N —
MTNT and so this is again a continuous local martingale. ([

Lemma 9.13. Let (2,9, (%)t>0,P) and let B be a standard Brownian motion
with respect to (4,)1>0. Let X be a positive 9y-measurable random variable that is
independent of By for everyt > 0 and write My = Byx. Then p; = tX can be viewed
as a (% )¢>0-stopping time and consider the stopping time o-algebra %, =9,,. Then
the following properties hold

(1) My is a continuous local martingale with respect to (F;)i>0-

(ii) If Ex[X'/?] < oo, then (My);>0 is a martingale.
(iii) (M), =tX.

Proof. Consider the stopping times 7,, = inf{t > 0 : |M;| > n} and 72 = inf{t >

0 : |Bt] > n}. Then B is a uniformly integrable martingale and it holds that
B

M = B;f' . Thus it holds by the optional stopping theorem that

E[M]"|%,) = BB |9,,] = Bjr = M. 9.1)

Thus it follows that M;™ is a martingale and the claim follows.
To show (ii), it holds by using independence,

E[[M,]] = E[E[|Bix| | o(X)]] = E [\/?} < oo

if Ex [X1/2] < oo. Thus M; is integrable. To show the martingale condition,
we want to apply dominated convergence to . To do so, note that by the
maximum principle, sup,cjg q Mt = sup,ejo ) Bix ~ [Bsx| = Ms and therefore
E[sup,efo,o) Mi] = E[|Ms|] < co. Similarly E[sup,cpo o M, | < E[|M;|] and therefore
E[sup,c(o,5) |M:|] < 2E[|M,|] < oo. Finally notice that [MI"| < sup,c( 4 [M:| € L'
and hence

E[M|7,] = lm E[M{"|.£,) = lim M = M,,

having used conditional dominated convergence in the first equality and in
the second. This shows that M, is indeed a martingale.

Finally, to show (iii), we want to show that Ny = M? —tX is a continuous local
martingale. Denote L; = B? —t and recall that L; is a martingale. We proceed as
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in (i). Let 7, = inf{t > 0 : |N;| > n} and 7% = inf{t > 0 : |L;] > n}. Then it
L
again holds that N/" = L, and

TL Tn
Gp.) = Lp: = N/

s

TL
E[N{"[Fs] = E[Ly;

Therefore N; is a continuous local martingale and since the quadratic variation is
the unique non-decreasing adapted finite variation process (M) such that M? — (M)
is a continuous local martingale, it follows that (M); = tX, concluding the proof
of the lemma. ([l

9.3. Square Integrable Continuous Martingales.

Definition 9.14. We define
e = {continuous martingales (My)i>o with sup E[M?] < oo} )
>0
We recall the following results from the lecture notes:

Proposition 9.15. Let M, N € s#%¢. Then the following properties hold:

(i) M is uniformly integrable and therefore My, exists and ast — oo, My — M
almost surely and in L?. Indeed, sup,~|M;| is a square integrable random
variable. -

(i) The inner product

(M, N) yp2.c := E[MyNo] < E[M2]'Y?E[N2]'/? < 0

defines an inner product on H%*°. Therefore ¢ is a Hilbert space.
(iii) It holds for allt € [0, 00] that [(M, N)¢| < \/(M)i-/(N)t < \/(M)oo-/(N)oo

Lemma 9.16. A continuous local martingale M such that there exists a random
variable Z € L' with |M;| < Z for every t > 0 is a uniformly integrable martingale.

We use these results to deduce the following proposition.

Proposition 9.17. Let M,N € #%°. Then E[(M,N)x] < oo and MN —
(M, N) is a uniformly integrable martinagle and therefore E[M;N;] = E[MoNy] +
E[(M, N)¢].

Proof. We give two proofs. First we recall that by Theorem 7.24 (i), if X € J#?¢
it follows that X2 — (X) is a uniformly integrable martingale. Note that

2(MN — (M,N)) = (M +N)* = (M + N) = (M* — (M)) — (N* = (N))

and therefore since M + N € #%¢ it holds that MN — (M, N) is a sum of three
uniformly integrable martingales and hence uniformly integrable itself.
For a second proof, we adapt the proof from Theorem 7.24 of the lecture notes.
By Doob’s L2-inequality,
E[ sup M7] < 4E[MZ]
0<t<T
and so letting T' — oo,

E[sup M7] < 4supE[M?] < C
t>0 t>0
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for some C' > 0. The same holds for N by suitably adjusting the constant C.

Therefore by Cauchy-Schwarz,
2 2
(sup 12z ] E [(supwto ]
>0 >0

E [(sup Mt|> . (sup|Nt>} <E
t>0 >0

1/2 1/2
=E {sup ME} -E [sup Nf} <C.
>0 >0

Furthermore we note that by Proposition Cauchy-Schwarz and Theorem|[9.9]
Efsup (M, N)e[] < E[v/{M) oo v/ (N) ]

< E[(M)oo] *E[(N) o]/ < 00.

To conclude the proof, we note that for all M;N;— (M, N); is bounded from above
by (sup;>q | M:]) - (supyso [Ve]) + sup,sq [(M, N)¢|, which is therefore integrable.
This implies the claim by Lemma [9.16 (]

1/2 1/2

9.4. Concrete Examples of Stochastic Integrals. Suppose that (B;);>o is
Brownian motion. For a partition 7 of [0,T], write ||«|| for the mesh of the par-
tition and 0 = tp < t1 < ... < In(r) = T for the endpoints of the intervals of the
partition.

Lemma 9.18. It holds that

N(m)—1
1
li B, (B, —B,)==(B2—B2+T
10 ]Z::O trir (Buya = Biy) = 5(Br = Bo+T)
in probability.
Proof. Note that
N(m)—1

Sw,l = Z Bt_7‘+1(Bt_7‘+1 - Btj) = B% - BTBtN(-:r)—l
§=0

+ B~ Bineey 1 Bingey o T
+ B} + By, Bo.
Similarly,
N(m)—1
Sr2 = Z By, (Bi,,, — B;) = BrBiy -, — BENW*I
j=0

2
+ BtN(Tr)—lBtN(W)—2 - B

N ()2 +...
+ BoBy, — B2.

Therefore follows that
Sp1 =B} —Bj — Sy o.
Thus we conclude that
N(m)—1
257"’1 = B% - Bg + Z (Btj+1 - Btj)(Btj+1 - Bt]‘)

=0
— B} -B3+T
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as ||w|| — 0 in probability since (B)r = T and by the definition of quadratic
variation. O

The Stratonovich integral is defined as
T N(m)—1
/ ByodB,= lim Y =(Bi,, +Bi,)(Bi,, — B,
0 lImll=0 =5 2
Lemma 9.19. It holds that
T
1
/ Bsostzi(B%_Bg)'
0

Proof. 1t holds that §(By,,, + By, )(Bt,,, — B,) = 3(Bf,,, — Bf,) and therefore

the claim follows by noticing that the above sum is telescoping. (I
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10. B8.2 CLASS 4

10.1. Stochastic Integrals. We recall some definitions.
Definition 10.1. We define

A = {contmuous martingales (My);>o with sup E[M?] < oo} .
>0

This is a Hilbert space when endowed with the norm
1M |52 = E[MZ).

Definition 10.2. An adapted right-continuous process A = (Ay)i>o is called a
finite variation process if Ag =0 and t — A; is of finite variation a.s.

Definition 10.3. Let A be a finite variation process. Then we define L'(|dA]) as
the space of progressively measurable processes such that for allt > 0,

t
0
almost surely.

A few remarks:
(i) (Proposition 7.13) If K € L'(|dA|), then

t
(K - A), :/ K, dA,
0

is a finite variation process.
(ii) (Proposition 7.6) If F' € L(|dA|) and KF € L'(|dA|), then

/t K, F,dA, = (KF) - A); = (K - (F - A)), = /t K, d(F - A),.
0 0

(iii) Ay =t for all ¢ > 0 is a finite variation process. Thus the above definition
generalizes the Lebesgue integral on R.

Definition 10.4. Given M € 5#%° we denote by L?(M) the space of progressively
measurable processes K such that

E [/Ooo K? d(M)t} < oo.

Definition 10.5. For a continuous local martingale M, denote by leoc(M) the
space of progressively measurable processes K such that for allt > 0,

t
/ K2d(M), < oo a.s.
0

We observe the following:

(i) (Theorem 8.5) The space L?(M) is a Hilbert space when endowed with the
inner product

o
(H,K)p2(v) = E[(HEK - (M))o] = E [/ H,K, d(M)t} .
0
Moreover, the map L2(M) — #7°, K — K o M is an isometry, i.e.

()]

o0
E [ | d<M>t} — K| Baap) = |1 @ M2y = E
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(ii) (Theorem 8.12) If K € L (M), there exists a unique continuous local martin-

gale, zero in zero, denoted K e M such that for any continuous local martingale
N,
(KeM,N)=K-(M,N).
(iii) (Follows from (i)) if H is a further progressively measurable process and if
KH e L (M),
(KH)e M =K o (H o M).
v ollows from (11 T 1S a stopping time
i Foll f i) If 7 i i i
(KeM)" =KeM".

Lemma 10.6. (Generalized Ito Isometry) Let M, N € %€ and let K € L*(M)
and F € L*(N). Then for each t € [0, 00|,

([ ) (f )] -5 a0

Proof. Recall (Remark 7.29) that if M’ and N’ are in %, then E[M/N]] =
E[(M’',N");]. Also, K « M and F e N are in #,°. Note furthermore that

(KeM,FeN)=K -(M,FeN)y=K-(F-(M,N))=KF-(M,N).
Therefore, it follows that
E[(KeM)(FeN),=E[(KeM,FeN);]=E[(KF-{(M,N))]
concluding the proof. O

Lemma 10.7. Let M be a continuous local martingale and let K € L2 _(M). Fix

loc

t > 0. Then if E[f(f K2d(M),] < oo, the stopped process (K o M)! is a martingale,

]E{/OthdMs}O and H«:[(/Otf(sdzm)2 E{/OtK§d<M>s}

Proof. By Theorem 7.24 from the notes, to show that (K e M)! is a martingale
(bounded in L?), it suffices to show that E[(K e M?'),] < co. The latter quantity
is equal to E[fot K2d({M)s] and therefore the claim follows. Since (K e M) is a
martingale bounded in L? and therefore uniformly integrable,

E [/Ot K, dMs] —E[(K o M)’ ] = E[(K o M)}] =0.

Finally, by Theorem 7.24 ((K e M)%)? — ((K e M)!) is uniformly integrable and
therefore, since it is zero at zero the final claim follows. O

Lemma 10.8. Let f be a continuous function on [0,00) and let B be a standard
Brownian motion. Then fort > 0,

X, = /0 f(s)dB,

. . tAT
is Gaussian and cov(X¢, X;) = [,

tingale and a Gaussian process.

f(s)?ds for t,s > 0. Moreover, X; is a mar-



NOTES ON EXERCISE SHEETS IN PROBABILITY 69

Proof. Fixt > 0. If f is a step function, then X} is a sum of independent Gaussian
and therefore Gaussian itself. Let (f,,)n>0 be a sequence of step functions such that
fn — f uniformly on [0,#]. Recall that B € #%¢ and f, f, € L*(B?). Then it
holds that

Inﬂ%W)E{AU®h®VMES

=/U@—n@ﬂwsz—mg.

0

Thus f, — f in L2(B') and therefore f, ® Bt — f e B in #>°. Thus

[(foB): = (fuoB)illz = [|(f o B)o = (fneB)icllz = ||(f 8 B)" = (fn®B)'||2c — 0,

showing that (f,,  B); converges to (f e B); in L?. Since the space of Gaussian’s
is L2 closed, it follows that (f e B); is a Gaussian. It holds that E[X;] = 0 since
E[(f, ® X):] = 0 and by Ito’s isometry,

COV(‘X}7 XT) = E[XtXT]
=E[(f ¢ B)s(f * B)L]

B e BB = [ S

Next we show that X; = fg f(s)dBs is a martingale. Indeed X; = (f @ B); is a
local continuous martingale and (X); = (f? - (B));. Therefore

g0 =& [ P = [ i<

It follows that X is a martingale by Theorem 7.24.

Finally we show that X, is a Gaussian process. Indeed if f, — f is again a
approximating sequence of step functions converging uniformly to f, then for each
n the random vector ((f, ® B)¢,,...,(fn ® B):,) is a multivariate Gaussian since
Brownian motion is a Gaussian process. As ((f,, ® B)t,,...,(fn ® B):,) converges
to (X¢,,...,Xy,) in L2 it follows that X is a Gaussian process. O

10.2. Continuous Semi-Martingales and Ito’s Theorem.

Definition 10.9. A stochastic process X = (Xi)i>0 is called a continuous semi-
martingale if it can be written as

Xy = Xo + M + Ay,

where M is a continuous local martingale, A is a continuous process of finite vari-

ation and My = Ay = 0.

Definition 10.10. Let X = Xo+ M + A be a continuous semimartingale. Then
L(X) = Li,o(M) N L*(|dA])

and for K € L(X) we define
KeX=KeM+K:-A.
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We recall that if X = Xg + M + A is a continuous semimartingale, then
(X) = (M).

The main theorem of Stochastic Calculus is Ito’s Theorem, which generalizes the
Fundamental Theorem of Stochastic Calculus.

Theorem 10.11. Let X',..., X% be continuous semiartingales and F : R* - R a
C?%-function. Then (F(X},...,X{)i>0 is a continuous semimartingale and up to
indistinguishability,

F ,
F(X} ..., X)) =F(X3,..., X)) XL XHdXxi

1 L OF |,

+ 5 (Xs’
1<ig<ado 70T

LX) d(X X,

In particular, for d =1, we have that
t 1 [t
F(X;) = F(Xo) +/ F'(X,)dXs + 5/ F"(Xg)d{X)s.
0 0

We note that in Ito’s theorem, the integrability of all of the processes involved
follows from continuity of F'.

Lemma 10.12. Suppose that (By)i>o is a standard Brownian motion and let f
and g be C?-functions. Then

Y: =exp (f 9(Bs) dS)
is a local martingale whenever g(x) = %(f”( ) + f(z)?).
Proof. Consider F(z,y) = exp(f(z)—y) and consider X} = B; and X? = fo ) ds.
Since we can view ds = (B),, X? is a finite variation process and therefore

(X?) =0 = (X' X?). Note that

¢ ¢
| rexpax: = [ pec s, ds
0 0
is a process of finite variation.
Thus by Ito’s Theorem and since %—i(x,y) = F(z,y)f (x), %1; (z,y) = —F(z,y)
and 55 (2,y) = F(x,y)f"(x) + F(,y)(f' (2))?,

Y, = F(X}. X?) = exp(£(Bo) + / oF

X! X?)dB,
; 837( X3)dB

t

- [ PO xBgBds 5 [ POXB B + 1B ds,
0 0

which is a decomposition of Y into a local martingale part and processes of finite
variation. The finite variation part is zero if and only if g(z) = 3(f"(z) + f'(z)?)
for all x € R and therefore the claim follows. (]

Lemma 10.13. Let (B;):>0 be a standard Brownian motion. Then
M, = e'/? cos(By)

is a martingale.
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Proof. Let F(x,y) = e*/?cos(y) and X} =t and X? = B;. Then it holds by Ito’s
Theorem that

t
M; = F(X}, X%) = cos(By) +/ e*/% cos(B,) ds
0

t t
—/ es/Qsin(Bs)st—/ e*/? cos(B,) ds

0 0
t

= cos(By) — / e*/? sin(By) dBs.
0

Therefore M; is a continuous local martingale. Thus to show that it is a martingale,
it suffices by Theorem 7.24 to check that E[(M),] < co. It follows that (M), =

fg e®sin®(By) ds and therefore
t
|E[(M)] | §/ efds=¢e"—1< 0.
0

O

10.3. A primer on stochastic differential equations. A stochastic differential
equation determines a process by

dX; = f(t, X¢)dt + g(t, X¢)dBy,

for two functions f,g : R?> — R. More precisley, X, is a stochastic process that

satisfies .

t
Xi=Xo+ [ f(t.X)dt+ / o(t, X,) dB,.
0 0

It can be shown that under weak assumptions on f and g, the process X; exists, is
a continuous semimartingale and is uniquely determined by f and g.
For simplicity we study in this exposition the stochastic differential equation

dX; = 0 XdBy or equivalently Xi=Xo+o0-(X eB), (10.1)

for ¢ > 0. This is a model for the price of a stock with volatility o.
We now apply Ito’s Lemma to understand (10.1)). Indeed let F(x) = log(z), then
by associativity of the stochastic integral,
t ¢
1 1 1
—dXs— = | — d(X)s
o X Ty xR

— log(Xo) + ()1( °X) -3 (9;2 | <X>)t

t

=log(Xo) + 0 ()1( . (X°B)) - %2 (;;2 'X2<B>>t

t

log(X;) = log(Xo) +

ot
= lOg(XO) =+ O'Bt — 7

Therefore it follows that

2t
X, = Xoexp (UBt - "2) .

Recall that if Y ~ N (u,0?), then

Elexp(cY)] = exp <622”2 + c,u) .
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We now assume that X is constant. Then it follows that F[X;] = X, and
Var(X;) = E[(X; — X0)?]
= B[X{] - X3
= X§ - (E [exp(20B;)] exp(—o?t) — 1)
= X2 - (exp(c?t) —1).
10.4. Harmonic Functions, the Heat Equation and Brownian Motion. Let

Q C R? be an open bounded subset.

Definition 10.14. A continuous function h : Q — R is said to be harmonic if
for each x € Q and r < d(x,9N) the mean-value property is satisfied

h(x) = / h(z) dvolog, () (2),
8B, (z)

where B, (z) = {z € R? : dga(x,2) =r1}.

We recall that a harmonic function is an eigenfunction of the Laplacian and
smooth.

Definition 10.15. (Dirichlet problem) Given a continuous function f on 952, does
there exists a harmonic function h with hlgq = f.

The Dirichlet problem can be solved very elegantly by using Brownian motion.
Indeed, we consider the function

h(x) = Eu[f(Br)),
where T is the first hitting time of the boundary 0€2. We won’t show that h defined
as above is continuous, yet we prove that it satisfies the mean-value property.
Indeed, let € Q and r < d(x,02). We consider a Brownian motion starting at
x. Let 7 be the first hitting time of B, (x). Then it holds that
h(z) = Eu[f(Br)] = Ex[E[f(Br)|#-]],

as conditioning doesn’t alter the expected value. On the other hand, by the strong
Markov property, conditionally on .%, the process (B;1¢):>0 is a Brownian motion
starting from B, thus

Eo[E[f(Br)|Z:]] = Eo[E[f(Br)|Z:]] = Eu[Ep, [f(Br)]] = Ex[h(B-)].
The claim follows since when starting at = the point B, is by symmetry uniformly
distributed on 0B, (z).

In similar vein, we can use Brownian motion to solve the Heat equation. Let
f: R — Q be a continuous function and assume that f|sqg = 0. We now want to
find a continuous solution u : Ry x 2 — R satisfying for all z € Q,

u(0,2) = f(z), Ou=30,,u forallt>0
and
u(t,z) =0
for all t > 0 and = € 9€2. Then the solution to the Heat equation is given as
u(t,z) = B, [f(Bt)l{t<T}]7

where again T is the first hitting time of the boundary.
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11. C8.2: CLass 1

11.1. Markov Processes.

11.1.1. Measures and Operators. We first make some general remarks between mea-
sures and operators. Indeed, we state the following theorem.

Theorem 11.1. (Riesz-Markov-Kakutani representation theorem) Let E be a com-
pact space and let C(E) be the space of real-valued continuous functions on E. Let
®: C(F) — R be a positive linear map, i.e. if f > 0 then ®(f) > 0.

Then there exists a unique measure v on E that represents ® in the sense that
for every f € C(E) it holds that

o(f) = [ fav

In particular we have a bijection

{pos. linear maps on C(E) — R} <5 {measures on E}.

Moreover, we can easily restrict to probability measures

pOS. mear maps — wit E)= (—) pI‘O . Ineasures on s
li C(F) — R with ®(1 1V &2 b E

where 1g is the function being constant =1 on E.

11.1.2. Definition and general remarks.

Definition 11.2. Let (E, &) be a measurable space. A Markovian transition kernel
(or a Markov kernel) from E into E is a mapping T : E x & — [0, 1] such that:
(1) For every x € E, the mapping & > A — T(x, A) is a probability measure
on (E,&).
(2) For every A € &, the mapping E 3 x — T(x, A) is &-measurable.

Given a Markov kernel T" and a bounded measurable function f : E — R we
define

(Tf)(x) = /E F)T (@, dy).

Definition 11.3. A collection (T})i>o of transition kernels on E is called a tran-
sition semigroup if the following three properties hold:

(1) For everyx € E and A € &, To(x, A) = 6,(A).

(2) (Chapman-Kolmogorov identity) For every s,t >0 and A € & we have

TH_S(QJ,A):/ETt(a:,dy)Ts(y,A).

(3) For every A € &, the function (t,x) — Ty(z, A) is measurable with respect
to the o-field BR1) ® &.

Let B(FE) be the vector space of all bounded measurable real functions on E,
which is equipped with the norm ||f|| = sup{|f(z)| : * € E}. Then the linear
mapping B(E) > f — Tif is a contraction of B(E). From this point of view, the
Chapman-Kolmogorov identity is equivalent to the relation for every s,t > 0,

Tt+s =TTs.
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Definition 11.4. Let (T})i>0 be a transition semigroup on E. A Markov process
(with respect to the filtration (F;)i>0) with transition semigroup (T})i>o is an (F)-
adapted process (Xi)i>o with values in E such that, for every s,t > 0 and f € B(E)
we have

E[f(XS-i-t”ﬁS] = (T f)(X5).
We note that a Markov process is a martingale if and only if for all ¢ > 0,
71 =1.

More abstractly, we can also study contraction semi-groups defined as follows.
We use some strong continuity assumptions to make our life easier.

Definition 11.5. A family of bounded operators (Ti)i>0 on a Banach space B is
called a strongly continuous contraction semigroup if the following properties hold:
(1) To =1,
(2) Ty =TT} for all s,t € R,
(3) IT®)|| <1 forallt >0,
(4) for any z € B the map t — Tyz is continuous.

Proposition 11.6. Let T; be a strongly continuous semigroup on a Banach space
B and define fort > 0,

1
At == E(Tt - I)
Let D(A) = {z € B : limy_,0 Atz exists}. Then for z € D(A) we define
Az =lim Az = @ z.
t—0 dt ‘=0

Then A is a densely defined closed operator and it is called the infinitesimal gen-
erator of Ty. Moreover, for any z € D(A) and t > 0 we have that Tyz € D(A)

and
thZ

dt

Definition 11.7. Let A > 0. The A-resolvent of the transition semigroup (T})i>o0
is the linear operator Ry : B(E) — B(E) defined by

Raf@) = [ N, f () de

= ATtZ = TtAZ

for f € B(E) and x € E.

Similarly we can define the operator Ry for a strongly continuous contraction
semigroup. The following then holds:

Lemma 11.8. Let A > 0 and let (T})i>0 be a strongly continuous contraction
semigroup on a Banach space B. The operator (A — A) : D(A) — C is invertible
with inverse

()\ — A)71 = R,.
Proof. This is a little exercise with partial integration. (Il

We can now prove an interesting property the resolvent of strongly continuous
contraction semigroups by knowing they have an inverse.
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Lemma 11.9. Let (T});>0 be a strongly continuous contraction semigroup and let
R be the associated resolvents. Then for A\, > 0 it holds that

Ry — RH = (u - )\)R,\RM.

Proof. It is clear that Ry and R, commute as T; commutes and since

o0 o0
R)\RM = / / e_Ml_‘“tQTtl_,_tz dt1dts.
0 0

So it follows on D(A) by the previous lemma that
Ry — Ry = R\R,R;,' — R,R\R;"
= R\R,(R," — R}")
=Ry\R,(1n— N).

Since D(A) is dense the claim follows. O

Lemma 11.10. Let (T});>0 be a strongly continuous contraction semigroup and let
Ry be the associated resolvents. Then if |\ — u| < ||Ra||™!, we have that

oo

R,=> (A—p "Ry

n=0
In particular, on D(A) it holds that

o0

(n—A)'=R,=> (A—p Ry
n=0

Proof. Note that since by assumption ||[(A — p)Rx|| < |A — p] - ||RAl] < 1, it follows
by standard properties of Banach spaces that

o0

(T=A=mR\)" = (A= p) Ry,

n=0
By the resolvent equation it follows that
Ry = Ru - ()\ - ﬂ)RARu = RH(I - (/\ - ,U)R)\).
By the above formula for (I — (X — u)Ry) ™! it therefore follows that

oo

Ry=Ry(I—-(A=pmRy)"=> (A=) "Ry

n=0

O

Note that by (iii) of the definition of a transition semigroup it holds that the
mapping ¢ — T;f(x) is measurable and clearly bounded, so the resolvent always
exist in the case of transition semigroups. We now give an alternative proof using
abstractly only properties of the transition semigroup.

Lemma 11.11. Let (T})>0 be a transition semigroup. If X\, ;> 0, it holds that
Ry — R# = (u - )\)R)\Ru.
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Proof. We calculate

R\R, = / e MT, R, dty
0

oo oo

— / e M, ( / e M2, dtQ) dty
0 0

:/ e_)‘tl (/ e_“ 2Tt +to dtz) dtl
0

o0
:/ e~ Atttz t1+t2)’Tt i dtg) dt,
0

= /00 —Atitpty ( e M, dr> dt,
0
:/Ooe (A—p)t (
0
:/ e M, (/ e~ (A=mt dt1> dr
0 0
00 —ur _ —AT
_ / T, () dr,
0 A—p

concluding the proof. O

We give a probabilistic interpretation of the resolvent equation. Denote by
(Zx)a>0 a collection of independent exponential distributions of parameter A and
denote their densities by fy. Then a direct calculation shows that the density of
Zx+ Z, is for x > 0 given by

Al _a - pfa(@) = Afu()
Hoxf)(x) = e — ey = s P o 11.1
To connect this to transition functions we note that

ARy = /Ooo AT, dt = E[Tz,)].

Also it holds that
(ARX)(nRy,) = E[T7,|E[Ty,] = E[T7,Tz,] = E[Tz,+2,]-
We can therefore easily deduce the resolvent equation by using (11.1]). Indeed,
AuBARy = E[Tz, 42,

-/ S r L0 dt

U () — M)

-, sy
n A

ESY RS VS
which easily implies the resolvent equation. Thus from the probabilistic interpreta-
tion of the resolvent, we observe that the resolvent equation is nothing more than
a statement about the product of densities of exponential random variables.
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11.1.3. Cauchy Process. As example, let us discuss the Cauchy process. Indeed
it is given as the process for which X — X is distributed as a Cauchy random

variable with density
1t

w2 4 22
and increments to disjoint time intervals are independent.
Denote by T; the expectation semigroup of X that is Ty f (z) = E[f(Xy) | Xo = z].
We note that for t > 0 we have

T f(zx) — f(z) flz+y) — flz)
/ t2 +y dy.

Now assume that f is C’f( ). Then by Taylor’s theorem for every z,y € R there
exists &, , € [z, + y] such that

2
)
flaty) = fz) = yf' (@) + 5 [ (&)-
Plugging the latter into the first equation it follows that

Tif(x)— flz) 1 [ yf'(@)+ % " ()
t - ;[m 2 +2y2 . dy

yf'(x)

We now observe that iy

Thus we conclude that
Tif(z) = flx) _ 1/“’ ygf”(éx,y)dy
t T ) o 22+ y2) 7
Letting t tend to zero it therefore follows that
i oo el
- th(x)t flx) l/ f"(Eay) dy.
a —0o0

t—0 2

is an odd function and therefore integrates to zero.

which is a description of the infinitesimal generator.

11.1.4. Finite State Spaces. We now consider the case that F is finite and & is the
corresponding power set. We can view the transition probabilities 7} as matrices
and the infitesimal operator @) is a matrix as well and it follows that

T: = exp(tQ).

Lemma 11.12. In the above setting, the Q = (gij))-matriz satisfies the following
properties:

(1) gij >0 for all i # j.
(2) ZkeEqik =0 foralli € E.

Proof. As Q = limy_,q = (Tt I) it holds that all non-diagonal entries of the right-
hand side are > 0 and “therefore (1) follows. For (2) we note that 731 = 1 and it
holds that 731 — I'l = 0 and so the same holds for Q. O

Assume for a moment that we have a basis vy, ..., v, of eigenvectors of A. Then
we note that if Qu; = A\;v; it holds that

Tv; = exp(tQ)v; = Z T;Q' v = Z ()" v; = exp(tA;)v;.

! n!
n=0 n=0

So an eigenvalue decomposition describes the dynamics of T; very well.
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For a concrete example suppose now that we have three states {4, j, k} and the
infinitesimal generator @) is given by

-3 1 2
Q=10 -2 2
2 1 -3
Let’s note that
1 -1 2
vy |1 vo=| 2 and wv3=| 2
1 -1 -3

are eigenvectors of A with eigenvalues 0, —3, —5. So it follows that if v = c;v1 +
CcoVy + c3v3 it holds that

Tv = cvy + exp(—3t)cave + exp(—5t)cavs,

which shows that T; converges to the uniform distribution. Moreover it holds that

0) = ALy ]
o) 1 T3RTEY
and therefore it follows that
] 4 1 _ _
Pz[Xt*Z]:T5+3 3t 4 Zembt

11.1.5. Feller Semigroups. In this section we work with compact spaces E. We
note that we can always compactify a metric space (with a finite metric) by adding
a point at infinity.

Definition 11.13. Let E be a compact space and let C(E) be the Banach space of
continuous functions on E. A strongly continuous contraction semigroup on C(E)
with the additional properties:

(1) Ty1 =1 and
(2) Ty f >0 for all non-negative f € C(E)

is called a Feller semigroup.

Lemma 11.14. If X is a Feller process and f is a non-negative function, then for
A>0

VP = e MRyf(Xy)
is a supermartingale as t > 0.

Proof. We first note that by the definition of a Markov process

Yrh=e™ / D) (X dr = / T AR f(X, ) | F]
0

0
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Therefore by the tower property of conditional expectation and again using the
definition of a Markov process for s < ¢,

E[Y).Z.] = / e MNIIE(E[f(Xigr) | Fi] | Fs) dr
0

- / e N[ f(Xyy,) | Fa] dr
0

= / e 2T, f(X) dr
0

_ e‘“/ e MO, f(X) dr
0

=e N / e M, f(X,) dr,
(t=s)

where we have substituted (t — s) + r with r in the last line. Now using that X is

Feller and f is non-negative it follows that

E[Y}Z.)] = e / T f(X,) dr
(t—s)

§e_’\s/ e ML f(X,) dr
0

= e MRyf(X,) =YD,

S

completing the proof. O

11.1.6. Markov generators and Hille-Yosida Theorem.

Definition 11.15. A (usually unbounded) linear operator A on C(FE) with domain
D(A) is said to be a Markov pregenerator if it satisfies the following conditions:
(1) 1 € D(A) and A1 =0,
(2) D(A) is dense in C(E),
(3) If f e D(A),A >0 and f — NAf = g, then
. > m .
min f(¢) = min 5(¢)
Lemma 11.16. Let A be a Markov propagator and let f € D(A),\ > 0 and
g=f—=MAf. Then||f|| < |lg|| and moreover, g determines f uniquely.

Proof. By applying a minus sign to the defining equation of g we conclude that
(=g) = (—=f) = MA(—f) and therefore by (iii) of the definition of a Markov operator
we conclude that

rggg —f(¢) > rcrgg —9(¢),

which implies that ||f]| < ||g||- To shows that g uniquely determines f, let fi, fo €
D(A) be such that f1 —AAf1 = fo — AAfe. Then it follows that (f1 — f2) — AA(f1 —
f2) = 0 and therefore by the established properties that fi; = fa. O

Lemma 11.17. Let A be a linear operator on C(E) and assume that that if f €
D(A) and f(n) = mineeg f(¢) for n € E, then Af(n) > 0. Then A satisfies
property (3) of the definition of a Markov pregenerator.
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Proof. Let f € D(A), A>0and g = f — AAf. Then g(n) = f(n) — AAf(n) < f(n)
by assumption. Therefore

min f(¢) = f(n) > g(n) > min g(¢).

(er CeE

Let’s discuss some examples of Markov pregenerators:

(1)

A = G — I where G is a positive operator defined on all of C'(E) such that
Gl=1.

It is clear that (1) and (2) holds. To check (3) we apply Lemma
Indeed let f € C(F) and n € E such that f(n) = minceg f(¢). Consider
then f' = f — f(n)1g and note that by construction f’ > 0. Thus Gf’ >0
and it follows by linearity that Gf — f(n)1g > 0. In particular Af(n) =
Gf(n)— f(n) > 0, implying the claim.

E =1[0,1] and Af(n) = 3 f"(n) with

D(A) ={feC(E) : f"€C(E),f'(0)=0=f(1)}.

(1) is clear and that D(A) is dense in C(F) easily follows from the Stone-
Weierstrass theorem. To check (3) we apply Lemma Indeed let
f € C(E) and n € E such that f(n) = mincer f(¢). If n € (0,1), then
f'(n) = 0 and we have by assumption that f/(0) = f/(1) = 0. So by Taylor’s
theorem it holds that

(l‘ — 77)2 "
6 e)

for some &, , € [n,z]. Asxz — nand x € E and since f” is continuous it
follows that f”(n) > 0. Thus Af(n) > 0.
E=[0,1] and Af(n) = 5" (n) with

D(A) ={feC(E): f"eCE), "(0)=0=f"(1)}.

(1) and (2) holds as before. For (2) we again apply Lemmal[I1.17] Indeed let
f € C(E) and n € E such that f(n) = min¢er f(¢). If n =0o0rn =1, then
by assumption Af(n) > 0. On the other hand, if n € (0, 1), then f'(n) =0
and the same argument as in example (2) applies. Thus the claim follows.

Definition 11.18. A linear operator A on a Banach space B with domain D(A)
is closed if its graph

graph(4) = {(f, Af) : f € D(A)}

is closed. In other words, if f, € D(A) is a sequence such that (fn, Af,) — (f,h)
for some f,h € B, then it holds that (f,h) € graph(A) that is h = Af.

Definition 11.19. Let A be a linear operator on a Banach space B. We say that
A admits a closure if there exists a linear operator A such that D(A) C D(A),

Z|D(A)

= A and graph(A) = graph(A).

Lemma 11.20. The following properties hold:

(1) A linear operator is closed if and only if it is its own closure.
(2) A linear operator A admits a closure if and only if for every sequence f,, €

D(A) such that (f, Afn) — (0,y) for some y € B satisfies that y = 0.
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Proof. (1) is obvious and for (2) we note that if A is a closure, then by linearity
y = A0 = 0 and the one direction follows. For the other direction, assume that
the assumption holds. Then assume that for a sequence f, € D(A) we have that
(fn,Afn) — (f,h) for some f,h € B. Then by the assumption h is uniquely
determined by f and so we set Af = h. It is straightforward to check that A is a
closure of A. O

With this lemma at hand, it is quite easy to show that certain operators do not
admit a closure.

Lemma 11.21. Let E = [0,1] and consider the operator Af(x) = f'(0) with
D(A) ={f € C([0,1]) : f'(0) exists}.
Then A does not admit a closure.

Proof. By the above lemma, it suffices to construct a sequence of functions such
that f, — 0 in C([0,1]), yet f/(0) does not converge to 0, which is obviously

possible, as for example we can take f,, = %(1 — )™ a

Definition 11.22. A Markov generator is a closed Markov pregenerator A for
which Im(I — AA) = C(E) for all A > 0.

Proposition 11.23. The following properties holds:
(1) For a closed Markov pregenerator A, if Im(I — NA) = C(E) for all suffi-

ciently small positive A, then A is a Markov generator.
(2) If a Markov generator is everywhere defined and is a bounded operator, then
it 1s a Markov generator.

Proof. (2) follows from (1). Indeed, for |A| < ||A||~! sufficiently small we have that
(I =XA)~t =37 A"A" is a bounded operator and therefore for every g € C(E)
we set f = (I — AA)~1g, showing that Im(I — AA) = C(E) for sufficiently small \.
This implies the claim by (1).

To show (1) consider the set

p(A)={A>0:Im(I —\A)=C(E)}.

We claim that p(A) is open and closed, which implies the claim as p(A) is non-empty
by our assumption.

We first observe the following. If A\ € p(A), then by Lemma the operator
(I — MA)~! exists and its operator norm is < 1. Denote by

R, = (pl — A)~

the resolvent of A whenever it exists. Since (I — AA)™! = AR, -1 it therefore
follows by our assumption that for sufficiently large A\ the resolvent R) exists, is
bijective and satisfies
[|RAIl < A (11.2)
We first show that p(A) is open. Indeed, if A € p(A), then by Lemma it
follows that if u € Ry with [ — A| < ||Rx||~! then
Ry= 30— pr Ry
n=0

and so p € p(A).
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It remains to show that p(A) is closed. Indeed, let A, € p(A) with A,, = \. We
recall that by resolvent equation,

Ry —Ry-1 = ()\;nl - A;I)R/\EIRAJLI'

Since by and as A, — A, it holds that sup,,>; ||R,-1]| < oo and therefore the
family of operators Ry, is Cauchy with respect to the operator norm and therefore
converges to a bounded operator R. It remains to show that R = Ry-1, implying
that A € p(A). Indeed, let g € C(E) and consider f, = R,-1g. Then it follows
that f,, converges to f = Rg as f, = lim, o R)\;1g = Rg. Moreover, since by
construction Af, = A, 1f, — g it follows that Af, is a Cauchy sequence as well and
converges to a some element h € C(FE). Since A is closed we conclude that h = Af
and so Af, converges to Af. Thus it follows that

AT A)f = lm (A"~ A)f, = g. (11.3)

By Lemma [11.16]it follows that given g, the solution f is unique and the resolvent
R, -1 exists as a bounded operator. This concludes the proof. ([l

Actually we have established the following;:

Corollary 11.24. For a closed Markov pregenerator A, if Im(I — AA) = C(E) for
a single positive \, then A is a Markov generator.

We now return to the previously discusses Markov pregenerators and aim to
show that the closure of all of them are actually Markov generators:

(1) A= G — I where G is a positive operator defined on all of C'(F) such that
G1 = 1. This is a Markov generator as ||G|| < 1 and so the claim follows

by Lemma (2).
(2) E = [0,1] and Af(n) = /() with

DA ={feCE): f"eC(E),f(0)=0=f(1)}.
We solve the problem with a standard ODE approach. Indeed, we want to

find a solution to \
"
f=5F" =g
with appropriate boundary conditions. To do so set a® = 2/X. Then the
associated homogeneous equation has solution u(z) = e** and v(z) = e~ **.
As appears to be standard in the theory of ODE’s, we guess that a solution
has the form f = ¢u-+1v and make the Ansatz ¢'u+1'v = 0. Substituting

to the original equation, we find that ¢’ and v’ shall satisfy
du+yP'v=0 and du' + ' = —a’yg.
It thus follows that by reformulating the terms that
2 2
, —a’gu agu , —a’gu agu
- -9 __T97 d __Ta4gv _agu
¢ uw'v — uv' 2 an v wv’ — u'v 2
Thus it follows that the general solution to our equation is the of the form
La Yo
fx) = e / S9y)e W dy + e / 59(y)e™ dy + A + Bem
T 0

and we simply choose A and B in such a way that the boundary conditions
are satisfied.
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(3) B =1[0,1] and Af(n) = L (n) with
DA)={feC(E): f"eC(E),f"0)=0=f"(1)}.
One applies a similar method as in the previous case.

Theorem 11.25. (Hille-Yoshida) There is a bijection

{ Feller semigroups on C(E)} LN {Markov generators on C(E)}.

Indeed, a Feller semigroup T; is mapped to its derivative A = lim;_q %(Tt - 1I).
11.2. Martingale Problems.

11.2.1. Definition. We use the same notation as in the previous section and denote
by P(FE) the set of probability measures on E. We denote by DI[0,00) for the
space of cadlag functions from [0,00) to E, that is the space of functions that
are right continuous and has left limits. For s € [0,00), the evaluation mapping
7s : D][0,00) = F is defined by 75(n) = ns. Let # be the smallest o-algebra with
respect to which all the mappings 74 are measurable and for ¢ € [0, 00) let .%; be the
smallest o-algebra on D[0, 00) relative to which all the mappings 7, for 0 < s <t
are measurable.

Definition 11.26. Suppose that A is a Markov pregenerator on C(E) and p €
P(E). A probability measure P on D[0,00) is said to solve the martingale problem
(A, ) if

(1) P[¢ € D(o € Al = u(A) for all A€ & and

(2)

ﬂM—AANw%

is a local martingale relative to P and the o-algebras {F; : t > 0} for all
f D).

Theorem 11.27. Suppose that E is compact and separable and that A is a Markov
pregenerator for which the closure A is a Markov generator. Let {P*, x € E} be the
unique Feller process that corresponds to A. Then for each x € E, P* is the unique
solution to the martingale problem for A with initial point x.

11.2.2. Discrete Time Martingales. In the following two example we assume that
the state space is discrete.

Lemma 11.28 (Sheet 2, Exercise 5a). Let E be a compact space and denote by

B(E) bounded Borel measurable functions on E.

w(z,T): transition function on E x B(E)
{Xn}nen sequence of E- valued random variables
Operator A : B(E) — B(E) given by

/f (, dy) — f(z)

suppose that for each f € B(E), the following is a martingale with respect to the
natural filtration generated by (X, )n:

- z_:Af(X/c)
k=0
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Then X is a Markov Chain with transition function u(xz,T).

Proof. Let F,, be the natural filtration. By the martingale property, we have

E[f(Xnt1) = Y Af(Xy) | Fl Z Af(Xy)
k=0

Note that we have on the right hand side a function depending on all X, for k < n—1
— highlighting that we don’t have Markovianity here.
We rearrange the above to

E[f(Xn41) | Ful = Z AF(X) + E[Z Af(Xi) | Fu (11.4)
k=0 k=0
Xn) + Af(Xn) (11.5)
/ F (X, dy) (11.6)
Note that we now have only X,, on the right hand side, so it is Markov. (I

Lemma 11.29 (Sheet 2, Exercise 5b). Let X(n), n = 0,1,..., be a sequence of
Z-valued random variables such that for each n > 0,

X(n+1) = X(n)| = 1.

Let g : 7Z — [—1,1] be a function, and suppose that

is a martingale with respect to the natural filtration generated by X.
Then X is a Markov chain with

PX(n+1)— X(n) = 1| F,] = %
Proof. Note that we have the two equations
PX(n+1)—X(n)=1|F,]+PX(n+1)—X(n)=-1|F,]=1 (11.7)
PX(n+1)—X(n)=1|F,)-PX(n+1)—X(n)=-1|F,] =

—E[X(n+1)— X(n) = 1] F] = g(X,) (118)

where we used the Martingale property in the last equality, and used throughout
that the absolute difference between X (n + 1) and X (n) must be 1.
Solving this yields

9(X(n)) +1

PX(n+1)—X(n)=1|F,] = 5 , (11.9)
which is all we need to answer the exercise (it’s Markov — the RHS depends only

on X (n) — and the above yields the transition probability right away). O
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11.2.3. Wright-Fisher diffusion. The Wright-Fischer diffusion, which takes values
in [0, 1] has generator

Af(z) = a1~ 2)f" (@),

when restricted to the subset of twice continuously differentiable functions on [0, 1].
By the previous section, the martingale problem

X)) - / Af(X) ds

will be a P-local martingale, with suitable functions f.

We note that by setting f(z) = z, the integral term in the matringale inequality
is zero and therefore it follows that X; is a martingale itself. Moreover, it is positive
and bounded and therefore uniformly integrable. So X, = lim;_,, X; exists and
satisfies E[X | = E[X(].

We claim that P[X, € {0,1}] = 1 and therefore P[ X, = 1] = E[X] = E[X(].
To show the claim, we consider f(x) = x(1 — ) and so

X:(1-Xy) /X

is a positive martingale and therefore converges to a bounded limit. However, this
is only possible if P[X, € {0, 1}]

Finally we calculate E| fo s(1—X,) dz]. Indeed, we apply the previous martin-
gale to conclude that E[X o (1— X NHE[y" Xs(1—X,) da] = E[Xo(1—Xo)]. Note
that E[Xo (1 — Xoo)] = 0 as P[X € {0,1}] and therefore E[[;° X,(1 — X,) dx] =
E[Xo(1 - Xo)].

Now take f(x) = 2zloga + 2(1 — z)log(1l — z) so that Af(x) =1 and so

0
is a martingale. We note that f(X;)—t is negative and therefore unifomly integrable.
Thus by the optional stopping theorem, for 7. the hitting time of {&,1 — ¢} it holds
that

E[f(Xr.) — 7c] = E[f(X0)].
As f(x) = f(1 — ) it therefore follows that
E[re] = f(e) — E[f(Xo)]
and so as € — 0 we conclude that the hitting time of {0,1} is —E[f(Xo)].
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12. C8.2: CLASS 2

12.1. Stroock-Varadhan theory of diffusion approximation. Sometimes, it
is easier to deal with continuous space processes rather than discrete space processes
— the latter often resulting in tedious recurrence equations. In this section, our goal
is to show how to do such an approximation.

Take a sequence of (discrete space) Markov chains Z", indexed by h > 0 with
the idea that we will take h | 0. Let II" be its transition kernel I1":

PrZl € A|Z) =z =T"(z, A). (12.1)
We rescale time (only time! space stays the same) and define for ¢ € [0, 1]
X =2l te[0,1] (12.2)
with rescaled transition kernel
1
Kp(z,dy) :== EHh(m,dy). (12.3)

Theorem 12.1. If we have VR > 0,e > 0:
(1) T o upyy <. 1V (2) = b(@)] = O with 0"(2) = [,y = 2) K (2, dy)
(2) limpyo sup|, <p la"(z) — a(z)| = 0 with a"(x) := f\y—z|§1(y —x)?K"(x, dy)
(3) limp 0 sup|y<g K"(z,B.(x)%) = 0 i.e. for any fixed ¢ > 0, probability of
jumping further than e away goes to 0.
(and some well-posedness conditions + initial condition, for details see lecture

notes) then the sequence of Markov chains X on [0,1] converges weakly to a pro-
cess solving the martingale problem M(a,b).

Writing AZ" for the space increment at a single jump of the chain, we observe

1 1 11
K"z, B (x)°) = EPr|AZh| >e= EPr\AZ”\‘* > et < Ejmzhr* (12.4)
€
by Markov, so
1
E\AZ”\‘* —0 ashlO (12.5)

is sufficient for (3) of thm:stroock-varadhan-approximation to hold. (This solves
Question 2 on sheet 3).

We now show that two very distinct discrete chains can converge to the same
limiting diffusion as & | 0.

Lemma 12.2 (Sheet 3, Exercise 7). In the neutral Wright—Fisher model a popula-
tion of N genes evolves in discrete generations. Generation (t+ 1) is formed from
generation t by choosing N genes uniformly at random with replacement. In other
words, each gene in generation (t + 1) chooses its parent independently at random
from among those present in generation t. Let us write Xt(N) for the proportion of
type a genes in the population at time t under this model.

In the neutral Moran model, generations overlap. At exponential rate (];f) a pair
of genes is sampled uniformly at random from the population. One of the pair is
selected at random to die, and the other splits into two copies. Let us write Yt(N)
for the proportion of type a genes in the population at time t under this model.

Show that the processes {XEII:/QJ }tzo and {Yt(N)}tzo both converge as N — o0,
and identify the limiting diffusion.
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Proof. We first consider the wright fisher model. Let Zt(N) be the #a-alleles in
generation ¢t € N. Then

7(N)
70N~ NE 12.6
t+1 N ( )
To get sequence of MCs getting finer and finer, we define
Z(N)
xM =2 12.

which gives rise to the rescaled transition kernel for y € EN := {£: 0 <k < N}
N
Kn(z,y) = NIV (z,y) = NPrNz = yN = N( N)xyN(l — )NV (12.8)
Y

Now note that for condition (1): b"(x) is just the expected AX ) /b (started a
point x) [here h = 1/N]. Since we have

N
AX®™) = Wz —z (12.9)
SO
AXMN /h = NAX®N) = Nz — Nz (12.10)
So
b(N)(x):/(y—s)K(N)(x,dy)sz—Nxzo. (12.11)

Similarly, for a™¥)(z) note that
1
aM(z) = N-(AXP))2 = Ve =a(l-x) (12.12)

For condition (3), we use the observation above and note that it suffices to check
that AXY) = O(1/N?): The 4-th centered moment of a Bin(n,p) RV is:

Np(1 = p)Bp(1 —p)(N —2) + 1) = O(N?) (12.13)
so indeed
(AXM) — %O(Ng) — O(1/N?), (12.14)

so condition (3) holds.
Thus, in the limit, the process:

XNt (12.15)
converges to a process solving the MG problem M (a,b) with
b(x) =0 (12.16)
a(z) =z(1 —x) (12.17)
so generator is
Af = %af”—&—b' = %J?(l —x)f" (12.18)

For the neutral Moran model, note that this continuous time Markov chain
Yt(N) has state space EY) = {k/N : 0 < k < N}. While the chain is absorbing
at 0 and 1 (you should verify that and treat that separately) we focus on the case
ke{l,...,N—1}. Note that from a state k/N we can either go to state (k—1)/N,
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stay in state k/N (the killing and birth evened out) or go to state (k4 1)/N. The
first occurs at rate (g)k/N(l — k/N), the second at rate Q(g)k/N(l —k/N), and

the last at rate (J;[) kE/N(1—k/N). We can thus write for the generator of the N-th
refined process:

Awf) = (3 )= 0) Ul = 1/8) + £+ 1/8) = 21 (0).

Doing a Taylor expansion thereof, we observe that for fixed y € [0, 1] we have

Anf(y) — gyl 9)f"()  as N oo

where we note that the conditions of convergence are satisfied (exercise: check
that).

We thus observe that both discrete processes above converge to the same con-
tinuous process. [

12.2. Duality. We recall the following theorem from the lecture notes.

Theorem 12.3. (The method of duality) Let Ey and Es be metric spaces and
suppose that P and Q are probability distributions on the space of cadlag functions
from [0,00) to Ey and Ey repsectively. Let f and g be two bounded functions for
which the following are true:

(1) For each y € Ea, f(-,y) and g(-,y) are continuous functions on Ej.
(2) For each x € Eq, f(x,-) and g(z,-) are continuous functions on Ej.
(3) Fory € Es,

is a P-martingale.
(4) For x € Ey,

is a Q-martingale.
Then
EX (o) [f(X(8), Y (0))] = E ) [F(X(0), Y (1)))-

We can also give the following variant of the duality results. If we denote by Ax
the generator of X on F; and by Ay the generator of Y on Fs. If instead of the
setting of Theorem we have

Ax f(z,y) + a(x) f(z,y) = Ay f(x,y) + By) f(z,y),

then if we assume that fot la(X(s))|ds < oo and fg |B(Y(s))| ds < oo and we have
the additional integrability conditions

E Hf(X(t),Y(O))exp </Ota(X(s)) ds> H <
and

e[|y en ([ soreas) || <o
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then the duality formula can be modified to
| 70x0. e | a(X(s)) is)|
| 1x). v | B (s) is)] (12.19)

We discuss the following examples as applications.

Wright-Fisher diffusion. We consider the Wright-Fisher diffusion model with gen-
erator

Axf(@) = 3ol = 2)1" (@)

We also consider the pure death process N; — N, — 1 at rate (1\2&) Indeed, the
generator of the pure death process Ay is

At = () (700 =1) = )

Therefore if we set f(z,n) = 2", then we can take g(z,n) = (3)(z" "' —2"), and
we conclude that
E[X{"] = E[X3).

Wright-Fisher diffusion with mutation. The Wright-Fisher diffusion model with
mutation is discussed next. The model is uniquely characterized by the generator

Ax (@) = 300 = 2)f" (@) + (0~ ba) (@)

with a < b. Denote by X (t) the associated Markov process. Now let’s consider the
function f(xz,n) = z™ for a positive integer n. Then we have

n

o) = Ax s = (5

)(w"‘l — ™) 4 anz™ "' — bna"

= (Z) (2"t —2™) +an(z"t — 2™) — (b — a)na™.
We can write this in the form of (12.19)). Indeed, we set N; to be the pure death
process N, at rate (]\27’) + aNy, so the corresponding operator is

At = ((5) +an) (= 1) = f).

Then a(z) =0 and B(y) = (b — a)y. Since the integrebility conditions are clear, it
follows that

E[X)N] =E [Xé“ exp <— /Ot(b —a)N, dsﬂ .

Setting Ny = k, it follows that all of the moments of X; are determined and
therefore, as X; is compactly supported, it is uniquely determined. Moreover, since
N is a pure death process with strictly non-zero rates, it will hit zero in finite
time with probability one, and so the right hand side of the previous equation is
independent of Xy as t — oco. Therefore X; converges in distribution to a limiting
distribution which does not depend on Xj.
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Absorbing and Reflecting Brownian Motion. Denote by A; the generator of Brow-
nian motion on [0, c0) with absorbing boundary condition, that is A; f = % f"” and
with

D(A1) ={f€C?: f"(0) = 0}.
We take A, to be the generator of reflecting Brownian motion on [0, 00) so Asf =
1 f" and with

D(Ay) ={f€C?: f'(0) =0}.
We denote by X; absorbing Brownian motion and by Y; reflecting Brownian motion.

Let h: R — R be C? such that h(z) = —h(—z) for z € R. Consider

Fz,y) = Mz +y) + h(z —y).
Note that since h is odd, k" (0) = 0 and therefore

oF
e R R R My
=0
Thus for a fixed y, F(-,y) € D(A;). Similarly, for each fixed z,
OF
oy = (W (z+y)—h(x—y))ly= =0
y=0

and so F(x,-) € D(Az). Moreover A; F(z,y) (as a function of x) equals AsF(x,y)
(as a function of y) and they are both equal to "' (z+y) + h”(z —y). Thus (3) and
(4) is satisfied by Theorem and therefore it holds that

E,[h(X, +y) + h(X, — y)) = E, b + Y3) + hiz — Y))].

Now take
—% x <0,
1

3 x>0,

or rather a twice continuously differentiable approximation to this. If X; > y, then
9(Xi +y) +9(X; —y) =1 and if X; <y then g(X; +y) + g(X; —y) = 0. Similarly
if « > Y; we have that g(z + Y;) + g(o — Y:) = 1, whereas if < Y; we have
gz +Y:) +g(x —Y;) = 0. The result follows.

12.3. Theory of Speed and Scale. Assume that a one-dimensional Markov pro-
cess (X¢)i>o0 is governed by the infinitesimal generator

Af(z) = 3o @) (@) + p(a) f (2)

for f a twice continuously differentiable function on (a,b). We assume that p and
o are bounded and locally Lipschitz on (a,b) with o%(z) > 0 on (a,b).
In this setting the scale function is defined as

S = [ exp ( / ’ i“gi) dy,

where xg,n are arbitrary chosen points in (a,b) The density of the speed function
is given by
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and we write N
M) = [ m()d.
o
‘We then consider

u(x):/:onS, U(m):/:OSdM.

We are interested in the behaviour of v and v at a. We recall that we call a to be
a regular boundary if u(a) < co and v(a) < co.

12.3.1. Wright-Fisher diffusion with mutation. We are now interested in the Wright-
Fisher diffusion model with mutation, with generator

Af(z) = sa(l —a)f"(2) + (2 — (1 +12)2) f'(2).
We calculate
sor-en [ 590

o[z

= Cp, exp(—212log p — 215 log(1 — p))
= Pop72l’2 (1 - p)721/17
where the constant C' depends on pg. We then have
1
m(p) = ———
V= 205 )

o —1, 2v5—1 2rv1—1
- Cpo p 2 (1 _p) ! °
Thus

1/2 1/2 ,1/2
/ MdS = / et 1 - deaT (1 —x) " da
0 0 T

which is of the same order as

1/2
/ (Clx2y2 _|_ cl)x—ng
0

which is finite if and only if 25 < 1. In the other order,

/2 p1/2
/ / dSdM
0 ¢

one checks that the resulting term is finite for 5 > 0 and infinite for v5 = 0. Thus
the boundary is regular for 0 < vy < 1/2.

12.3.2. Bessel process. We now consider the Bessel process with parameter a >
0, which is determines as the one-dimensional diffusion process on [0,00) with

generator
1 a—1

Af@) = 38" @)+ “ = 1'(@).

When « is an integer, this is the norm of a Brownian motion in R*. We now find
expressions for the speed and scale.

Note that ; )
eXP(—/ O dz) =gt
1 z
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and so the scale function is

¢ (g2 1) ifa#2,
S(6) = / ' dn = f‘a(g ) | f
1 ogé& if o =2.
and therefore

m(n) =n*"".

Substituting these expressions, we obtain, by doing the calculation for o # 0,
11
w0) = [ [ menns'ie)ae
0
'

_ T (1 _ ca\¢l—a
— [ Sa-eea

0

71 117a7
- [eca

J —¢&logé if a =0,
Lk o b itae(0.2),
00 if > 2.
One similarly checks that v(0) is finite if and only if v > 0. Combining these
observations:
an entrance boundary for a > 2,
a regular boundary if « € (0,2),
an exit boundary if a=0.

The boundary at 0 is
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