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1. Jordan-Selberg-Schur

1.1. Jordan’s Theorem. As was shown by Camille Jordan in 1878, a finite linear
group over a field of characteristic zero is close to being abelian.

Theorem 1.1. (Jordan 1878, [Jor78]) For every n there exists a constant J(n)
such that any finite subgroup of GLn(K) over a field of characteristic zero has a
normal abelian subgroup of index ≤ J(n).

Jordan’s original proof established no explicit bound on J(n). A shorter argu-
ment was found by Bierberbach and Frobenius (1911), whose ideas we exploit to

show that J(n) ≤ 92n
2

.
We proceed with two reductions, first to the case that K = C and we then may

assume that the finite group is contained in the group of unitary matrices. To show
the first reduction, observe that without loss of generality K is finitely generated,
i.e. there are elements, α, . . . , αℓ ∈ K such that K = Q(α1, . . . , αℓ). Indeed, we
may replace K with the field generated by the coefficients of all the matrices of our
given finite group. The next lemma shows that we can set K = C.

Lemma 1.2. A finitely generated field K of characteristic zero can be embedded
into C.

Proof. We can consider K as a finite extension of a purely transcendental extension
L = Q(α1, . . . , αℓ) (cf. [Lan12] Chapter VIII). Since C has infinite transcendence
degree over Q, L embeds into C. The claim follows using that C is algebraically
closed and therefore for any algebraic element x over L, we can embedded L(x)
into C. Indeed if P ∈ L[X] is the minimal polynomial of x and y ∈ C is a root
of P then mapping x to y yields a field embedding L(x) −→ C. Iterating the last
observation, the proof is concluded as K is a finite extension of L. □

For the remainder of the proof we denote by G a finite subgroup of GLn(C). We
next show that we can assume without loss of generality that G ⊂ Un(C), where

Un(C) = {g ∈ GLn(C) : g−1 = g∗}
is the group of unitary matrices.

Lemma 1.3. G is conjugated to a subgroup of Un(C).

Proof. Consider the G-invariant hermitian inner product on Cn defined by

⟨x, y⟩G :=
1

|G|
∑
g∈G

⟨gx, gy⟩

for x, y ∈ Cn. As all hermitian inner products are equivalent up to a change of
basis, there is P ∈ GLn(C) such that PGP−1 ⊂ Un(C). □

Denote by || · || the operator norm Mn(C) induced by the standard hermitian
inner product and for r > 0,

B(r) = {A ∈Mn(C) : ||A|| < r}.

Lemma 1.4. The ball B(1) can be covered by at most 92n
2

many balls of radius 1
4 .

Proof. Let N be the maximal number of disjoint balls of radius 1
8 contained in

B(1 + 1
8 ). Then the balls with the same center and radius 1

4 cover B(1) as oth-
erwise the previous collection of balls would not be maximal. Denote by vol the
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euclidean volume on Mn(C) ∼= Cn2 ∼= R2n2

. Then it holds for r > 0, vol(B(r)) =

r2n
2

vol(B(1)). Therefore by volume comparison,

N

82n2 vol(B(1)) ≤ vol(B(1 + 1
8 )) = (1 + 1

8 )
2n2

vol(B(1)),

showing that N ≤ 92n
2

. □

We now turn to the proof of Jordan’s Theorem. A central ingredient in the proof
is the commutator shrinking property of Un(C). Indeed, for x, y ∈ Un(C) it holds
for the commutator [x, y] = xyx−1y−1 that

||[x, y]− 1|| = ||xy − yx||
= ||(x− 1)(y − 1)− (y − 1)(x− 1)||
≤ 2||y − 1|| ||x− 1||. (1.1)

Proof. (of Theorem 1.1) Consider the subgroup

A = ⟨BG(
1
2 )⟩,

where BG(
1
2 ) = {x ∈ G : ||x − 1|| < 1

2}. If xA ̸= yA with x, y ∈ G then x−1y ̸∈
BG(

1
2 ) and therefore ||1 − x−1y|| = ||x − y|| > 1

2 . Therefore x and y are not

contained in the same ball of radius 1
4 and thus by Lemma 1.4, [G : A] ≤ 92n

2

.
We claim that A is a normal abelian subgroup. Notice that for any g, h ∈ Un(C),

||h− 1|| = ||h− g−1g|| = ||ghg−1 − 1||.

Therefore BG(
1
2 ) is invariant under conjugation and A is a normal subgroup of G.

It remains to show that A is abelian and we may assume without loss of gener-
ality that A acts irreducibly on Cn, i.e. that there are no non-trivial A-invariant
subspaces. Indeed, if the action is reducible, and the restriction of A to each of the
subspaces is abelian, then A must be abelian.

It therefore holds by Schur’s Lemma that the center Z(A) of A consists of scalar
matrices. If the latter would not be case, the eigenspaces of central elements form
non-trivial invariant subspaces.

We assume for a contradiction that A\Z(A) is non-empty. Since A is finite we
may pick x ∈ A\Z(A) that minimizes the quantity

min
λ∈S1
||x− λ||.

Similar to the commutator shrinking property, it holds for all y ∈ BG(
1
2 ) and λ ∈ S1,

||[x, y]− 1|| = ||xy − yx||
= ||(x− λ)(y − 1)− (y − 1)(x− λ)||
≤ 2||y − 1|| ||x− λ||
< ||x− λ||.

Therefore [x, y] ∈ Z(A) is a scalar matrix and we write [x, y] = eiϕ · Idn for ϕ ∈ R.
We claim that indeed [x, y] = Idn. Observe xyx−1 = eiϕy. So y and eiϕy

are conjugate and therefore have the same eigenvalues. More precisely, if eiθ is
an eigenvalue of y, then so is ei(θ+ϕ). Yet since all eigenvalues are contained in
{|z − 1| < 1

2} ⊂ C as y ∈ BG(
1
2 ), it follows that ϕ ≡ 0 mod 2π. This shows that

x ∈ Z(A), a contradiction, concluding the proof. □
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We discuss a few remarks to Jordan’s Theorem.

(1) By Jordan’s Theorem there are only finitely many simple subgroups of
GLn(C). Therefore, since SLn(Fp) is simple, it cannot be embedded into
GLn(C) for sufficiently large p.

(2) The above proof also applied to locally finite subgroups of Un(C), i.e.
groups where every finite subset generates a finite subgroup.

(3) By a result of Blichfeldt [Bli17] from 1917, it can be shown that J(n) ≤
eO( n2

log n ). This implies that finite subgroups of Un(C) are thin, i.e. their
metric entropy, which can be calculated as logN(G, 1

10 ) with N(G, 1
10 ) the

covering number of G by balls of radius 1
10 , is ≪ n2

logn . Therefore the

metric entropy of finite subgroups of Un(C) is much smaller than the metric
entropy of Un(C), which is n2.

(4) Jordan’s Theorem is false for characteristic p > 0. Indeed, GLn(Fp) has no
normal abelian subgroup of bounded index. On the other hand, Larsen-
Pink [LP11] gave a version of Jordan’s Theorem for subgroups of GLn(Fp).

(5) Using the classification of finite simple groups, Collins [Col07] established
that J(n) = (n + 1)! for n > 71. This bound is sharp by considering the
action of the symmetric group Sym(n+ 1) on the hyperplane {v ∈ Cn+1 :∑n+1

i=1 vi = 0}.

1.2. Some recollections on local fields. In this subsection we recall some facts
about local fields as they are necessary for proving Selberg’s Lemma in the next
subsection. For proofs of the discussed results we refer to [Cas86].

Definition 1.5. Let k be a field with an absolute value, i.e. a map | · | : k → R+

such that |0| = 0, |1| = 1 and for all x, y ∈ k,

|xy| = |x| · |y| and |x+ y| ≤ |x|+ |y|.
Then k is a local field if the topology induced by | · | is locally compact.

Let p be a prime and consider on Q the p-adic absolute value | · |p defined for a
reduced fraction r = a

b ∈ Q as

|r|p = pvp(b)−vp(a),

where vp(n) for n ∈ Z is the p-adic valuation, i.e. n = pvp(n)m with gcd(p,m) = 1.
The local field of p-adic numbers Qp are the metric completion of Q with respect
to the p-adic absolute value. For the p-adic number a stronger form of the traingle
inequality holds, namely the ultrametric inequality, i.e. for all x, y ∈ Qp

|x+ y|p ≤ max{|x|p, |y|p}.
The p-adic integers are defined as Zp = {x ∈ Qp : |x|p ≤ 1}. Zp is a local ring

as pZp is the unique maximal ideal and Zp/pZp
∼= Z/pZ. Denote by Z×

p = {x ∈
Zp : |x|p = 1} the group of units. Then we have a short exact sequence

1 −→ 1 + pZp −→ Z×
p −→ F×

p → 1,

where the third map is the reduction mod p. This short exact sequence splits,
resulting in an isomorphism

Z×
p
∼= F×

p × (Zp,+) ∼= F×
p × (1 + pZp, ·).

In addition, the roots of unity of Qp are in Z×
p and are in bijection with F×

p .
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We recall Ostrowski’s theorem.

Theorem 1.6. (Ostrowski) Let k be a local field of characteristic zero. Then

(1) either k is archimedean, i.e. k = R ot k = C,
(2) or k is a p-adic local field, i.e. a finite extension of Qp.

For a general p-adic local field k the above discussed properties also hold. Indeed
the ring of integers Ok = {x ∈ k : |x| ≤ 1} has the unique maximal ideal m =
{x ∈ k : |x| < 1}. The quotient Ok/m is a finite field isomorphic to Fq, where
q = pf for some f ≥ 1. The number f is called the residual degree of k. Write
O×

k = {x ∈ k : |x| = 1} and again consider the short exact sequence

1 −→ 1 +m −→ O×
k −→ Ok/m −→ 1

that splits and therefore

O×
k
∼= F×

q × (Ok,+) ∼= F×
q × (1 +m, ·) (1.2)

There roots of unity in k are in O×
k and are in bijection with F×

q .
We furthermore recall the following facts.

(1) Given n ∈ N, there are only finitely many extensions of Qp of degree n.
(2) There is a unique way to extent the absolute value on k to the algebraic

closure k.
(3) Hensel’s Lemma: Let f ∈ Ok[X] and let f be the reduction of f modulo

m. Then every root x0 ∈ Ok/m of f with f
′
(x0) ̸= 0 can be lifted to a root

x of f in Ok such that x = x0 mod m.

1.3. Selberg’s Lemma. We recall that a group is called torsion free if the only
element of finite order is the identity. In this subsection we discuss Selberg’s Lemma.

Theorem 1.7. (Selberg’s Lemma, [Sel60]) Every finitely generated subgroup of
GLn(K) over a field of characteristic zero has a torsion free subgroup of finite
index.

Our strategy of proof relies on the following proposition by Cassels.

Proposition 1.8. (Cassels, [Cas76]) Let K be a finitely generated field extension
of Q and let α1, . . . , αℓ ∈ K\{0}. Then there are infinitely many primes p such
that K embeds into Qp in such a way that αi ∈ Z×

p .

Proof. We leave the general case to [Cas76], yet show that if K is a number field
it embeds into Qp for infinitely many p. By the primitive element theorem there
is α ∈ K such that K = Q(α). Upon multiplying α by a rational integer, we may
assume that α is in the ring of integers OK . Let P be the minimal polynomial of
α in Z.

We claim that if P ∈ Z[X] is non-constant then the set

{primes p : p divides P (n) for some integer n}
is infinite. To see this notice that |P (Z) ∩ [−N,N ]| ≫ Nε for every ε > 1

deg(P ) as

P (n) ≪ ndeg(P ). On the other hand, if only finitely many primes appear in the
prime factorization of integers in a set E ⊂ Z, then |E ∩ [−N,N ]| ≪ (log(N))O(1)

as pk1
1 · · · pkm

m ≤ N implies ki ≤ logN for each i.
To conclude the proof, recall that the resultant (cf. [Lan12] Chapter IV) of two

polynomials P and Q is a number that is a polynomial expression with integer
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coefficients in the coefficients of P and Q and it vanishes if and only if P and Q
are not relatively prime, i.e. have non-constant common divisor. Take any prime
p as above satisfying p > res(P, P ′). Then there is n ∈ Z such that p divides P (n).
Therefore P has a root in Fp. Yet as p > res(P, P ′) and P is a minimal polynomial,
P and P ′ are relatively prime also in the reduction mod p. So P ′ does not have a
common root with P in Fp and therefore P has a root, which is simple in Fp. By
Hensel’s lemma, P therefore has a root in Zp and thus K embeds into Qp. □

Denote

GLn(Zp) = {g ∈Mn(Zp) : det(g) ∈ Z×
p }.

Then we have the following consequence of the above proposition.

Corollary 1.9. Let K be a field of characteristic zero and let Γ be a finitely gen-
erated subgroup of GLn(K). Then there are infinitely many primes p such that Γ
embeds into GLn(Zp).

Proof. Assume Γ = ⟨s±1
1 , . . . , s±1

m ⟩ and let K be the field generated by the matrix
entries of s±1

1 , . . . , s±1
m . We then apply Proposition 1.8 to K and the αi being the

non-zero coefficients of s±1
1 , . . . , s±1

m together with det(s±1
1 ), . . . ,det(s±1

m ), showing
the claim. □

By Corollary 1.9 it suffices to show that GLn(Zp) has a finite index torsion free
subgroup. To do so consider for m ≥ 1 the maps

φm : GLn(Zp)→ GLn(Zp/p
mZp) ∼= GLn(Z/pmZ). (1.3)

To conclude the proof of Selberg’s Lemma, we show that ker(φ1) is torsion free
for p > 2. Indeed, we show the stronger property that ker(φ1) is net, as defined
below.

Definition 1.10. Let k be an algebraically closed field and let g ∈ GLn(k). Denote
by A(g) the multiplicative subgroup of k× generated by the eigenvalues of g. We
say that g is net if

A(g) ∩ {roots of unity of k} = {1}.
A subgroup Γ of GLn(k) is called net if every g ∈ Γ is net.

As A(g)n ⊂ A(gn), it therefore follows that a net subgroup is torsion free. Thus
Selberg’s Lemma, and indeed the stronger result that the finite index subgroup
can be taken to be net, follows by establishing the next lemma, which is due to
Raghunathan [Rag72].

Lemma 1.11. ker(φ1) is net for p > 2 and therefore torsion free.

Proof. Let g ∈ ker(φ1) with eigenvalues λ1(g), . . . , λℓ(g) in Qp. Denote by k the
splitting field of the characteristic polynomial det(X − g) ∈ Qp[X]. Then k is a
local field and A(g) ⊂ k×. Moreover, since GLn(Zp) is compact it must hold that
|λi(g)| = 1 for all 1 ≤ i ≤ ℓ and therefore A(g) ⊂ O×

k .

Let m be the maximal ideal of k. Then by (1.2), O×
k
∼= F×

q × (1 + m) and the

roots of unity of k are in correspondence with F×
q . Therefore it suffices to show for

1 ≤ i ≤ ℓ, λi(g) ∈ 1+m. Indeed to prove this let xi ∈ kn be an eigenvector of λi(g),
i.e. gxi = λi(g)xi. As g ∈ ker(φ1) we can write g = 1 + ph for h ∈ Mn(Zp) and
hence (λi(g)−1)xi = phxi. This it follows that |λi−1| < 1 and hence λi ∈ 1+m. □
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1.4. Malcev’s Theorem and Schur’s Theorem. We next give two consequences
of the previously established results.

Corollary 1.12. (Malcev) Let K be a field of characteristic zero and let Γ be a
finitely generated subgroup of GLn(K). Then Γ is residually finite, i.e. for every
γ ∈ Γ\{0} there is a finite group G and a group homomorphism π : Γ → G such
that π(γ) ̸= 1.

Proof. By Corollary 1.9, it suffices to show that GLn(Zp) is residually finite. To
see this, we note that ⋂

m≥1

kerφm = {1}.

Indeed, if g ≡ In mod pm then g = In ∈ GLn(Zp) as |gij − δij | < |pm| → 0 as
m→∞. □

A group is called torsion if every element has finite order.

Theorem 1.13. (Schur) A torsion subgroup Γ of GLn(C) is
(1) locally finite, i.e. every finite subset generates a finite group,
(2) can be conjugated into Un(C) and
(3) has an abelian normal subgroup of index at most J(n).

Proof. (1) follows from Selberg’s Lemma. We leave (2) as an exercise to the reader.
One reduces to the case when Γ is irreducible and then exploits that the space of Γ-
invariant inner products on C is one-dimensional. The details are left as an exercise
to the reader. Using (1) and (2), (3) follows as the proof of Jordan’s Theorem. □

1.5. Exercises.

1.5.1. Let p be a prime. A group is called a p-group is every element has order
pm for some m ≥ 1. Furthermore a group G is called pro-p if it is profinite and for
every open normal subgroup N < G the quotient show G/N is a p-group. Recall
the maps φm defined in (1.3). Then ker(φ1) is a pro-p group.

1.5.2. Complete the proof of Theorem 1.13.

1.5.3. Classification of finite subgroups of SO3(R):
a) Let S2 be the unit sphere in R3. Then every non-identity element in SO3(R)

has exactly two fixed points and the fixed points are antipodal.
b) Let G be a finite subgroup of SO3(R) and denote by P the set of fixed points

on S2 of non-identity elements in G. Then

|G| − 1 =
1

2

∑
p∈P

(StabG(p)− 1).

c) Let a1, a2, . . . , ar be the sizes of the stabilizers of distinct orbits of the SO3(R)
action on S2. Then deduce from b) and the orbit stabilizer theorem that

2− 2

|G|
=

r∑
i=1

(
1− 1

ai

)
.

d) Use c) to classify all conjugacy classes of finite subgroups of SO3(R). The
resulting conjugacy classes are given in table 1. All of the finite subgroups arise as
symmetry groups of regular geometric objects.
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Group Order Symmetry Object
Cyclic Group Cn n oriented regular polygon

Dihedral Group Dn 2n regular polygon
A4 12 tetrahedron
S5 24 cube or octahedron
A5 60 dodecahedron or icosahedron

Table 1. Classification of Finite Subgroups of SO3(R)

As A5 is simple, it follows that J(2) ≥ 60 and it turns out that this bound is
sharp (c.f. [Rob]).

1.5.4. Blichfeldt’s bound for Jordan’s theorem:
a) A finite subgroup G of GLn(C) is said to be primitive if there is no non-trivial

direct sum decomposition of Cn = V1⊕ . . .⊕Vd such that the finite set of subspaces
is invariant under G (in particular for a finite group G - as it is completely reducible
- primitive implies irreducible). Show that an abelian normal subgroup of a finite
primitive group is central. In particular the conclusion of the main lemma in the
proof of Jordan’s theorem can be strengthened when G is assumed to be primitive
as BG(

1
2 ) is then contained in the center of G.

b) If G is finite and primitive, and A is a maximal abelian subgroup of G, then
the center Z(G) has index at most 7n in A. Hint: use a similar metric covering
argument as in the proof of Jordan’s theorem.

c) If G ≤ GLn(C) is a finite p-group (i.e. |G| is a power of a prime p), then G is
monomial, i.e. Cn has a decomposition as above with each Vi of dimension 1 and
the Vi are permuted by G. Hint: recall that every p-group has a non-trivial center
and show that, if non-abelian, it also has a normal abelian subgroup not contained
in the center.

d) If G ≤ GLn(C) is a finite p-group, then it contains an abelian subgroup whose
index divides n!

e) Using character theory, Blichfeldt proved that every subgroup G of GLn(C)
of order |G| = ab with b not divisible by any prime p ≤ n + 2 contains an abelian
subgroup of order b (cf. Chapter 14 of [Isa76], [Fei64]). Use this together with b)
and d) above to prove Blichfeldt’s bound: If G is a primitive finite subgroup of

GLn(C), then [G : Z(G)] ≤ eO(n2/ logn).

f) Deduce that J(n) ≤ eO(n2/ logn) in Jordan’s theorem.
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2. The Tits Alternative

We recall that a group Γ is called solvable if its derived series Di+1(Γ) =
[Di(Γ), Di(Γ)] with D0(Γ) = Γ is eventually trivial, i.e. if there is n ≥ 0 such
that Dn(Γ) = {1}. Furthermore we say that Γ satisfies a given property virtually
if Γ has a finite index subgroup satisfying the property, e.g. Γ is virtually solvable
if it has a finite index solvable subgroup.

Theorem 2.1. (Tits Alternative, 1972 [Tit72]) A finitely generated subgroup of
GLn(K) over any field is either virtually solvable or contains a non-abelian free
subgroup.

We note the following:

(1) The alternative is exclusive as a group containing a non-abelian free group
is never virtually solvable.

(2) The Tits alternative is false if one does not assume that the finitely gen-
erated group is contained in GLn(K). Indeed, there are infinite torsion
subgroups as for example constructed by Grigorchuk [Gri80]. A further
example are Tarski-Monsters, i.e. infinite groups such that there exists a
prime p with every non-identity element having order p (cf. [Oš80]).

(3) As constructed by Juschenko-Monod [JM13] there are also infinite finitely
generated simple groups without free subgroups (they are even amenable).

2.1. Ping-Pong. A crucial ingredient in the proof of the Tits alternative is the
ping-pong argument, whose exposition we begin by discussing an example due to
Felix Klein (cf. [Mas65]). Consider the upper half-plane H = {z ∈ C : Im(z) > 0}
endowed with the Riemannian metric

√
dx2+dy2

y . The group PSL2(R) acts isometri-

cally on H via Möbius transformations, namely for g = ( a b
c d ) ∈ PSL2(R) and z ∈ H

we define

gz =
az + b

cz + d
.

For t, θ ∈ R consider the matrices

gt =

(
et 0
0 e−t

)
and rθ =

(
cos θ sin θ
− sin θ cos θ

)
as well as

ht,θ = rθgtr
−1
θ = rθgtr−θ.

Lemma 2.2. For every θ ̸= 0 there is tθ > 0 such that gt and ht,θ generate a free
subgroup of PSL2(R) if t > tθ.

Proof. We encourage the reader to visualise the following argument geometrically.
For ε > 0 denote

D−
ε = {z ∈ H : |z| < ε} and D+

ε = {z ∈ H : |z|−1 < ε}.
Observe that gt(D

−
ε )

c ⊂ D+
ε and g−1

t (D+
ε )

c ⊂ D−
ε provided that e2t > ε−2. For

our chosen parameter θ, consider E−
ε = rθD

−
ε and E+

ε = rθD
+
ε . Then analogously,

ht(E
−
ε )c ⊂ E+

ε and h−1
t (E+

ε )c ⊂ E−
ε . Choose ε > 0 small enough such that all of

the sets D−
ε , D

+
ε , E

−
ε , E+

ε are disjoint and e2t > ε−2 for the given choice of ε.
Consider the open set U = D−

ε ∪D+
ε ∪ E−

ε ∪ E+
ε and choose x0 ∈ H\U . Then

for every word w in two letters,

w(gt, ht,θ)x0 ∈ U and therefore w(gt, ht,θ)x0 ̸= x0.
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Thus w(gt, ht,θ) ̸= I2, showing the claim as w was arbitrary. □

Generalizing the example due to Klein, we arrive at the following proposition.

Proposition 2.3. (Abstract Ping-Pong) Let Γ be a group acting on a set X and
suppose that Γ is generated by subgroups Γ1, . . . ,Γk. Suppose further that for each
i there is a subset Di ⊂ X such that the following properties are satisfied:

(1) Di ∩Dj = ∅ if i ̸= j.

(2) There is x0 ∈ X such that x0 ̸∈
⋃k

i=1 Di.
(3) If γ ∈ Γi\{1} then γx0 ∈ Di and γDj ⊂ Dj if j ̸= i.

Then Γ = Γ1 ∗ . . . ∗ Γk is the free product of Γ1, . . . ,Γk.

Proof. Let x0 ∈ X such that x0 ̸∈
⋃k

i=1 Di. Given a non-empty word w in k

letters it holds that w(γ1, . . . , γk)x0 ∈
⋃k

i=1 Di for any γ1, . . . , γk with γi ∈ Γi\{1},
implying that w(γ1, . . . , γk) is not the identity. □

To give a further example, we leave as an exercise to the reader to show that for
t ∈ R with |t| ≥ 2 the matrices(

1 t
0 1

)
and

(
1 0
t 1

)
(2.1)

generate a free group. Furthermore for any t ∈ R that is transcendental, the
matrices (2.1) generate a free group as the entries of any word evaluated at these
matrices are polynomial in t. On the other hand, SL2(Z) = ⟨( 1 1

0 1 ,
1 0
1 1 )⟩ is not

free, yet virtually free. It is a well-known open problem, called the Lyndon-Ullman
problem [LU69] (see also [Gil08],[KK22]), to show that the matrices (2.1) do not
generate a free group for any t ∈ Q ∩ (−2, 2).

Recall the matrix groups

SOn(R) = {g ∈Mn(R) : ggT = gT g = Idn and det(g) = 1}
and

SUn(C) = {g ∈ Un(C) : det(g) = 1}.
We prove that SO3(R) also contains a free group, a result due to Hausdorff. Indeed,
we again consider the matrices gt and ht,θ from Lemma 2.2, yet with also allowing
complex values t. We fix a value of θ such that rθ has algebraic entries, for example
θ = 2π/3 with

rθ =

(
−1/2

√
3/2

−
√
3/2 −1/2

)
.

Since we know that gt and ht,θ generate a free subgroup of SL2(R) for at least
some (real) value of t by the above construction, it follows that it also generates a
free subgroup for all values of t (possibly complex) for which et is transcendental.
Therefore we choose t = iφ with φ ∈ R such that et is transcendental. Then gt and
ht,θ generate a free subgroup of SU2(C). Since SU2(C) is a double cover of SO3(R),
the existence of a free subgroup of SO3(R) follows.

The existence of a free subgroup of SO3(R) is a useful observation. Indeed,
consider for a non-trivial word w in two letters the word variety

Vw = {(x, y) ∈ SO3(R)× SO3(R) : w(x, y) = Id3}.
As SO3(R) contains a free subgroup, Vw is a proper sub-variety and therefore is an
analytic manifold of dimension strictly less than dim(SO3(R)×SO3(R)). Therefore



TOPICS ON LINEAR GROUPS 11

Vw has zero measure with respect to the Haar measure on SO3(R) × SO3(R). As
there are only countably many words, the same holds for

⋃
w ̸=1 Vw. Thus if we

choose two elements at random with respect to the Haar measure, they generate a
free group almost surely.

Another application is the Hausdorff-Banach-Tarski paradox (cf. [Wag85]). In-
deed, a free subgroup of SO3(R) can be used to give a paradoxical decomposition
of S2. More precisely, one can write S2 = A1 ⊔ . . . ⊔ A2m (for some m ≥ 2, one
can even take m = 2) as a disjoint union of subsets such that there exists elements
γ1, . . . , γm ∈ SO3(R) satisfying

γ1A1 ⊔ . . . ⊔ γmAm = S2 = γm+1Am+1 ⊔ . . . ⊔ γ2mA2m.

The latter decomposition shows that there is no finitely additive rotation invariant
measure on S2 defined on all subsets.

We finally discuss a further open problem. Consider the matrices

a =

−t 1 0
0 1 0
0 1 −t

 and b =

 1− t −t−1 t−1

1− t2 −t−1 0
1 −t−1 0

 .

It is unknown if there exists some t such that a and b generate a free subgroup. To
motivate this open problem, consider the braid group B4, which has the presenta-
tion

B4 = ⟨σ1, σ2, σ3 : σ1σ3 = σ3σ1, σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3⟩.

The Burau representation of B4 is given for t ∈ R ̸=0 as

ρ(σ1) =

−t 1 0
0 1 0
0 0 1

 , ρ(σ2) =

1 0 0
t −t 1
0 0 1

 , ρ(σ3) =

1 0 0
0 1 0
0 t −t

 .

It is a well-known open problem to show that the Burau representation of B4 is
faithful for some t. It was shown by Joan Birman [Bir74] (see also [BB21]) that
ρ is faithful if and only if a and b generate a free group, where a = ρ(σ1)ρ(σ3)

−1

and b = ρ(σ2)aρ(σ2)
−1. Moreover, if the Burau representation of B4 is not faithful,

then the Jones polynomial does not detect unknots (c.f. [Big02], [Ito15]).

2.2. The Zariski topology. For proofs of the results stated in this section we
refer to [Hum75]. Let K be a field. A set V ⊂ Kn is called Zariski closed if
V = {x ∈ Kn : P (x) = 0 for all P ∈ F}, where F ⊂ K[X1, . . . , Xn] is a family
of polynomials. The closed sets define the Zariski topology on Kn, which has the
property that polynomial maps Kn → Km are continuous.

For a subset X ⊂ Kn we define the Zariski closure X
Z
as the intersection of all

Zariski closed subsets of Kn containing X.
Note that the Zariski topology on Kn induces a topology on each subset X of

Kn. In particular, for two subsets X ⊂ Y ⊂ Kn, X is Zariski dense in Y if every
polynomial that vanishes on X vanishes on Y .

A subsetX ⊂ Kn is said to be irreducible if it is not a union of two proper subsets
that are Zariski closed in X. We note that if X is irreducible and φ is a polynomial
map, then φ(X) is also irreducible. Using that K[X1, . . . , Xn] is noetherian, we see
that every subset of Kn has a finite number of maximal irreducible subsets whose
union is the whole set.
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We may view GLn(K) as a Zariski open subset of Mn(K) ∼= Kn2

as the deter-
miniant is a polynomial. Moreover, GLn(K) can be viewed as a Zariski closed set
of Mn+1(K) via the embedding

A ∈ GLn(K) 7→
(
A 0
0 det(A)−1

)
,

whose image is a Zariski closed subset of Mn+1(K), the block diagonal matrices
diag(A, x) with xdetA = 1.

If Γ ⊂ GLn(K) is an arbitrary subgroup, then the Zariski closure Γ
Z

is also a
group as the equations ensuring that Γ is a group are polynomials. Equally, if Γ is

abelian, nilpotent or solvable so is Γ
Z
.

Write Γ = Γ1 ∪ . . . ∪ Γk with Γi being irreducible. If 1 ∈ Γ1, then Γ1 is a
subgroup and each Γi is a coset of Γ1. We then call Γ1 the connected component
(of the identity) of Γ and denote it as Γ◦. Every subgroup of finite index of Γ has
the same connected component of the identity as Γ.

We say that a subgroup Γ ⊂ GLn(K) is strongly irreducible if it does not preserve
a finite union of proper subspaces of Kn. We leave as an exercise to show that Γ
is strongly irreducible if and only if Γ◦ is irreducible, i.e. there are no Γ◦-invariant
subspaces of Kn.

2.3. Proof of Tits Alternative. We only give a proof of the Tits alternative
in characteristic zero and therefore all fields in this section are assumed to be of
characteristic zero.

Definition 2.4. Let k be a local field. An element g ∈ Mn(k) is called proximal
if it has a unique eigenvalue of maximal modulus. More precisely, there is an
ordering of the eigenvalues λ1(g), . . . , λn(g) in the algebraic closure of k, counted
with multiplicity, satisfying

|λ1(g)| > |λ2(g)| ≥ . . . ≥ |λn(g)|.
Recall that the absolute value of k admits a unique extension to the algebraic

closure. If x ∈ k1 ⊂ k for k1 a finite extension of k, then |x| = |Nk1 | k(x)|
1

[k1:k] . In

particular, the absolute Galois group Gal(k | k) acts by isometries on the algebraic
closure k of the local field k and permutes the eigenvalues of any element g ∈Mn(k).
Since k has characteristic zero, the fixed field of the absolute Galois group is k it
self (cf. Lang [Lan12] Chapter V Proposition 6.11). Therefore if g ∈ Mn(k) is
proximal, the maximal eigenvalue λ1(g) is fixed by the absolute Galois group and
hence to belongs to k. In turn, the up to scalar multiple unique eigenvector of g
with eigenvalue λ1(g) is in kn.

We note further that proximality is an open condition. Recall furthermore that
π ∈ Mn(k) is a rank one projection if π2 = π and dim(Im(π)) = 1 and that every
rank one projection is proximal. Note that a rank one matrix π ∈ Mn(k) is a
projection if and only Im(π) ⊈ ker(π).

Lemma 2.5. An element g ∈Mn(k) is proximal if and only if there is a sequence
αn ∈ k× such that αng

n converges to a rank one projection.

Proof. If g is proximal, then the claim follows by setting αn = (λ1(g))
−n and

considering the Jordan normal form of g. For the converse direction, as proximality
is an open condition, it follows that for n large enough αng

n is proximal, showing
that g is proximal. □
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Towards the proof of the Tits alternative we note that a proximal element g ∈
Mn(k) has interesting contraction properties when acting on projective space P(kn).
Indeed denote by Hg the sum of the characteristic subspaces of g with eigenvalues
λi for 2 ≤ i ≤ n. Let x+

g ∈ kn be a non-zero eigenvector of g with eigenvalue λ1(g)

and write v+g = [x+
g ] ∈ P(kn). Then for all x ∈ P(kn)\[Hg] it holds that g

nx→ v+g .
Using these observations, we can apply the Ping-Pong proposition to deduce the
following.

Lemma 2.6. Let k be a local field and let Γ ⊂ GLn(k) be a subgroup, n ≥ 2.
Assume that Γ is Zariski-connected and acts irreducibly on kn and that there is an
element γ ∈ Γ such that γ and γ−1 are proximal. Then there exists h ∈ Γ such that
for n large enough γn and hγnh−1 generate a free subgroup of GLn(k).

Proof. It suffices to find h ∈ Γ such that hv+γ ̸∈ Hγ ∪Hγ−1 and hv+γ−1 ̸∈ Hγ ∪Hγ−1 .

Indeed notice that if γ± is proximal, then so is hγ±h−1 and we have that vhγ±h−1 =
hvγ± . To apply the ping-pong argument, we choose D1 to be a neighborhood of

{v+γ , v+γ−1} and D2 one of {v+hγh−1 , v
+
hγ−1h−1}, where we choose the neighborhoods

to be sufficiently small such that they are disjoint and don’t cover P(kn). Replacing
γ by powers of itself, γn and hγnh−1 = (hγh−1)n become increasingly contracting
on P(kn) and therefore Proposition 2.3 applies. We refer to [BG03] for a definition
of a metric on P(kn), allowing to make the last argument more precise.

It remains to show that there exists h ∈ Γ such that hv+γ ̸∈ Hγ ∪ Hγ−1 and

hv+γ−1 ̸∈ Hγ ∪Hγ−1 . Indeed consider the Zariski-closed subspaces X1, . . . , X4 given

by {g ∈ GLn(k) : gv+γ±1 ⊂ Hγ±1}. Assume for a contradiction that there is

no element h ∈ Γ as above. Then Γ ⊂ X1 ∪ X2 ∪ X3 ∪ X4. Since Γ is Zariski
connected, it holds that Γ ⊂ Xi for some i. This is impossible however. For
example if Γv+γ ⊂ Hγ−1 ⊊ kn, then ⟨Γv+γ ⟩ is a non-trivial Γ-invariant subspace, a
contradiction to irreducibility. □

To complete the proof of the Tits alternative, we require to achieve the assump-
tions from Lemma 2.6. The next lemma simplifies the assumption from Lemma 2.6.

Lemma 2.7. Let Γ ⊂ GLn(k) be a Zariski-connected and irreducible subgroup and
assume there exists a proximal element g ∈ Γ. Then there is γ ∈ Γ such that γ and
γ−1 are proximal.

Proof. By Lemma 2.5, since g is proximal there is a sequence αn such that αng
n

converges to a rank one projection π. Furthermore denote by βn the maximal
modulus of the eigenvalues of g−n. Then upon choosing a subsequence, we may
assume that βng

−n converges to the non-zero matrix A ∈Mn(k).
For two elements h1, h2 ∈ Γ denote γn = gnh1g

−nh2 and observe that

αnβnγn = αng
nh1βng

−nh2 −→ πh1Ah2

as n → ∞ and similarly αnβnγ
−1
n → h−1

2 πh−1
1 A. To conclude the claim we just

need to show that π1 = πh1Ah2 and π2 = h−1
2 πh−1

1 A are rank one projections.
As π has rank one, the maps π1 and π2 have rank at most one and therefore it

suffices to show that

Im(πi) ⊈ ker(πi)

for i = 1, 2. This amounts to proving that h1Ah2Im(π) ̸⊂ ker(π) and h−1
1 Ah−1

2 Im(π) ̸⊂
ker(π). Exploiting strong irreducibility of Γ as in the proof of Proposition 2.6, we
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first find h2 ∈ Γ such that h2Im(π) ⊈ ker(A) and h−1
2 Im(π) ⊈ ker(A) and then find

a suitable h1 similarly. □

Lemma 2.8. ([Tit72] Lemma 4.1) Let K be a finitely generated field and let α ∈ K
be an element that is not a root of unity. There there is a field embedding K ↪→ k
into a local field k such that |α|k > 1.

Proof. We give a proof in the case that K has characteristic zero. We may assume
that K = Q(α) as we can always extend a field embedding Q(α) ↪→ k to one of K
in the algebraic closure k. If α ∈ K is transcendental over Q, then simply choose a
transcendental element ω ∈ C with |ω| > 1 and extend the map α → ω to a field
embedding Q(α)→ C.

On the other hand, if α ∈ K is algebraic, consider the minimal polynomial of α

P (X) = anX
n + . . .+ a1X + a0 =

n∏
i=1

(X − αi)

with relatively prime integer ai’s. Assume first that α is an algebraic integer, in
other words that an = 1. Then by Kronecker’s Theorem, since α is not a root of
unity, one of the Galois conjugates satisfies |αi| > 1. Extending the map α → αi

to a field embedding Q(α)→ C, the claim follows.
It remains to treat the case when α is not an algebraic integer. Choose a prime

number p that divides an and consider a splitting field k of P over Qp such that

P (X) = an

n∏
i=1

(X − αi)

with αi ∈ k. Assume for a contradiction that |αi|k ≤ 1 for all 1 ≤ i ≤ n. It
holds that |an|p < 1 and therefore since the field is non-archimedean we conclude
|ai|k ≤ |an|k < 1 for all 1 ≤ i ≤ n showing that p divides a0, . . . , an. This is
a contradiction to the assumption that the ai are relatively prime. Therefore it
follows that |αi|k > 1 for some 1 ≤ i ≤ n and Q(α) embeds into Qp(αi) ⊂ k. □

Lemma 2.9. (see also Chapter 17.5 [Hum75]) Let K a field and Γ ⊂ GLn(K) a
subgroup all of whose elements are unipotent. Then Γ is conjugate to a subgroup of


1 ∗ . . . ∗
0 1 . . . ∗
...

...
. . .

...
0 0 . . . 1


 ,

the subgroup of upper triangular matrices with ones on the diagonal.

Proof. We consider the subalgebra A of Mn(K) generated by γ − 1 with γ ∈ Γ
and note that A is the C-span of {γ − 1 : γ ∈ Γ} since (γ1 − 1)(γ2 − 1) =
(γ1γ2−1)− (γ1−1)− (γ2−1) for any γ1, γ2 ∈ Γ. As γ is unipotent, by writing γ in
Jordan normal form it follows that tr(γ−1) = 0 for all γ ∈ Γ and therefore tr(a) = 0
for all a ∈ A. The claim of the lemma is implied from Wedderburn’s theorem that
subalgebras of Mn(K) consisting of matrices of trace zero are nilpotent and hence
can be put in upper triangular form with zeros on the diagonal in some basis (see
Section 2.4 below). For a similar treatment using Burnside’s theorem we refer to
section 17.5 of [Hum75]. □
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We are now in a suitable position to conclude the proof of the Tits alternative.
By Selberg’s Lemma, up to passing to a finite index subgroup, we can assume that
Γ is torsion free. Furthermore, since the connected component has finite index, one
reduces to the case that Γ is Zariski connected.

To prove the Tits alternative, we proceed with assuming that Γ is not virtually
solvable. Combining Lemma 2.7 together with Lemma 2.6, it remains to check that
we can achieve that Γ is irreducible and contains a proximal element. Observe that
not all elements from [Γ,Γ] are unipotent. Indeed if this was the case, by Lemma 2.9
it would follow that [Γ,Γ] itself is unipotent and hence solvable and so Γ would be
solvable too.

Since Γ is torsion free, we can choose an element γ ∈ [Γ,Γ] that has an eigenvalue
that is not a root of unity. Therefore by the Lemma 2.8, there is a local field k and
an embedding K ↪→ k such that |α|k > 1. As we have chosen γ ∈ [Γ,Γ], det(γ) = 1
and therefore the product of the eigenvalues of γ is 1. This shows that there is
1 ≤ ℓ ≤ n− 1 such that

|λ1(γ)| = . . . = |λℓ(γ)| > |λk+1(γ)| ≥ . . . ≥ |λn(γ)|.

The final trick is to use the wedge product Λℓkn of kn, inducing a representation

Λℓ : GL(kn)→ GL(Λℓkn).

Since the eigenvalues of Λℓγ are products of ℓ distinct eigenvalues of γ it follows
that Λℓγ is proximal.

While Γ doesn’t necessarily act irreducibly on Λℓkn, we can pass to a suitable
quotient. Indeed choose a filtration Λℓkn = W0 ⊋ W1 ⊋ W2 . . . of Γ-invariant sub-
spaces such that Wi/Wi+1 are irreducible. We note that as γ ∈ [Γ,Γ] it follows that
det(Λℓγ|Wi/Wi+1

) = 1. Finally pick i0 such that λ1(Λ
ℓγ) appears in Wi0/Wi0+1.

Then since det(Λℓγ|Wi0/Wi0+1
) = 1 it follows that dim(Wi0/Wi0+1) ≥ 2 and we

may apply Lemma 2.6. This concludes the proof.

2.4. Subalgebras of Mn(K). We include here some basic recollections on the
structure of (associative) subalgebras of Mn(K), which we needed in the proof
of Lemma 2.9 and also yield Burnside’s theorem. This material can be found
for instance in Wedderburn’s Lectures on Matrices [Wed34], or in more recent
textbooks such as Lang ([Lan12], Chapter XVII).

If A ≤ Mn(K) is a K-subalgebra, then it is easy to check that it contains a
largest nilpotent bilateral ideal N (nilpotent means that Nk = 0 for some integer
k ≥ 1 and bilateral ideal means that aN and Na lie in N for each a ∈ A). It is
called the radical (or Jacobson radical) of A. Wedderburn showed that A can be
decomposed as a direct sum:

A = S +N

where N is the radical of A, and S is a semi-simple subalgebra. Wedderburn
moreover showed that S is a direct sum of simple (i.e. with no non-trivial ideal)
subalgebras, and that each simple K-algebra is of the form Md(DK) where DK is
a division algebra (i.e. every non-zero element is invertible). If K is algebraically
closed then K is the only division K-algebra.

It is straightforward to check that every nilpotent subalgebra N of Mn(K) can
be put in upper triangular form with zeroes on the diagonal in some basis of Kn.
Indeed one shows that there is a non-zero subspace killed by all elements of N and
then inducts on the dimension. Similarly, we get that if K is algebraically closed,
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every subalgebra A ≤ Mn(K) can be put in block upper-triangular form, where
each non-zero diagonal block is a full matrix algebra Md(K) for d ≤ n. From this
the following is immediate:

Lemma 2.10. (Wedderburn) Let K be a field and A ≤ Mn(K) a K-subalgebra
spanned by elements with zero trace, then A is nilpotent and can be conjugated into
upper triangular form with zeroes on the diagonal in some K-basis of Kn.

Similarly:

Lemma 2.11. If K is algebraically closed and A ≤ Mn(K) is a K-subalgebra
preserving no non-trivial invariant subspace of Kn, then A = Mn(K).

Corollary 2.12. (Burnside) If G ≤ GLn(C) is a subgroup acting irreducibly on
Cn, then the C-span of all g ∈ G is all of Mn(C).

Indeed the C-span is an irreducible subalgebra.

2.5. Exercises.

2.5.1. For t ∈ R with |t| ≥ 2 show that(
1 t
0 1

)
and

(
1 0
t 1

)
generate a free group. Hint: Use R2 as a ping-pong table.

2.5.2. Consider the Lie algebra

su(2) = {x ∈M2(C) : x∗ = −x and tr(x) = 0}.

Show that SU2(C) is a double cover of SO3(R) by checking that the sequence

1 −→ {±I2} −→ SU2(C) −→ SO3(R) −→ 1

is exact, where the map from SU2(C)→ SO3(R) is given as

g 7→ (x ∈ su(2) 7→ gxg−1 ∈ su(2)).

Hint: Note that su(2) ∼= R3 and find a suitable inner product on su(2).

2.5.3. Show that Γ ⊂ GLn(K) is strongly irreducible if and only if Γ◦ is irreducible.

2.5.4. SO3(R) contains a copy of PSL2(Z):
a) Show that PSL2(Z) = (Z/2Z) ∗ (Z/3Z) by considering the matrices

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
and checking that PSL2(Z) = ⟨S, T : S2 = 1, (ST )3 = 1⟩.

b) We consider two rotations around the origin in R2, one with angle 2π/3, call
it a, and another with angle π, called b. Let θ be the angle between their axes. If
θ = π/4, then ⟨a, b⟩ is the free product (Z/2Z) ∗ (Z/3Z). Deduce that the same
holds if cos(θ) is transcendental. Hint: Show that in a suitable basis a±1b = 1

2c±
for c± ∈M3(Z[

√
3]) and that modulo 2 it holds that c+ = c− = c2± is non-zero.

2.5.5. If G = ⟨a, b | a3 = b2 = 1⟩, then babab and ababa generate a free subgroup.
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2.5.6. Show that a discrete and torsion free subgroup Γ of SL2(R) which is not co-
compact is free. Hint: View Γ as the fundamental group of a surface H/Γ and show
that the fundamental group of a connected orientable surface is either a surface
group or a free group.

2.5.7. Show Kronecker’s theorem: if P =
∏
(X − αi) ∈ Z[X] is monic and all its

roots are in the (closed) unit disc, then its roots are roots of unity. Hint: show
that there are only finitely many such polyonomials of given degree and that each
Pn =

∏
(X − αn

i ) is one of them.

2.5.8. Let x ∈ SL2(R) be an element generating a discrete subgroup. Then there
is a non-empty open subset U of SL2(R) such that ⟨x, y⟩ is discrete for all y ∈ U .
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3. Dense Subgroups

3.1. Recollections from the theory of Lie groups and algebraic groups.
For proofs of the results on Lie groups we refer to [Kna02]. Recall that a Lie group
is a group that is a smooth manifold such that the group multiplication and the
inverse map are smooth. The prime example of Lie groups are closed subgroups of
GLn(R), that all form Lie groups by the Cartan-von Neumann Theorem.

Given a Lie group G, the Lie algebra g = Lie(G) of G is the tangent space
at the identity element 1 ∈ G. The Lie algebra is endowed with a Lie bracket
[· , ·] : g × g → g, which is a bilinear map satisfying [X,X] = 0 for all X ∈ g and
the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ g. For example, if G ≤ GLn(R) is a closed subgroup and X,Y ∈
g ⊂Mn(R) = Lie(GLn(R)) = gln(R) it holds that [X,Y ] = XY − Y X.

The Lie algebra is connected to the Lie group by the exponential map exp : g→
G that sends 0 ∈ g to 1 ∈ G and for a small enough neighbourhood around the
identity the exponential map is a homeomorphism onto its image. For M ∈ gln(R)
it holds that exp(M) =

∑∞
k=0

Mn

n! ∈ GLn(R).
For g ∈ G we consider the conjugation map Cg : G → G, h 7→ ghg−1. The

derivative at e of the is the adjoint map Adg = DeCg : g → g. The map g 7→ Adg
forms a representation G → GL(g). For g ∈ GLn(R), it holds that Adg(X) =
gXg−1 with X ∈ gln(R). The derivative of the group homomorphism Ad : G →
GL(g) is denoted adX and evaluates as adX(Y ) = [X,Y ] for all X,Y ∈ g. The map
ad : g→ gl(g) is also referred to as the adjoint representation and is a Lie algebra
representation. Therefore following diagram is commutative:

G GL(g)

g gl(g)

Ad

exp

ad

exp

Given a Lie algebra g, a subspace h ⊂ g is called an ideal if [g, h] ⊂ h. A Lie
algebra is called simple if it has no non-trivial ideal and semisimple if it is a direct
sum of simple Lie algebras. Every real Lie algebra g has a Levi decomposition, i.e.
it can be written as g = s⊕ r with s being semisimple and r the maximal solvable
ideal in g.

Let g be a complex semisimple Lie algebra. We choose a Cartan subalgebra
h ⊂ g, i.e. a maximal abelian subalgebra such that for every element X ∈ h the
linear map adX is diagonalizable. By the Jacobi identity, the collection of operators
adX for X ∈ h commute and therefore they are jointly diagonalizable.

So there exists a finite subset Σ ⊂ Hom(h,C) such that

g = h⊕
⊕
α∈Σ

gα,

where gα = {Y ∈ g : [X,Y ] = α(X)Y for all X ∈ h}. The linear forms Σ are called
the roots and the above decomposition is called the root space decomposition.
It can be shown that dim gα = 1.

We may choose a subset of positive roots Σ+ ⊂ Σ such that for each α ∈ Σ
it either holds that α ∈ Σ+ or −α ∈ Σ+ and for all α, β ∈ Σ+ we have that
α + β ∈ Σ+ provided α + β ∈ Σ. A root α ∈ Σ+ is called simple if it cannot be
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written as a sum of roots in Σ+. Denote by π ⊂ Σ the set of simple roots. If α ∈ π
and gα = ⟨eα⟩C, then hα = [eα, e−α] is in h and it holds that h =

⊕
α∈π⟨hα⟩C.

Therefore dim h = |π|, which is called the rank of g.
To give a concrete example, consider

g = sln(C) = {A ∈Mn(C) : tr(A) = 0}
for n ≥ 2. We choose the Cartan subalgebra h ⊂ g to be the subalgebra of diagonal
matrices. Denote by Eij the matrix that is 1 at the entry (i, j) and zero otherwise
and by E∗

ij the induced dual map on Mn(C). The roots are the maps E∗
ii − E∗

jj ∈
Hom(h,C) for i ̸= j and a collection of simple roots is π = {E∗

ii − E∗
i+1,i+1 : 1 ≤

i ≤ n− 1}. Then
g = h⊕

⊕
i ̸=j

⟨Eij⟩C

is the root space decomposition.
We furthermore discuss the relationship between Lie groups and algebraic groups.

For the purposes of these notes, we consider an algebraic group to be a closed
subgroup of GLn(K) for some field K. References for the theory of algebraic groups
are [Bor91], [Hum75] and [OV80].

To each complex semisimple Lie algebra g, there exists a simply connected com-
plex Lie group G with Lie algebra g. As follows by the classification of complex
semisimple Lie algebras, G can be endowed with the structure of an algebraic group
and it has finite center Z. All Lie groups with Lie algebra g are of the form G/Z0

where Z0 ⊂ Z. Given G/Z0 we call G/Z the adjoint group. The groups G/Z0 and
G/Z are called isogenous.

Moreover we recall that every complex semisimple Lie group G is a product
G1 · · ·Gk for the collection of non-trivial commuting simple subgroups. Moreover

G ∼= G1 × . . .×Gk/Z

and the the groups Gi are called the simple factors of G.
We note that these results are wrong over R as the universal cover of SL2(R)

is a simply connected real Lie group that is not algebraic. A real form of G is an
algebraic group H defined over R such that H(C) ∼= G.

3.2. Kuranishi’s results.

Proposition 3.1. (Kuranishi [Kur49]) Every real semisimple Lie group g is gen-
erated by two elements. Moreover, the set {(A,B) ∈ g× g : A,B generate g} is a
non-empty Zariski open subset.

Proof. We first assume that g is a complex semisimple Lie algebra and recall the root
space decomposition as introduced above. First choose A ∈ h such that α(A) ̸=
β(A) for all roots α ̸= β. Such an element exists since the kernel of α − β is a
hypersuface in g. Furthermore set B =

∑
α∈Σ eα.

We claim that A,B generate g as a Lie algebra. Indeed notice that adkA(B) =∑
α∈Σ α(A)kB and consider the elements {adkA(B)}0≤k≤|Σ|−1. Then the latter set

of elements spans
⊕

α∈Σ gα since the representation matrix of these elements with
respect to the basis {eα}α∈Σ is a Vandermonde matrix. Indeed, by the construction
of A it follows that the latter matrix has non-zero determinant and therefore eα is in
the span of the Lie algebra generated by A and B. Since the matrices hα = [eα, e−α]
for α ∈ π generate h, the claim follows.
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We proceed with showing that for a complex semisimple Lie algebra g the set
{(A,B) ∈ g × g : A,B generate g} contains a Zariski open subset. Indeed, the
latter set is the C-span of all the possible brackets generated by A and B of length
at most dim g + 1. Therefore A and B generate g if and only if a finite collection
of products of matrices of A and B span g. This is a rank condition and results in
polynomial conditions, where all of the polynomials are defined over R.

Finally we notice that the real case follows from the complex one. Indeed, if g is
a real semisimple Lie algebra, then gC = g⊗C is a complex semisimple Lie algebra.
Since the above polynomial conditions are over R, the claim also follows for g in
gC. □

Proposition 3.2. (Kuranishi [Kur49]) Let G be a connected semisimple Lie group.
Then there is a neighborhood Ω ⊂ g of 0 in g such that two elements A,B ∈ Ω
generate g as a Lie algebra if and only if the exp(A) and exp(B) generate a dense
subgroup of G.

Lemma 3.3. (Zassenhauss) Let G be a connected Lie group. Then there is a
neighborhood U of the identity such that every discrete subgroup generated from
elements in U is nilpotent.

Proof. Similarly to the commutator shrinking property (1.1), there exists a constant
cG such that for x, y ∈ U for U a sufficiently small neighborhood of 1 ∈ G,

d(1, xyx−1y−1) ≤ cGd(1, x)d(1, y), (3.1)

where d is a left-invaraint metric on G. Let S be a set in U generating a discrete
subgroup. Then by (3.1), commutators of elements in S will be closer and closer to
the identity and therefore, since the group generated by S is discrete, sufficiently
deep commutators are trivial. It follows that the group generated by S is nilpotent
(see Exercise 3.5.9). □

Proof. (of Proposition 3.2) We choose Ω ⊂ g such that the exponential map is a
homeomorphism and the image is a Zassenhauss neighborhood. Denote a = exp(A),
b = exp(B) for A,B ∈ Ω and Γ = ⟨a, b⟩.

Assume first that A and B generate g. We show that Γ is not discrete. Indeed,
if Γ was discrete, then Γ would be nilpotent by Lemma 3.3. Also if z ∈ Γ is the
closest non-trivial element to the identity, by the commutator shrinking property
it would follow that z is in the center of Γ. Therefore Z = log(z) commutes with
A and B and thus is a non-zero central element of g, a contradiction as g has no
center.

Since Γ is not discrete, the connected component of the closure of Γ is a Lie group
of non-zero dimension. Denote by h = Lie(Γ) ⊂ g. It follows that h is invariant
under Ada and Adb and therefore also under adA = logAda and adB = logAdb.

So h is an ideal of g and thus H = Γ
◦
is a normal subgroup. Upon replacing G by

G/H we may induct on the dimension to conclude the claim.
For the other direction one proceeds along similar lines, establishing that h =

⟨A,B⟩ is a Lie ideal and then inducting on the dimension. □

Corollary 3.4. Let G be a semisimple Lie group and k ≥ 2. Then the condition
that a k-tuple generates a dense subgroup is open.

Proof. We give a proof in the case when k = 2 and leave the analogous general
case to the reader. Near the identity, the claim follows by Proposition 3.2. More
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precisely, there are proper subspaces V1, . . . , Vk of g×g such that any two elements
(a, b) ∈ exp(Ω)×exp(Ω) generate a dense subgroup if and only if (a, b) ̸∈ exp(∪iVi∩
Ω× Ω), where Ω is the neighborhood from Proposition 3.2.

Let now a, b ∈ G be two words not necessarily close to the identity that generate
a dense subgroup. Then there are two words w1 and w2 in a and b such that w1 and
w2 are in Ω and generate a dense subgroup. Therefore, there are two neighborhoods
U and V of w1 and w2 such that any two elements w′

1 ∈ U and w′
2 ∈ V generate

a dense subgroup. Choosing then elements a′ and b′ close enough to a and b, the
same words evaluated at a′ and b′ will still lie in U and V , therefore generating a
dense subgroup and implying the claim. □

Corollary 3.5. Let G be a semisimple Lie group and let Γ be a dense subgroup
generated by n elements. Then for all neighborhoods U of the identity in G there
are t1, . . . , tn+2 ∈ U ∩ Γ such that Γ = ⟨t1, . . . , tn+2⟩.

Proof. By Proposition 3.2, choosing U sufficiently small, there are a, b ∈ U ∩ Γ
generating a dense subgroup of G. Assume that Γ is generated by ⟨s1, . . . , sn⟩.
Then there are words in w1, . . . , wn in a and b such that siwi ∈ U . Therefore
it follows that Γ is generated by the elements {s1w1, . . . , snwn, a, b}, implying the
claim. □

Proposition 3.6. Let G be a complex semisimple algebraic group. Then the set

{(a, b) ∈ G×G : ⟨a, b⟩ generate a Zariski-dense subgroup of G}

is a non-empty Zariski open set.

Proof. We give a proof in the case that G ⊂ GLn(C) is simple. We claim that there
are two finite dimensional irreducible representation (ρ1, V1) and (ρ2, V2) such that
⟨a, b⟩ is Zariski dense if and only if ⟨a, b⟩ acts irreducibly on V1 and V2. Assuming
the claim, the proposition is a straightforward consequence as an action being
irreducible is a Zariski open condition.

To show the claim, we will take (ρ1, V1) to be the representation (Ad, g) and
(ρ2, V2) to be an irreducible representation of dimension larger than J(n), the con-
stant from Jordan’s theorem (Theorem 1.1). Such a representation exists as there
are irreducible representation of arbitrarily high dimension [Hum75]. Notice that
subrepresentations of the adjoint representation correspond to ideals in g and there-
fore, since we assume g to be simple, (Ad, g) is also an irreducible representaion.
Therefore it follows that if Γ is Zariski-dense, then Γ acts irreducibly on V1 and V2.
For the other direction assume that Γ acts irreducibly on V1 and V2.

To prove the claim, write Γ = ⟨a, b⟩ let H = Γ
Z
and assume for a contradiction

that H is a proper subgroup of G. We show that Γ must be infinite. Indeed if Γ is
finite, by Jordan’s Theorem, there is an abelian normal subgroup A in Γ such that
[Γ : A] ≤ J(n). Since A is abelian, there is v ∈ V2 such that Av ⊂ ⟨v⟩C. Notice that
the space ⟨Γv⟩C ⊂ V2 is Γ-invariant and has dimension ≤ J(n). Thus V2 cannot be
irreducible, a contradiction to the assumption.

As Γ is infinite, we consider the proper Lie algebra h = Lie(H) of non-zero
dimension. The Lie algebra h is fixed under Ad(a) and Ad(b) and therefore, as we
assume that Ad(Γ) acts irreducibly on g, we arrive at a contradiction to h being
proper. Thus G = H and the proof is concluded. □
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3.3. Examples of dense subgroups. In this subsection we discuss examples of
dense subgroups of Lie groups coming from arithmetic constructions. We first recall
some material from the theory of arithmetic lattices.

Let K be a number field with ring of integers OK . Let σ1, . . . , σr1 be the collec-
tion of real embeddings and σr1+1, . . . , σr1+r2 the complex ones. Then [K : Q] =
r1 + 2r2. We recall that by the map

OK ↪→ Rr1 × Cr2 , x 7→ (σi(x))

embeds OK as a lattice in Rr1 × Cr2 . The theorem of Borel-Harish-Chandra gen-
eralizes this result to algebraic groups. A discrete subgroup Γ in a Lie group G
is called a lattice if the associated homogeneous space G/Γ has finite volume. If
Γ ⊂ G1× . . .×Gk is a lattice in a product of Lie groups, then Γ is called irreducible
if the projection to each factor is dense.

Theorem 3.7. (Borel-Harish-Chandra, cf. [PR94] Chapter IV) Let G be a semisim-
ple complex alegbraic group defined over K and write G(OK) = G∩GLn(OK). Then
the image of

G(OK) ↪→
r1∏
i=1

Gσi(R)×
r2∏

i=r1+1

Gσi(C)

is an irreducible lattice.

To give a concrete example, SL2(Z[
√
2]) is an irreducible lattice in SL2(R) ×

SL2(R). We note that Margulis’ arithmeticity theorem [Mar84] establishes, under
the assumption that G has higher rank, a converse to the Borel-Harish-Chandra
Theorem namely stating that every irreducible lattice is arithmethic, i.e. arises from
a number field as above. As irreducible lattices have dense image when projected to
each factor, the Borel-Harish-Chandra theorem provides many examples of finitely
generated dense subgroups of Lie groups.

A similar result also holds for p-adic Lie groups. Recall that a place is an
equivalence class of absolute values on K. Denote by V K the set of all places of
K. A place is called finite if the induced completion on K is a non-archimedean
local field. Finite places correspond to prime ideals in OK . The non-finite places
are called infinite places and we recall that the completion of K with respect to
an infinite place is either R or C. Therefore the infinite places correspond to field
embeddings into C and there are only finitely many of them. Likewise, for each
prime number p the finite places above p correspond to embeddings ot K into Cp

the completion of the algebraic closure of Qp. We denote the finite places as V K
f

and the infinite ones as V K
∞ .

Let S ⊂ V K be a finite set of places and define

OK,S = {x ∈ K : |x|v ≤ 1 for all v ∈ V K\S}.
We assume in the following that S contains V K

∞ . Then similarly to before, OK,S is
a lattice in

∏
v∈S Kv, where Kv is the completion of K with respect to v. Moreover,

generalizing the Borel-Harish-Chandra theorem (cf. [PR94] Chapter V), if G is a
complex semisimple algebraic group, the image of the embedding

G(OK,S) ↪→
∏
v∈S

G(Kv)

is a lattice. To have a concrete example in mind, SL2(Z[ 1p ]) ↪→ SL2(R) × SL2(Qp)

is a lattice.
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We proceed with discussing the examples of dense subgroups due to Lubotzky-
Phillips-Sarnak and Margulis. Indeed, consider the Hamiltionian quaternions

H(R) = R+ iR+ jR+ kR,

where i2 = j2 = k2 = 1 and ij = k and recall that they form the only non-
commutative division ring over R. For an element α = a0 + ia1 = ja2 + ka3 we
denote α = a0 − ia1 − ja2 − ka3 and the norm of α is defined as

N(α) = α · α = a20 + a21 + a22 + a23.

Every non-zero element α ∈ H(R) has therefore non-zero norm and thus α−1 =
N(α)−1α. Write H(R)× = H(R)\{0} the group of invertible elements of H(R).

Notice that by mapping

1 7→
(
1 0
0 1

)
, i 7→

(
i 0
0 −i

)
, j 7→

(
0 1
−1 0

)
, i 7→

(
0 i
i 0

)
,

yields an embedding of R-algebras Φ : H(R)→M2(C) satisfyingN(α) = det(Φ(α)).
Therefore there is a short exact sequence of groups,

1 −→ SU2(C) −→ H(R)× −→ R>0 −→ 1

where the third map is the norm and

H(R)×/Z(H(R)×) ∼= SU2(C)/{±1} ∼= SO3(R),

where Z(H(R)×) ≃ R× is the center.
Let p ≡ 1 mod 4 be a prime number. Then a theorem of Jacobi asserts that the

set

{α ∈ H(Z) : N(α) = a20 + a21 + a22 + a23 = p}
contains 8(p+1) elements. Notice that H(Z)× = {±1,±i,±j,±k}. As p ≡ 1 mod 4,
if α ∈ H(Z) satisfies N(α) = p, then exactly one of a0, a1, a2 or a3 is odd. So there
is a unique unit ε ∈ H(Z)× such that εα ≡ 1 mod 2.

Finally consider the set

S = {α ∈ H(Z) : N(α) = p and α ≡ 1 mod 2}.
Then by the above, |S| = p + 1. We consider the image of ⟨S⟩ in SO3(R) =
H×(R)/Z(H×(R)). We state the following theorem of Lubotzky-Phillips-Sarnak
and refer to their papers for a definition of spectral gap.

Theorem 3.8. (Lubotzky-Phillips-Sarnak, [LPS86], [LPS87]) The group ⟨S⟩ ⊂
SO3(R) is a free dense subgroup on p+ 1 generators and has optimal spectral gap.

In rough terms, spectral gap measures how quickly products of elements of S
become dense in SO3(R). As the spectral gap is optimal, the elements of the power
set Sn are therefore very well distributed.

As established in [LPS88], one can furthermore use the set S to construct a (p+
1)-regular Cayley graph in PGL2(Fq), where q ≡ 1 mod 4 is further prime distinct
of p. Then similarly to Theorem 3.8, the powers of S are optimally distributed in

PGL2(Fq). Moreover, if
(

q
p

)
= −1 (i.e. q is not a square mod p) and the resulting

graphs satisfy the best known girth estimates, namely as shown in [LPS88] together
with [BB90],

girth(Cay(PGL2(Fq), S)) =

(
4

3
− oq(1)

)
logp(|PGL2(Fq)|),
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where the girth of a graph is the length of its shortest cycle, and oq(1) tends to 0
as q tends to infinity.

3.4. Dense and free subgroups of Lie groups.

Theorem 3.9. (Topological Tits Alternative [BG03]) Let G be a semisimple Lie
group and Γ ⊂ G a dense subgroup. Let a1, a2 ∈ G. Then for all neighborhoods
of the identity U there are b1 ∈ a1U ∩ Γ and b2 ∈ a2U ∩ Γ such that ⟨b1, b2⟩ is a
non-abelian free subgroup of Γ.

In particular, every dense subgroup contains a dense and free subgroup.

We note that the second claim in Theorem 3.9 follows from the first as generating
a dense subgroup is an open condition by Corollary 3.4.

We only give a sketch of the proof and refer to [BG03] for the full details. The
main difficulty compared to the classical Tits alternative is that we are not able to
take high powers of elements of G, since those may leave the neighborhoods aiU .

Towards the proof, let k be a local field and we define a metric on P(kn). For
x, y ∈ kn, if we express x =

∑
xiei and y =

∑
j xjej for e1 . . . , en the standard

basis, it follows by multi-linearity,

x ∧ y =
∑
i<j

(xiyj − xjyi) · (ei ∧ ej) ∈ Λ2kn.

We furthermore endow kn with the norm ||·||, which is the standard euclidean/hermitian
norm if k = R or C of the supremum norm ||x|| = maxi |xi| if k is a non-archimedean
local field. The metric on P(kn) is then defined for x, y ∈ kn\{0} as

d([x], [y]) =
||x ∧ y||
||x|| · ||y||

. (3.2)

We next recall the Cartan decomposition on SLn(k), which is a decomposition
of the form

SLn(k) = KA+K,

for K a maximal compact subgroup and A+ a suitable abelian subgroup. For
example if k = R or C, then K = SOn(R) or K = SUn(C) respectively and

A+ = {diag(a1, . . . , an) : a1 ≥ . . . ≥ an > 0 and a1 · · · an = 1}.
On the other hand if k is a non-archimedean local field, then K = SLn(Ok) for
Ok = {x ∈ k : |x| ≤ 1} and

A+ = {diag(πk1 , . . . , πkn) : k1 ≤ . . . ≤ kn and k1 + . . .+ kn = 0 where ki ∈ Z},
where π is a uniformizer of k, i.e. an element such that πOk is the maximal ideal
in Ok. We leave as an exercise to check that the metric (3.2) is K-invariant, i.e.
d(k[x], k[y]) = d([x], [y]) and satisfies the triangle inequality

d([x], [y]) ≤ d([x], [z]) + d([z], [y])

for any x, y, z in kn \ {0}.
Towards the proof of Theorem 3.9, we state a series of definitions and lemmas

from [BG03] or [BG07] without proof.

Definition 3.10. An element g ∈ PGLn(k) is called ε-contracting if there is vg ∈
P(kn) and a projective hyperplane Hg (which can be viewed as an element from
P((kn)∗)) such that for all x ∈ P(kn) if d(x,Hg) > ε, then d(gx, vg) < ε.
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Lemma 3.11. Let g = k1ak2 ∈ KA+K. Then the following properties are equiv-
alent for all ε > 0 and up to comparable constants ci, i = 1, ..., 4 independent of
g, ε:

(i) g is c1ε-contacting.
(ii) g is c2ε-contracting with respect to Hg = k−1

2 ⟨e2, . . . , en⟩ and vg = k1e1.
(iii) |a2/a1| ≤ c3ε

2.
(iv) g is c4ε-Lipschitz on some open set of P(kn).

The proof of the previous lemma reduces easily to the case when g = a is diagonal
and is left as an exercise.

Definition 3.12. Suppose that 0 < ε < r2 < 1. Then an element g ∈ SLn(k) is
called (r, ε)-proximal if it is ε-contracting and d(vg, Hg) ≥ r.

Lemma 3.13. If ε < r2/4, then a (r, ε)-proximal element is proximal.

Definition 3.14. Let r > 0 and m ∈ N. A finite set F ⊂ PGLn(k) is called (m, r)-
separating if for all v1, . . . , vm ∈ P(kn) and all projective hyperplanes H1, . . . ,Hm

there is f ∈ F such that

d(f±1vi, Hj) > r

for all i, j.

Lemma 3.15. If Γ ⊂ GLn(k) is Zariski connected and irreducible, given any m ∈
N, every Zariski dense subset of Γ contains a finite (m, r)-separating set for some
r > 0.

Proof. For γ ∈ Γ, consider the subset Vγ of X := P(kn)m×P((kn)∗) made of points
vi and hyperplanes Hj such that either γvi ∈ Hj or γ−1vi ∈ Hj for at least one
pair (vi, Hj). It is clear that the Vγ form Zariski-closed subsets of X. The Zariski
connectedness and irreducibility of Γ together force their intersection (as γ ranges
in Γ) to be empty. By notherianity, some finite intersection of already empty. This
gives F and hence r by compactness of X. □

Lemma 3.16. (Lemma 2.1 of [BG07]) Let R be a finitely generated integral do-
main, and let I ⊂ R be an infinite subset. Then there exists a local field k and an
embedding ι : R→ k such that ι(I) is unbounded.

We note that this Lemma 3.16 generalizes Lemma 2.8 by considering the case
I = {αn : n ∈ Z}.

Having stated these results, the remainder of the proof comprises the follow-
ing steps. Note that we can assume without loss of generality that Γ is finitely
generated.

(1) Let I be the set of matrix coefficients of all elements Γ ∩ U . Then by the
Lemma 3.16 there is a local field k such that I can be embedded into an
unbounded collection of elements.

(2) Pass to a power representation Λik for some i ≥ 1 such that Γ ∩ U has ε-
contracting elements for all ε > 0. Then pick an irreducible diagonal block
and consider the associated quotient.

(3) Find a separating set F .
(4) Prove and use the following variant of the Ping-Pong Lemma: There is C >

0 such that the following holds. Let F be a finite (2m, r)-separating set and
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let γ be an ε-contracting element. Then there are a1, . . . , am ∈ PGLn(k)
and f1, . . . , fm, g1, . . . , gm ∈ F such that the elements

(giγaifi)1≤i≤m

are (r/C,Cε)-proximal and free generators of a free group of rank m.

3.5. Exercises.

3.5.1. Show that a free subgroup of SO3(R) is topologically dense.

3.5.2. Construct a free subgroup and a finitely generated dense subgroup of SOn(R)
for n ≥ 3.

3.5.3. Show that if you choose two random elements on SOn(R) (with respect to
the Haar measure), they almost surely generate a topologically dense free subgroup
of SOn(R) for n ≥ 3.

3.5.4. Using that SLn(R) is a simple Lie group, show that a Zariski dense subgroup
of SLn(R) is either discrete or topologically dense for n ≥ 2.

3.5.5. If G is a compact Lie group, show that the set of torsion elements is dense.

3.5.6. Give concrete examples of finitely generated dense subgroups of SLd(R).

3.5.7. Let G = SL2(R) and consider for R > 0 the set BR = {g ∈ G : ||g||op ≤ R}.
In this exercise we want to understand the probability that two random elements
of BR generate a discrete and free subgroup. Denote

P (R) =
volG×G({(g, h) ∈ BR ×BR : ⟨g, h⟩ is discrete and free})

volG(BR)2
.

Notice that by Proposition 3.2, P (R) = 0 for small R. Show that

lim
R→∞

P (R) = 1.

3.5.8. Let G be a connected Lie group. Show that there is a constant cG > 0 such
that if x, y ∈ G are close to 1, then

d(1, xyx−1y−1) ≤ cGd(1, x)d(1, y),

where d is a left-invariant metric on G.

3.5.9. Let Γ = ⟨S⟩ and assume that all commutators of order k in S vanish, i.e.
that

[s1, [s2, [. . . , sk] . . .]] = 1

for all s1, . . . , sk ∈ S. Show that then Γ is nilpotent of class at most k. Hint: Use
induction on k.

3.5.10. Show that in Corollary 3.5 it suffices to choose only (n+1) many elements
t1, . . . , tn+1 ∈ U ∩ Γ generating Γ.

3.5.11. Let G be a semisimple Lie group. Then there exists a neighborhood U of
the identity in G such that for all a1, a2, a3 ∈ U there are elements bi ∈ aiU such
that ⟨b1, b2, b3⟩ is not free.

3.5.12. Check that (3.2) indeed defines a K-invariant distance (with triangle in-
equality).
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3.5.13. Prove Lemma 3.16 in the case when R = Z[X] and I is any sequence of
polynomials with degree tending to infinity. For example

I =

Pn(X) =
∏
|i|≤n

(X − i) ∈ Z[X], n ≥ 1

 .
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4. Eigenvalues of subgroups of SLn(R) and the Benoist limit cone

We start this section by a general observation how the real numbers differ from
other local fields.

Proposition 4.1. A compact subgroup of GLn(R) is Zariski closed and therefore
an algebraic subgroup.

Proof. We show that every orbit of a G-action on Rm for some m ≥ 1 is Zariski

closed. This implies the lemma by considering the action of G on Rn2 ∼= Mn(R)
and by noting that G ⊂Mn(R) is the orbit of the identity matrix.

It suffices to show that for all x, y ∈ Rm with y ̸∈ Gx there exists a polynomial
f ∈ R[X1, . . . , Xm] such that f(Gx) = 0 yet f(y) ̸= 0. We use the Stone-Weierstrass
theorem, which only holds over R. Indeed since Gx and Gy are compact and
disjoint, there is a continuous function φ on Rn such that φ = 0 on Gx and φ = 1
on Gy. Then by Stone-Weierstrass there is a polynomial P ∈ R[X1, . . . , Xn] such
that

sup
z∈Gx∪Gy

|φ(z)− P (z)| < 1/10.

To make the function G-invariant, consider the average f(z) =
∫
P (gz) dg and note

that f is still a polynomial. Then |f(x)| < 1/10 and |1−f(y)| < 1/10 and therefore
f − f(x) vanishes on Gx, yet not on y. □

We note that Proposition 4.1 is wrong over C and Qp. Indeed S1 ⊂ C and
Zp ⊂ Qp as well as SUn(C) ⊂ SLn(C) and SLn(Zp) ⊂ SLn(Qp) are all examples
of compact subgroups that are Zariski dense in the additive group and in SLn

respectively.

4.1. Golsheid-Margulis and Abels-Margulis-Soifer.

Theorem 4.2. (Golsheid-Margulis [GdM89]) Let Γ < GLn(R) be a semigroup
acting strongly irreducibly on Rn. Then Γ contains a proximal element if any only

if its Zariski closure Γ
Z

contains one.

We note again that these statements are wrong over C and Qp by the same
examples as before. To give a further example, we may view G = SLn(C) as a
real algebraic subgroup of GL2n(R). While G acts irreducibly on R2n, it has no
proximal elements as all the resulting eigenvalues come in pairs of same modulus.

Definition 4.3. An element g ∈ SLn(R) is called regular if all of its eigenvalues
are distinct. It is moreover called R-regular if the modulus of all eigenvalues are
distinct.

An element g ∈ SLn(R) is regular whenever the centralizer ZSLn(C)(g) is a full
diagonal subgroup. We note that the set of regular elements is Zariski open. Indeed
if χg is the characteristic polynomial of g, then χg has distinct roots if and only if
χg and its derivative χ′

g have no common factor. Recall that the resultant of two
polynomials is a polynomial in their coefficients that is zero whenever the two poly-
nomials have a common factor. Therefore g is regular if and only if Res(χg, χ

′
g) ̸= 0,

which is a polynomial condition in g.
If g ∈ SLn(R) is R-regular, then all of its eigenvalues are real as the complex

conjugate of an eigenvalue is again an eigenvalue. Moreover, g ∈ SLn(R) is R-
regular if and only if Λig is proximal for all 1 ≤ i ≤ n. We leave as an exercise
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to show that being R-regular is not a Zariski-open condition and the set of non-R-
regular elements is Zariski-dense.

Theorem 4.4. (Abels-Margulis-Soifer [AMS95]) Let Γ ⊂ SLn(R) be a Zariski-
dense semigroup. Then Γ has a Zariski-dense set of R-regular elements. Indeed,
there is a finite set F ⊂ Γ such that for all g ∈ SLn(R) there is f ∈ F such that gf
is R-regular.

The first statement in Theorem 4.4 follows from the second as if the set of R-
regular elements V is not Zariski dense, then by the second statement Γ ⊂ V F−1

and Γ would not be Zariski dense either. The first statement was initially obtained
by a dynamical argument in Benoist-Labourie [BL93] and independently with an
algebraic proof by Prasad [Pra94].

We mention the following result of Prasad-Rapinchuk [PR03] (see next section):
Given a finitely-generated field L ⊂ R, then there is a Zariski-dense subset of
Γ consisting of R-regular elements γ such that the characteristic polynomial χγ

is irreducible over L and ⟨γ⟩, the group generated by γ, is Zariski dense in the
centralizer Z(γ).

Towards the proof of Theorem 4.2 we mention the following lemma.

Lemma 4.5. Let K a field and Γ ⊂ GLn(K) a semigroup. Then its Zariski closure

Γ
Z

is a group.

Proof. The proof is left as an exercise to the reader. □

Lemma 4.6. Suppose that Γ ⊂ GLn(R) is a semigroup acting irreducibly and
suppose there is a constant M > 0 such that |tr(γ)| ≤ M for all γ ∈ Γ. Then Γ is
compact.

We remark that the assumption of irreducibility is necessary as the example
{( 1 t

0 1 ) : t ∈ R} shows.

Proof. By Burnside’s theorem (Corollary 2.12) the algebra C[Γ] = Mn(C) as Γ is
irreducible. Therefore there are γ1, . . . , γn2 such that Mn(C) = spanCγ1, . . . , γn2 .
Furthermore we exploit that (A,B) 7→ tr(AB) is a non-degenerate bilinear form on
Mn(C). So there is a basis (Ei)1≤i≤n2 of Mn(C) such that tr(Eiγ) = δij for all i, j.
So for all γ ∈Mn(C) it holds that

γ =

n2∑
i=1

tr(γγj)Ej .

Thus by the assumption, |tr(γγi)| ≤ M for all γ ∈ Γ showing that Γ is bounded.
Therefore Γ is compact. □

Proof. (of Theorem 4.2) Throughout this proof we denote G = Γ
Z
. We may assume

that Γ is Zariski connected. Indeed, if Γ is not, we replace it by Γ◦ = Γ∩G◦, which
is still irreducible since Γ is strongly irreducible and which contains a proximal
element if and only Γ contains one as Γ◦ has finite index in Γ and an element is
proximal if and only if any power of it is proximal.

We first assume that for all γ ∈ Γ, all eigenvalues of γ have the same modulus.
Then consider Γ1 = {g ∈ RΓ : det(g) = ±1} and note that Γ1 is an irreducible
semigroup and that |tr(γ)| ≤ n since |λi(γ)| = 1 for all i. Thus by Lemma 4.6 and

Lemma 4.1, Γ1 is compact and hence algebraic, showing that all elements of Γ1
Z
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have eigenvalues of modulus 1. The same follows for G since G ⊂ RΓ1
Z
. Therefore

each element in G has all eigenvalues of same modulus. We note, putting Γ in block
upper-triangular form with irreducible blocks, that the same conclusion holds even
if Γ is not assumed irreducible.

For the general case, we note that similarly to Lemma 2.5, Γ contains a proximal
element if and only if RΓ ⊂ Mn(R) contains a rank one projection. We assume
that there is a rank one projection P ∈ RG.

Let A ∈ RΓ be non-zero and of minimal rank. By irreducibility, it suffices to
show that dim(Im(A)) = 1. Indeed, this sufficient as, since Γ is irreducible, there
is γ ∈ Γ such that Im(γA) ̸⊂ ker(γA) and therefore γA is a projection.

As Γ is irreducible and Zariski connected, there is γ1 ∈ Γ such that γ1Im(P ) ̸⊂
ker(A) ∪ ker(P ). Thus upon replacing P by γ1P , we can assume that Im(P ) ̸⊂
ker(A) so that AP has rank 1. Similarly, there is γ2 ∈ Γ with γ2Im(A) ̸⊂ ker(A)
and γ2AIm(P ) ̸⊂ ker(P ). Therefore by replacing A by γ2A if necessary, we can
furthermore assume that A2 ̸= 0 and that AP is a rank one projection.

Observe that for all B ∈ RΓ either BIm(A) ⊂ ker(A) or BIm(A) ∩ ker(A) = 0.
Indeed, if the latter is not the case BA ̸= 0 while rk(BA) < rk(A), a contradiction
to the definition of A.

Denote S := ARΓ|Im(A). Then S\{0} ⊂ GL(Im(A)). Notice that S is a semi-
group without proximal elements and all of its eigenvalues are of the same modulus,
as otherwise A is not of minimal rank. So by applying the previous case, we con-

clude that all elements of S
Z
have eigenvalues of the same modulus. On the other

hand, S
Z ⊃ AG|Im(A) and thus, since S is scalar invariant,

S
Z ⊃ ARG|Im(A) and thus S

Z ⊃ ARG|Im(A) ∋ AP |Im(A),

yet AP is a rank one projection, so dim Im(A) = 1. □

Proof. (of Theorem 4.4)(Sketch of proof) We first sketch how to show that if Γ ⊂
GLn(R) acts strongly irreducibly with a proximal element, then there is r > 0 such
that for all ε < r there is a finite set F ⊂ Γ such that for all g ∈ GLn(R) there is
f ∈ F such that fg is (r, ε)-proximal.

First one uses strong irreducibility to show (see Lemma 3.15) that there is a finite
subset F0 ⊂ Γ that is (1, r)-separating, i.e. for all v ∈ P(Rn) and all hyperplanes
H there is f ∈ F0 such that d(fv,H) > r. Next one picks γ ∈ Γ an (r, ε)-proximal
element for some r > 0 and ε < r (given the assumption that there is a proximal
element in Γ a suitable power of it will achieve this). If now g ∈ GLn(R) then we
consider the Cartan decomposition g = k1ak2 and note that g is 2-Lipschitz near
k−1
2 e1 on P(Rn). We then pick f1 such that d(f1k1e,Hγ) > r. So (see Lemma 3.11)

γf1g will be (cε)-Lipschitz on some open set of P(Rn), where c is a fixed constant
only depending on (the Lipschitz constants of) F . So by Lemma 3.11, γf1g is (c′ε)-
contracting for some other constant c′. Finally, to conclude the proof, we may pick
f2 ∈ F0 such that f2γf1g is (r, c′ε)-proximal. Setting F = F0γF0 ends the proof of
the above claim.

We turn to the proof of Theorem 4.4, so let Γ ⊂ SLn(R) be a Zariski dense
semigroup. We leave as an exercise to the reader to check that an element g ∈
SLn(R) is R-regular if and only if Λn(n−1)/2Ad(g) acting on Λn(n−1)/2sln(R) is
proximal. Moreover, there is an irreducible representation of Λn(n−1)/2sln(R) such
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that g is R-regular if and only if ρ(g) is proximal. Using the latter and Theorem 4.2,
there is γ ∈ Γ such that ρ(γ) is proximal. We then apply the above claim. □

By a similar argument to the above proof one can do this uniformly over any
fixed finite set of irreductible representations, namely:

Corollary 4.7. Let Γ ⊂ SLn(R) be a Zariski dense semigroup and let ρ1, . . . , ρk

be irreducible representations of Γ
Z

such that for all 1 ≤ i ≤ k the group ρi(Γ
Z
)

contains a proximal element. Then there exists r > 0 such that for all ε < r there

is a finite set F ⊂ Γ such that for all g ∈ Γ
Z

there is f ∈ F such that ρi(fg) is
(r, ε)-proximal for each i = 1, ..., k.

4.2. The Benoist cone. We first review the Cartan and Jordan projections of
SLn(R). Consider the Weyl chamber

a+ = {diag(α1, . . . , αn) : α1 + . . .+ αn = 0 and α1 ≥ . . . ≥ αn},
which is a cone in the Lie algebra a = Lie(A).

For each element g = k1ak2 ∈ KA+K there is a unique element κ(g) ∈ a+ such
that a = exp(κ(g)). The element κ(g) ∈ a+ is called the Cartan projection of g.

Recall that an element g ∈ SLn(R) has the Jordan decomposition into g =
gsgu = gugs, where gs is a semisimple element (i.e. diagonalizable over C) and gu
is unipotent. We can moreover further decompose gs into gs = gegh = ghge, where
gh is a hyperbolic element meaning that it is diagonalizable over R and ge is an
elliptic element so is conjugate to a matrix

rθ1 ⊞ . . .⊞ rθℓ ⊞ 1⊞ . . .⊞ 1,

where rθ = ( cos θ − sin θ
sin θ cos θ

) and ⊞ is the direct sum of the matrices.
The Jordan projection j(g) is the unique element of a+ such that exp(j(g)) is

conjugate to gh. Indeed, j(g) = diag(log |λ1|, . . . , log |λn|) with λi the eigenvalues
of g satisfying |λ1| ≥ . . . ≥ |λn|.

Definition 4.8. Let Γ ⊂ SLn(R) be a semigroup. The Benoist cone CΓ ⊂ a+ is
defined as the closure of all rays ⟨j(γ)⟩R+ with γ ∈ Γ.

Theorem 4.9. (Benoist [Ben97]) If Γ is a Zariski dense subgroup of SLn(R), then
the Benoist cone CΓ is convex and has non-empty interior.

In particular, the subgroup of a generated by the Jordan projections j(γ) with
γ ∈ Γ is not contained in a hyperplane of a. In fact, as is shown in [Ben97], the
latter set is dense in a.

Moreover, we note that assuming Schanuel’s Conjecture as shown in Prasad-
Rapinchuk [PR05], there are n elements γ1, . . . , γn ∈ Γ such that (j(γi))1≤i≤n

generate a dense subgroup of a.

Lemma 4.10. Suppose that γ1, γ2 ∈ SLn(R) are proximal and that v+γ1
̸∈ Hγ2

and

v+γ2
̸∈ Hγ2

. Then

|λ1(γ
n1
1 γn2

2 )| = |λ(γ1)|n1 · |λ1(γ2)|n2 · eo(n1+n2)

as n1 and n2 tend to +∞.

Proof. Recall that by the spectral radius formula, ||gn||1/n → |λ1(g)| as n → ∞
for g ∈ SLn(R). Moreover, ||γn1

1 γn2
2 || ≤ ||γ

n1
1 || ||γ

n2
2 || ≪ |λ1(γ1)

n1 | |λ1(γ2)
n2 |, which

readily implies that |λ1(γ
n1
1 γn2

2 )| ≪ |λ(γ1)|n1 · |λ1(γ2)|n2 · eo(n1+n2).
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For the other inequality, we recall that by Lemma 2.2.1 of [Ben97], if g is (r, ε)-
proximal then

λ1(g) ≤ ||g|| ≤ C(r, ε)|λ1(g)|, (4.1)

where C(r, ε) is a constant only depending on r and ε and not on g. Furthermore
given r > 0, it holds that C(r, ε)→ 1 as ε→ 0.

To conclude the proof, write v+γ2
= αv+γ1

+ v−2 , where v−2 ∈ Hγ1
. Then γn2

2 v+γ2
=

λ1(γ2)
n2v+γ2

and therefore

γn1
1 γn2

2 v+γ2
= αλ1(γ2)

n2λ1(γ1)
n1v+γ1

+ λ1(γ2)
n2γ1v

−
2 ,

where ||γ1v−2 || ≪ |λ1(γ1)|n1(1−δ). This shows that ||γn1
1 γn2

2 || ≥ α|λ1(γ1)
n1λ1(γ2)

n2 |+
(lower order terms). Using (4.1), the claim follows. □

Proof. (CΓ is convex) Denote by ρi the representation ΛiRn for 1 ≤ i ≤ n− 1. Let
γ1, γ2 ∈ Γ and choose N a sufficiently large number to be determined later and
f1, f2 ∈ F such that ρi(f1γ

N
1 ) and ρi(f2γ

N
2 ) are (r, ε)-proximal. Then by (4.1),

λ1(ρi(fiγ
N
i )) ≍ ||ρi(fiγN

i )|| ≍ ||ρi(γN
i )|| ≍ eN(log |λ1(γi)|+...+log |λi(γj)|)

for i = 1, 2. Thus by choosing N sufficiently large, there is δi ∈ Γ such that
⟨j(δ)⟩R+

is arbitrarily close to ⟨j(γ)⟩R+
and such that ρi(δ) is (r, ε)-proximal for all

1 ≤ i ≤ n − 1. Moreover we can ensure that v+(δ1) ̸∈ Hδ2 and v+(δ2) ̸∈ Hδ1 in
each ρi. Therefore by Lemma 4.10,

log(ρi(δ
n1
1 δn2

2 )) = n1 log |λ1(ρi(δ1))|+ n2 log |λ1(ρi(δ1))|+ o(n1 + n2),

which readily implies that CΓ is convex. □

Now that we know that CΓ is a convex cone based at the origin, in order to prove
the second part of Theorem 4.9, namely that CΓ has non-empty interior, it remains
only to prove that CΓ is not entirely contained in a hyperplane in a. We will not
give the proof of this fact in this course (we refer the reader to Benoist’s original
article as well as to the book by Benoist and Quint for two very different proofs of
this fact). We will only mention that it is easy to see that CΓ is not contained in
a rational hyperplane, i.e. one defined by a linear form with rational coefficients
when expressed as a linear combinations of the log |λi|. Indeed, being contained in
such a hyperplane would mean that there are integers k1, . . . , kn, not all equal, such
that every R-regular element γ of Γ satisfies the relation λ1(γ)

k1 . . . λn(γ)
kn = 1.

However semisimple elements in SLn satisfying such a relation do not form a Zariski-
dense subset (while R-regular elements do by Theorem 4.4). To see it, note that it is
contained in the constructible set of all conjugates of the proper algebraic subgroup
of the diagonal group defined by this relation, hence has positive co-dimension. In
the next section we will show even more: that there are R-regular elements γ ∈ Γ
that satisfy none of those relations.

4.3. Exercises.

4.3.1. The collection of R-regular elements is g ∈ SLn(R) is not a Zariski-open
set and the set of non-R-regular elements is Zariski-dense. Hint: First consider the
case SL2(R).

4.3.2. Prove Lemma 4.5. Hint: Write Γ
Z

= V1 ∪ . . . ∪ Vk, where the Vi are the
irreducible components. Then Γ permutes the components.
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4.3.3. For an element g ∈ SLn(R) the following properties are equivalent:

(i) g is R-regular.
(ii) Λi(g) is proximal for each 1 ≤ i ≤ n− 1.
(iii) Λn(n−1)/2Ad(g) acting on Λn(n−1)/2sln(R) is proximal.

Moreover, there exist an irreducible subrepresentation ρ of Λn(n−1)/2sln(R) such
that g is R-regular if and only if ρ(g) is proximal.

4.3.4. Prove the claims around (4.1).
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5. The Galois theoretic results of Prasad-Rapinchuk

The aim of this section is to show the following theorem. Recall that the Galois
group GalK(P ) of a polynomial P with coefficients in a field K is the Galois group
of the splitting field KP over K. We can view the latter group as a group of
permutations acting on the roots of P .

Theorem 5.1. (Prasad-Rapinchuk [PR03]) Let K be a finitely generated field of
characteristic zero and let Γ ≤ SLn(K) be a finitely generated Zariski dense sub-
group. Then there is a finite index subgroup ∆ ≤ Γ and a coset x∆ for x ∈ Γ such
that for all γ ∈ x∆ the following properties hold:

(i) The characteristic polynomial Pγ(X) = det(XIn − γ) is irreducible over K.
(ii) GalK(Pγ) ∼= Sym(n).
(iii) γ is regular semisimple and ⟨γ⟩ is Zariski-dense in the maximal torus Z(γ),

which is the centralizer of γ.

Theorem 5.1 allows us to deduce the following strengthening of Theorem 4.4.

Corollary 5.2. If Γ < SLn(R) is Zariski dense, there is a Zariski dense subset of
R-regular elements satisfying (i), (ii) and (iii).

Proof. By Theorem 4.4, there is a finite set F ⊂ ∆ such that for all g ∈ SLn(R) there
is f ∈ F such that gf is R-regular. Thus x∆ = (x∆ ∩ {R-regular elements}) · F−1

and so x∆ ∩ {R-regular elements} is Zariski dense. □

An element γ ∈ Γ satisfying (i), (ii) and (iii) will be called K-Galois generic.
Clearly condition (ii) implies (i) (since Sym(n) is transitive). We will show below
that condition (ii) also implies (iii). We also mention that Prasad-Rapinchuk have
shown Theorem 5.1 not only for a Zariski dense subgroup of SLn, but more generally
for any Zariski dense subgroup in a semisimple algebraic group G. The analogue
of being K-Galois generic is to say that the Galois group of the splitting field of
Z(γ)◦ is the full Weyl group of G.

5.1. Some facts on algebraic tori. Denote by Gm the one dimensional multi-
plicative algebraic group such that Gm(K) = K× for any field K. An (algebraic)
torus is an algebraic group T (defined over K) which is isomorphic over K to Gr

m

for some r ≥ 1. The number r is called the absolute rank of T .
A character of a torus T is an algebraic group homomorphism χ : T → Gm.

The set of all characters X(T ) of T is an additive group and it holds that

X(T ) ∼= X(Gr
m) ∼= Zr.

If T is defined over some field K (for example T is an algebraic subgroup of GLn

defined as the vanishing locus of a family of polynomials in the matrix entries with
coefficients in K) then Gal(K|K) acts on T (K) and also on X(T ) by the formula

χσ(t) = (σχσ−1)(t).

We note that if T is a subgroup of GLn, since χ is a morphism of algebraic varieties
it can be written as a polynomial map in the matrix entries. In that situation this
Galois action is just the Galois action on the coefficients of this polynomial map.

This gives a group homomorphism

Gal(K|K)→ Aut(Zr) = GLr(Z). (5.1)
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If L ≤ K is an algebraic field extension of K, one says that a character χ is
defined over L if the Galois group Gal(K|L) fixes χ. One says that T splits over
L if there is a basis of X(T ) of characters defined over L. Clearly, picking a basis
of X(T ) and the finite field extension extension of K generated by the coefficients
of each basis element, one sees that T splits over some finite extension of K. In
particular, the image of (5.1) is a finite subgroup.

We note moreover, that there is a bijection

{algebraic subgroups of T} ←→ {additive subgroups of X(T ) ∼= Zr}
T0 ←→ {χ ∈ X(T ) : χ|T0 ≡ 1}

The same map furthermore induces a bijection:

{connected algebraic subgroups of T} ←→ {primitive subgroups of X(T )}, (5.2)

where we call a subgroup of Zr to be primitive if it is of the form Zr ∩ V for V a
subspace.

In particular the algebraic subgroups of T that are defined over K correspond to
additive subgroups of X(T ) that are fixed under the Galois group. This implies in
particular that if Gal(K |K) acts irreducibly on X(T ) ∼= Zr, then T has no proper
connected algebraic subgroup defined over K and even no infinite proper algebraic
subgroup defined over K.

5.2. Proof of Theorem 5.1. We first use the above established facts on algebraic
tori to deduce in Theorem 5.1 that (i) and (ii) imply (iii). Indeed, if (i) and (ii) hold,
then Pγ is irreducible and therefore has distinct roots. So γ is a regular semisimple
element meaning that γ is diagonalizable and Z(γ) = Tγ is a maximal torus in SLn.

Furthermore ⟨γ⟩
Z
is defined over K, hence if (ii) holds, then it acts irreducibly on

X(Tγ) ∼= Zn−1 and therefore by (5.2), ⟨γ⟩
Z

is either finite or all of Z(γ). We will
show in below proof that every element of x∆ will have infinite order and therefore
(iii) is implied.

We proceed with the proof of (i) and (ii). We first show the following lemma of
Jordan.

Lemma 5.3. (Jordan) Let G be a finite group and let H ⊊ G be a proper subgroup.
Then there is g ∈ G such that Cl(g) ∩H = ∅, where Cl(g) = {fgf−1 : f ∈ G} is
the conjugacy class of g.

Proof. We claim that any group of permutations acting transitively on n ≥ 2 ele-
ments has a derangement, i.e. an element g such that gx ̸= x for all x. To prove
the lemma, apply this claim to the G action on left cosets of H. By the claim there
is g ∈ G such that gxH ̸= xH for all x ∈ G or equivalently x−1gx ̸∈ H, which
implies the lemma.

Denote by G a group of permutations acting transitively on n ≥ 2 elements. The
claim follows from the following result due to Cauchy, that is sometimes called the
lemma that is not Burnside’s:

EG(|Fix(g)|) =
1

|G|
∑
g∈G

|Fix(g)| = |{G-orbits}|,
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where Fix(g) = {x : gx = x}. Indeed to prove the latter, note that |Fix(g)| =∑
x∈G 1gx=x and we apply the orbit stabilizer theorem,

EG(|Fix(g)|) =
1

|G|
∑
x,g

1gx=x =
1

|G|
∑
x

|StabG(x)| =
1

|G|
∑
x

1

|G.x|
= |{G-orbits}|.

Since G is transitive, EG(|Fix(g)|) = 1 and note that |Fix(e)| = n ≥ 2. So there
must exist elements with |Fix(g)| = 0, which are exactly the derangements. □

Write G = GalK(Pγ) ≤ Sym(n). By Lemma 5.3 it suffices to show that G
intersects every conjugacy class of Sym(n), i.e. every cycle type. Recall that
conjugacy classes of Sym(n) are in bijections with partitions of n. Indeed, if n =
n1 + . . . + nk is a partition with n1 ≥ . . . ≥ nk then the corresponding conjugacy
class consists of permutations σ expressible as distinct cycles σ = σ1 · · ·σk with
|σi| = ni for 1 ≤ i ≤ k.

Recall that by Corollary 1.9 there are infinitely many primes such that K embeds
into Qp in such a way that Γ is a subgroup of SLn(Zp). We prove the following two
useful lemmas.

Lemma 5.4. If Γ ≤ SLn(Zp) is Zariski-dense, then Γ is open and closed in
SLn(Zp).

Proof. The closure Γ is a p-adic Lie group with Qp-Lie algebra h. Since Γ is Zariski
dense, h is invariant under all of Ad(SLn(Qp)). So it is an ideal in the simple Lie
algebra sln(Qp). Since SLn(Zp) is compact and Γ is infinite, h is non-trivial and
thus it is all of sln(Qp), which implies the claim. □

Lemma 5.5. Let Γ ≤ SLn(K) be a finitely generated and Zariski dense subgroup
and p1, . . . , pn be distinct primes such that K ↪→ Qpi

and Γ ↪→ SLn(Zpi
). Then Γ

is open and closed in the product SLn(Zp1)× · · · × SLn(Zpn).

Proof. Since SLn(Zp) is a virtually pro-p group, it suffices by Lemma 5.4 to show
that if Gi are pro-p groups and G ≤ G1× · · ·×Gn projects onto each Gi, then it is
all of G1×· · ·×Gn. By induction on the number of factors, we can assume without
loss of generality that G projects onto H = G2 × · · · ×Gn. Yet since G1 is pro-p1,
the maps Φn(x) = xpn

1 are surjective on H and Φn(x)→ 1 for all x ∈ G1 as n→∞,
it follows that H ≤ limn→∞ Φn(G) ≤ G and therefore G = G1 × · · · ×Gn. □

We proceed with recalling some facts on finite extensions of Qp. For every
n ≥ 1, there is a unique unramified extension K of Qp of degree n, where being
unramified means that OK/m ∼= Fq for q = pn. We denote the latter extension

by Q(n)
p and note that Q(n)

p = Qp(ζ) for any primitive (pn − 1)-th root of unity
ζ. This is a Galois extension with cyclic Galois group generated by the Frobenius
automorphism Frobp(P (ζ)) = P (ζp) for P ∈ Qp[X] so

Gal(Q(n)
p |Qp) = ⟨Frobp⟩ ∼= Z/nZ ∼= Gal(Fq |Fp)

and Q(n)
p = Qp ⊕ ζQp ⊕ . . .⊕ ζp

n−1Qp. In this basis, the multiplication on (Q(n)
p )×

yields a homomorphism (Q(n)
p )× ↪→ GLn(Qp) whose image is an n-dimensional

torus defined over Qp, which we denote by T
(n)
p .



TOPICS ON LINEAR GROUPS 37

If [n] = (n1, . . . , nk) is a partition of n we denote by T
[n]
p the block diagonal

Qp-torus of rank n in GLn, namely

T [n]
p = diag((Q(n1)

p )×, . . . , (Q(nk)
p )×).

We say that an element γ ∈ T
[n]
p is primitive if each component is a primitive

element of Q(ni)
p , i.e. generates Q(ni)

p as a field over Qp.

Proposition 5.6. Let K be a finitely generated field, γ ∈ GLn(K) a regular
semisimple element and σ : K → Qp a field embedding such that σ(γ) is conju-

gate to a primitive element of T
[n]
p . Then GalK(Pγ) has an element of cycle type

[n].

Proof. Let Pγ ∈ K[X] be the characteristic polynomial. ThenK[X]/(Pγ) ∼= K[γ] ≤
Mn(K) is a commutative semisimple K-algebra. Viewing K as a subfield of Qp, as

γ is primitive, K[γ]⊗K Qp
∼=

⊕
Q(ni)

p . The claim follows since Frobp permutes the
roots of Pγ with cycle type [n]. □

A key observation in concluding the proof is that the GLn(Qp)-conjugacy class

of T
[n]
p is open in GLn(Qp) for all [n] and furthermore intersects every neighborhood

of the identity in GLn(Qp) and SLn(Qp).
Let k be the number of partitions of n and choose distinct primes p1, . . . , pk

such that K ↪→ Qpi
and Γ ↪→ SLn(Zpi

). Then by Lemma 5.5 the image of the
embedding Γ ↪→

∏
i SLn(Zpi) has open closure. Therefore we can pick x ∈ Γ and

an open subgroup O in
∏k

i=1 SLn(Zpi) such that every γ ∈ xO ∩ Γ satisfies that

γi ∈ SLn(Zpi
) is conjugate to a primitive element in T

[n]
pi . In particular Proposition

5.6 tells us that GalK(Pγ) has an element of each any cycle type. It follows that
GalK(Pγ) ≃ Sym(n) and this ends the proof as O has finite index.

5.3. Two corollaries.

Corollary 5.7. Let K be a finitely generated field of characteristic zero and let
Γ ≤ SLn(K) be a finitely generated Zariski dense subgroup. Then there is an
infinite subset {γn}n≥1 of Γ such that the set {λi(γj) : 1 ≤ i ≤ n − 1 and j ≥ 1}
is multiplicatively independent.

Proof. We note that by (iii) of Theorem 5.1 there is an element γ1 ∈ Γ such that
λ1(γ1), . . . , λn−1(γ1) are multiplicatively independent. Let K1 = K(λi(γ1), 1 ≤
i ≤ n − 1). Then K1 is finitely generated and therefore there is γ2 ∈ Γ such
that GalK1(γ2)

∼= Sym(n). Set kn = 0 and let k1, . . . , kn−1 be integers such that
λ1(γ2)

k1 · · ·λn−1(γ2)
kn−1 ∈ K1. Then for all σ ∈ Sym(n) it holds that

λ1(γ2)
kσ(1) · · ·λn−1(γ2)

kσ(n−1)λn(γ2)
kσ(n) = λ1(γ2)

k1 · · ·λn−1(γ2)
kn−1λn(γ2)

kn .

Therefore it follows that kσ(i) = ki for all i by multiplicative independence and
hence ki = kn = 0. Iterating this construction implies the claim. □

To state a further corollary, we recall the symmetric space structure on X =
SLn(R)/SOn(R). Indeed, we can identify X with the space of positive-definite
symmetric matrices and SLn(R) acts on X by g ◦M = gTMg for M ∈ X and
g ∈ SLn(R).
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We can write every element M ∈ X as M = k ◦ a for k ∈ SOn(R) and a =
diag(a1, . . . , an) a diagonal element with ai > 0 for 1 ≤ i ≤ n. Let x0 = [Idn] be
the identity coset. Then a SLn(R)-invariant metric on X is determined by

d(x0,M) = d(x0, k ◦ a) = d(x0, a) =

√√√√ n∑
i=1

(log ai)2.

Let Γ < SLn(R) be Zariski-dense, discrete and torsion free. Then Γ\X is a
manifold and forms an example of a locally symmetric space. Each closed geodesic
on Γ\X is represented by a diagonalizable element γ ∈ Γ and its length is

ℓ(γ) = d(x, γx) = d(x0, g
−1γgx0) =

√√√√ n∑
i=1

(log λi(γ))2, (5.3)

where x is on the geodesic and written as x = gx0.
Recall Schanuel’s conjecture from transcendental number theory.

Conjecture 5.8. (Schanuel) Let z1, . . . , zn be complex numbers that are linearly
independent over Q. Then the transcendence degree of the collection of numbers

z1, . . . , zn, e
z1 , . . . , ezn

is at least n.

Corollary 5.9. Assume Schanuel’s conjecture. Let Γ ≤ SLn(R) be a discrete,
Zariski-dense and torsion free subgroup. Then Q(ℓ(γ), γ ∈ Γ) has infinite transcen-
dence degree.

Proof. Let (γj)j≥1 be as in Corollary 5.7. Assume for a contradiction that the
above transcendence degree is finite. Then there is k0 ≥ 1 such that for every
k ≥ k0 the number ℓ(γk) is algebraic over

L0 = Q(log |λi(γj)|, 1 ≤ i ≤ n, j ≤ k0).

This implies that for each k > k0 the transcendence degree of L0(log |λi(γk)|, 1 ≤
i ≤ n) is at most trdeg(L0)+n−2, which follows from the relation

∑n
i=1 log |λi| = 0

and from (5.3), which gives an algebraic relation between the log |λi(γk)| over L0.
Denote

Lk = L0(log |λi(γj)|, 1 ≤ i ≤ n, k0 < j ≤ k)

and iterating the above argument it follows that trdeg(Lk) ≤ (k − k0)(n − 2) +
trdeg(L0). On the other hand, by Corollary 5.7, the collection log |λi(γj)| for 1 ≤
i ≤ n − 1 and j ≥ 1 is Q-free. Therefore by Schanuel’s conjecture trdeg(Lk) ≥
(k − k0)(n− 1), which is a contradiction for large enough k. □

5.4. Remarks on the Profinite Topology. If Γ is a discrete group, the profinite
topology on Γ is defined to be the smallest topology that makes the map πN : Γ→
Γ/N continuous for all finite index normal subgroups N ⊴ Γ. In particular, the set

N = {N : N ⊴ Γ and [Γ : N ] <∞}
forms a basis of neighborhoods of the identity of this topology.

The profinite completion Γ̂ is the totally disconnected compact group defined as
the inverse limit

Γ̂ = lim←−
N∈N

Γ/N
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of the direct system {Γ/N}N∈N . This means that Γ̂ is the subgroup of the direct
product

∏
N∈N Γ/N endowed with the product topology given as

Γ̂ =

{
(γN )N∈N ∈

∏
N∈N

Γ/N : πM (γN ) = γM for all M ≤ N

}
.

In particular, every normal finite index subgroup of Γ is open and closed and a

subset Σ of Γ̂ is open if for each s ∈ Σ there is N ∈ N with sN ⊂ Σ. It is dense
if is intersects every coset of every finite index normal subgroup. We refer to the
book [DdSMS99] for the basics (and much more!) about profinite groups.

If K has charactersitic zero and Γ < SLn(K) is a finitely generated subgroup,
then by Theorem 5.1 the set

ΣK = {γ ∈ Γ : GalK(Pγ) ∼= Sym(n)} (5.4)

of K-Galois generic elements is Zariski dense and contains a coset of a finite index
subgroup of Γ. Thus means that ΣK has non-empty interior in Γ for the profi-
nite topology. More recently, Prasad-Rapinchuk [PR17] established that ΣK is
profinitely open in Γ. It can also be seen to be dense, although we live this as an
exercise to the interested reader.

We finally mention the work of Lubotzky-Rosenzweig [LR14] and Jouve-Kowalski-
Zywina [JKZ13] that is concerned with random walks on Γ. If µ is a finitely sup-
ported probability measure Γ assumed to be symmetric and with ⟨suppµ⟩ = Γ,
then they show that µ∗n(Γ\ΣK) → 0 exponentially fast as n → ∞. This uses
expander graphs and super-strong approximation, see [Bre13].

5.5. Exercises.

5.5.1. (suggested by Udi Hrushovski) Prove the following continuous analogue of
Jordan’s Lemma 5.3. Given a compact group G, let Conj(G) be the set of conjugacy
classes of G endowed with the natural probability measure inherited from the Haar
probability measure on G (i.e. a random conjugacy class is the conjugacy class of a
random element in G). Suppose H ≤ G is a closed subgroup with the property that
the natural map Conj(H)→ Conj(G) is measure preserving. Show that H = G.

5.5.2. Show that primitive elements of Q(n)
p form an open dense subset. This also

holds for T
[n]
p and T

[n]
p ∩ SLn(Qp).

5.5.3. Show that the GLn(Qp)-conjugacy class of T
[n]
p is open in GLn(Qo) for all

[n] and furthermore intersets every neighborhood of the identity in GLn(Qp) and
SLn(Qp). Hint: Use a dimension argument with the open mapping theorem and

use that dimQp
T

[n]
p = n.
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6. Bounded generation

In this final lecture, we discuss bounded generation for linear groups and present
a recent result of Corvaja, Rapinchuk, Ren and Zannier that settled the long stand-
ing open question about bounded generation of co-compact lattices in semisimple
Lie groups. One of the main ingredients of the proof is the existence of Galois
generic elements proved earlier in the notes.

6.1. Bounded generation of SLn(Z).

Definition 6.1. A discrete group Γ is said to be boundedly generated if there
are finitely many γ1, . . . , γk ∈ Γ such that

Γ = ⟨γ1⟩ · · · ⟨γk⟩,

i.e. if there are finitely many cyclic subgroups whose product is Γ.

Every finitely generated abelian group is boundedly generated and we leave as an
exercise to show that a finitely generated nilpotent group is boundedly generated.
On the other hand, not every solvable group is boundedly generated. Indeed the
reader may check (see exercise 6.3.3) that the Lamplighter group Z ≀ Z = Z⋉Z(Z),
where Z(Z) are the finitely supported sequences of integers indexed by Z, is not
boundedly generated.

One of the first main results about bounded generation is the following theorem
by Carter and Keller:

Theorem 6.2. ([CK83]) The group SLn(Z) is boundedly generated for n ≥ 3.

We remark the following:

(i) Carter-Keller [CK83] proved more generally that SLn(OK) for n ≥ 3 is bound-
edly generated, for OK the ring of integers of a number field.

(ii) A discrete group Γ is boundedly generated whenever some finite index sub-
group of Γ is. (Exercise 6.3.1)

(iii) The free group Fn on n ≥ 2 letters is not boundedly generated. Indeed since
Fn is a finite index subgroup of F2 (which can be shown by taking a degree n
cover of the wedge of two circles) it suffices to show that F2 is not boundedly
generated, which follows as Z ≀Z is 2-generated by (1, 0) and (0, (δn,0)n∈Z) for
δn,0 the sequence that is 1 at n = 0 and 0 elsewhere.

(iv) Therefore SL2(Z), which has a finite index free subgroup, is not boundedly
generated. On the other hand, SL2(OK) is known to be boundedly generated
if the group of units O×

K of the number field K is infinite, [MRS18].
(v) Irreducible non-uniform lattices in orthogonal groups with Q-rank at least 2

are known to be boundedly generated, [ER06].

To prove Theorem 6.2 we establish that there is a constant c(n) such that every
matrix in SLn(Z) is the product of at most c(n) elementary matrices, i.e. matrices
of the form In + zEij = (In + Eij)

z, z ∈ Z. This amounts to showing that any
A ∈ SLn(Z) can be reduced to the identity In with boundedly many row or column
operations.

For matrices A and B be write A ∼ B if B can be obtained from A by a bounded
(in terms of n) number of elementary row or column operations. In other words
if B = UAV for U and V a finite product (of controlled length) of elementary
matrices.
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Lemma 6.3. If n ≥ 3 and A ∈ SLn(Z) then

A ∼
(
B 0
0 1

)
for B ∈ SLn−1(Z).

Proof. Let (a1, . . . , an) be the bottom row of A. We may assume without loss of
generality that gcd(a1, . . . , an) = 1 so there are λi ∈ Z such that

∑n
i=1 λiai = 1. If

one of the ai is 0, then by at most n column operations we can replace ai by 1 and
then by ≤ n column operations we conclude that

A ∼
(
B (∗)
0 1

)
for B ∈ SLn−1(Z). We then apply at most n − 1 row operations to clear the last
column and conclude the claim.

We reduce to the previous situation as follows. Denote δ = gcd(a2, . . . , an−1).
Then we claim that there is t ∈ Z such that gcd(a1 + tan, δ) = 1. Indeed, choose t
such that a1 + tan ̸≡ 0 mod p for every prime p|δ. This is possible if p ∤ an and in
the case p|an then p ∤ a1 since gcd(a1, . . . , an) = 1. Thus by one column operation
we may assume that gcd(a1, . . . , an−1) = 1 and thus by at most n further column
operations, an = 0 and hence the claim follows. □

The lemma reduces the proof to showing the Theorem in the case n = 3 and
more precisely to show that any 3× 3 matrix

A =

a b 0
c d 0
0 0 1

 ∈ SL3(Z)

satisfies A ∼ I3. The following argument by Nica [Nic18] simplifies the original
proof by Carter-Keller [CK83].

The first observation is that1 c′ 0
0 1 0
0 0 1

 ·
1 0 0
c 1 0
0 0 1

 =

1 + cc′ c′ 0
c 1 0
0 0 1

 (6.1)

Thus if a ≡ 1 mod c, then d ≡ 1 mod c since ad− bc = 1 and hence

A ∼

a b′ 0
c 1 0
0 0 1

 ,

which is clearly ∼ I by equation 6.1. We leave it to the reader to check that a
similar reduction works in case a ≡ −1 mod c. The main idea of the proof is to
replace A by a power of itself to place oneself in a situation where a ≡ ±1 mod c.

Recall that by Fermat’s little theorem, since gcd(a, c) = 1 as ad− bc = 1 it holds
that aφ(c) ≡ 1 mod c for φ(c) Euler’s function. The main lemma is as follows.

Lemma 6.4. If c ∈ Z is an odd prime and c ∤ a, then Ax(
|c|−1

2 ) ∼ I uniformly for
all x ∈ Z.
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We postpone the proof of the lemma and conclude the proof of Theorem 6.2.

In particular if c and b are odd primes with gcd( |c|−1
2 , |b|−1

2 ) = 1, then there are

x, y ∈ Z with x |c|−1
2 − y |b|−1

2 = 1. Therefore

Ax
|c|−1

2 ·A−y
|b|−1

2 = A

and hence A ∼ I3 by Lemma 6.4, where we note that

A−1 =

 d −c 0
−b a 0
0 0 1


and we have applied Lemma 6.4 for −b instead of c.

Therefore it suffices to find such primes. To do so, we use Dirichlet’s Theorem
on arithmetic progressions, which says that if α and β are coprime then the set of
primes p ≡ β mod α is infinite.

First note that a and b are coprime, so if a is even b is odd and by one column
operation, we may replace a by a+ b and thus assume that a is odd. Therefore by
the chinese remainder theorem and Dirichlet’s theorem we can find infinitely many
primes p with p ≡ b mod a with p ≡ 3 mod 4. As

A ∼(C)

a b+ ta 0
c d+ tc 0
0 0 1


for all t ∈ Z, we may thus assume without loss of generality that b is prime and
≡ 3 mod 4. Similarly using row operations,

A ∼(R)

 a b 0
c+ sa d+ sb 0

0 0 1


and so we may assume that d is prime and > b− 1.

Finally,

A ∼(C)

a+ tb b 0
c+ td d 0

0 0 1


and we claim there is a prime q such that q is odd, q ≡ c mod d and q ≡ 2 mod b−1

2 .

Indeed, we note that by construction b−1
2 is prime to d and 2 is prime to b−1

2 . So

by the Chinese remainder theorem there is a number n0 prime to d( b−1
2 ) such that

n0 ≡ c mod d and n0 ≡ 2 mod b−1
2 . Thus by Dirichlet’s Theorem there is such a

prime q.
It follows that q−1 = 1 mod b−1

2 and so gcd( q−1
2 , b−1

2 ) = 1. This ends the proof
by the previous argument and it remains to show the lemma.

Proof. (of Lemma 6.4) Recall that by Cayley-Hamilton A2 = (trA)A− Id2. There-
fore for all n ∈ Z there are e, f ∈ Z such that(

a b
c d

)n

= eI2 + f

(
a b
c d

)
=

(
e+ fa bf
cf e+ df

)
.

If we consider the matrices mod c, both matrices become upper triangular and

therefore an ≡ e+ fa mod c. If c is an odd prime, then a
|c|−1

2 ≡ ±1 mod c. There-

fore if n = x |c|−1
2 , it follows that e + fa ≡ ±1 mod c. If f = 1, we would be done
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by the previous argument (see equation 6.1). But we can clearly reduce to this case
by using the following trick due to [Nic18].

If a ≡ d mod s and ad− bsc = 1, then a b 0
sc d 0
0 0 1

 ∼
−a −sb 0

c d 0
0 0 −1

 (6.2)

To show (6.2), note that by taking determinants mod s, ad ≡ 1 mod s however
by assumption a ≡ d mod s and therefore a2 ≡ 1 mod s. Write s = s1s2 with
a = 1 + k1s1 = k2s1 − 1 for some s1, s2 and k1, k2. Then we observe the following
calculation, where the subscript indicates the number of column (C) or row (R)
moves: a b 0

sc d 0
0 0 1

 ∼(C)

 a b 0
sc d 0
s1 0 1

 ∼(2R)

 1 b −k1
0 d −s2c
s1 0 1

 ∼(R)

1 b −k1
0 d −s2c
0 −s1b a


∼(2C)

1 0 s2
0 d −cs2
0 −bs2 a

 ∼(2R)

 1 0 s2
c d 0
−k2 −s1b −1


∼(2R)

−a −sb 0
c d 0
−k2 −s1b −1

 ∼(2C)

−a −sb 0
c d 0
0 0 −1

 .

□

The proof is quantitative and we note that the current record is 37 for the number
of elementary subgroups needed to express SL3(Z) as a product, [Nic18].

We furthermore point out that there is a more conceptual approach to the prob-
lem using non-standard analysis that leads to proofs of bounded generation of
SLn(A), where A is a more general commutative ring. Indeed, it is easy to see
that bounded generation of SLn(A) is equivalent to generation of SLn(A

∗) by el-
ementary subgroups of matrices with coefficients in A∗, where A∗ is an ultrapower
of A. This is related to K-theory and to the solution to the congruence subgroup
problem, see [WM07].

6.2. Non-uniform lattices. In the previous section we showed that there are
many examples of non-uniform lattices in higher rank Lie groups that are boundedly
generated. Therefore the following recent result came as a surprise.

Theorem 6.5. ([CRRZ22]) If K is a field of characteristic zero and let Γ <
GLn(K) be a subgroup with n ≥ 2. Assume there are semisimple elements γ1, . . . , γs ∈
Γ such that Γ = ⟨γ1⟩ · · · ⟨γs⟩. Then Γ is virtually solvable.

We remark in even more recent work [CDR+22] the conclusion is improved to Γ

virtually abelian, and (Γ
Z
)◦ is shown to be a torus.

Corollary 6.6. A uniform lattice in a semisimple Lie group is never boundedly
generated.

Proof. This follows since such groups only consist of semisimple elements. □

Without loss of generality we may assume that Γ is Zariski-connected since
[Γ : Γ◦] < ∞. In these notes we furthermore reduce to the case that K = Q and
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Γ
Z
= SLn. For the analogous general case we refer to [CRRZ22]. The following is

the main proposition. Recall the definition of Galois-generic elements from (5.4).

Proposition 6.7. Let L be the field generated by the eigenvalues of γ1, . . . , γs and
let γ ∈ Γ be a Galois generic element over L. Then ⟨γ⟩ ∩ ⟨γ1⟩ · · · ⟨γs⟩ is finite.

The proposition implies the theorem, because we know from the main result of
Prasad-Rapinchuk proved in the previous lecture, Theorem 5.1, that there exist L-
Galois generic elements in Γ and that they have infinite order as their eigenvalues
are multiplicatively independent. We first show the following lemma.

Lemma 6.8. If γ is L-Galois generic, then A(γ) ∩ L = {1}, where A(γ) ≤ C× is
the multiplicative subgroup generated by the eigenvalues of γ.

Proof. Recall that being L-Galois generic implies that the eigenvalues λ1(γ), . . . , λn−1(γ)

are multiplicatively independent and GalL(Pγ) ∼= Sym(n). Therefore if λk1
1 · · ·λkn

n ∈
L for some k1, . . . , kn ∈ Z then λ

kσ(1)

1 · · ·λkσ(n)
n = λk1

1 · · ·λkn
n , which implies that all

ki’s conincide by multiplicative independence. Thus λk1
1 · · ·λkn

n = (λ1 · · ·λn)
k1 = 1,

implying the claim. □

The other key ingredient in the proof is Laurent’s theorem.

Theorem 6.9. (Laurent’s theorem [Lau84]) Suppose H ≤ (Gm(Q))N is a finitely

generated multiplicative subgroup and Σ ⊂ H is any subset. Then Σ
Z

is a finite
union of cosets of subtori Ti ≤ (Gm)N .

The same statement holds if H is replaced by the torsion subgroup

H = {(ω1, . . . , ωN ) ∈ (Gm)N all ωi are roots of unity}.
Indeed this is the so-called Manin-Mumford conjecture for (Gm)N . The general
Manin-Mumford conjecture was proved by Raynaud [Ray83]. Laurent proved an
even more general result, when H is an arbitrary subgroup of (Gm(C))N which is
finitely generated modulo the torsion subgroup. This had been conjectured by S.
Lang, who proved a special case [Lan83].

We note that Laurent’s theorem overQ is a rather simple consequence of Schmidt’s
subspace theorem, or rather its S-adic version due to Schlickewei. We refer to
[BG06, Theorem 7.4.7] for the proof.

Proof. (of Proposition 6.7) Assume that m ∈ Z satisfies γm ∈ ⟨γ1⟩ · · · ⟨γs⟩. Then
there are a1(m), . . . , as(m) ∈ Z such that

γm = γ
a1(m)
1 · · · γas(m)

s .

The element γ and the γi are diagonalizable, in particular in some basis of (Q)n,
the (1, 1) entry satisfies

(γm)1,1 = λ1(γ)
m =

 s∏
j=1

gjD
aj(m)
j g−1

j


1,1

for Di = diag(λ1(γ1), . . . , γn(γi)) and gi ∈ GLn(Q). The right hand side has
the form of a linear combination of monomials in (λi(γj)

aj(m))i,j , i.e. there is a

polynomial P ∈ Q[(xij)ij ] such that

λ1(γ)
m = P ((λi(γj)

aj(m))i,j).
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Take H to be the multiplicative subgroup of C× generated by λ1(γ) and the λi(γj)
and apply Laurent’s theorem to Σ = {(xm)m∈Z} in (Gm)N , where N = 1+ ns and

xm = (λ1(γ)
m, (λi(γj))

aj(m)).

We conclude that Σ
Z
=

⋃
xiTi for Ti tori. On the other hand Σ

Z
is contained in

the algebraic set {(y, (xij)), y = P ((xij))}.
If dimTi > 0, there are infinitely many m such that xm ∈ xiTi and hence there

are distinctm andm′ such that xmx−1
m′ ∈ Ti. Yet Ti is a torus, so Ti =

⋂
χ kerχ for a

family of characters χ of (Gm)N with χ(y, (xij)i,j) = yk0
∏

i,j x
kij

ij with k0, kij ∈ Z.
So it follows that

λ1(γ)
(m−m′)k0

∏
i,j

λi(γj)
(aj(m)−aj(m

′))ki,j = 1.

Applying the lemma, since
∏

i,j λi(γj)
(aj(m)−aj(m

′))ki,j ∈ L, it follows that k0 = 0.
So Ti is invariant under multiplication by the first coordinate, i.e.

Ti = (y, 1)Ti

for all y ∈ Q×
. Yet if xm ∈ xiTi then λ1(γ)

m = P (λi(γj)
aj(m)) so it can’t be

that yλ1(γ)
m = P (λi(γj)

aj(m)) for all y. This shows that dimTi must be zero and
therefore Σ is finite. □

We note that the above argument works just as well without assuming that Γ
has algebraic entries, if we use instead the general version of Laurent’s theorem
(valid over C).

We note that in [CDR+22], it is shown that any set of the form

Σ = {(f1(n), . . . , fN (n)), n ∈ Zn},
where each fi is a purely exponential polynomial, i.e. fi(n) is a linear combination

in Q of monomials of the form µn1
1 · · ·µnr

r with µi ∈ Q×
has the property that

{n ∈ Zn, H(f(n)) ≤ H} = O((logH)O(1)),

where H(·) is the height. This easily implies that boundedly generated groups
with semisimple elements have polynomial growth, and then that the connected
component of their Zariski closure is a torus.

6.3. Exercises.

6.3.1. A discrete group Γ is boundedly generated if and only if some (any) finite
index subgroup of Γ is boundedly generated.

6.3.2. Every finitely generated nilpotent group is boundedly generated. Hint: In-
duct on the nilpotency step.

6.3.3. Show that the lamplighter group Z ≀ Z is not boundedly generated. Hint:
Establish that Z ≀ Z is linear:

Z ≀ Z = {(p, (an)n∈Z) : p ∈ Z and (an)n∈Z ∈ Z(Z)}

∼=
{(

Xn P (X)
0 1

)
: n ∈ Z and P ∈ Z[X,X−1]

}
.

6.3.4. Complete the proof of Lemma 6.4.
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