Random Walks on Non-compact Semisimple Lie Groups

Constantin Kogler University of Oxford

Ergodic Theory and Dynamical Systems Seminar University of Warwick 17th January 2023

- G non-compact semisimple Lie group such as SL₂(ℝ).
- Open questions for random walks on G:
 - Furstenberg measure absolutely continuous?
 - Local limit theorem.
 - Effective equidistribution on homogeneous spaces.
- Known if distribution is $\ll \operatorname{vol}_{\mathcal{G}}$
- Goal of talk: Understand for certain finitely supported measures.

Plan of talk:

- 1. Introduction.
- 2. Local limit theorem on symmetric spaces.
- 3. Interlude: Random walks on compact groups (Bourgain-Gamburd method).
- 4. Effective equidistribution on homogeneous spaces (joint work with Wooyeon Kim)

Introduction: Random walks on \mathbb{R}

Let Z_1, Z_2, \ldots be i.i.d. random variables on \mathbb{R} . Write

$$Y_n = Z_1 + \ldots + Z_n$$

Assume $E[Z_i] = 0$ and $\sigma^2 = E[Z_i^2] < \infty$.

Central Limit Theorem: For all $a, b \in \mathbb{R}$ with $a \leq b$,

$$\lim_{n\to\infty} P\left[a\leq \frac{Y_n}{\sqrt{n}}\leq b\right]=\frac{1}{\sqrt{2\pi\sigma^2}}\int_a^b e^{-\frac{x^2}{2\sigma^2}}\,dx.$$

Local Limit Theorem: If the distribution of Z_i is non-lattice,

$$\lim_{n\to\infty}\sqrt{n}\cdot P[a\leq Y_n\leq b]=\frac{(b-a)}{\sqrt{2\pi\sigma^2}}$$

Equivalent: If $Z_i \sim \mu$, then $Z_1 + \ldots + Z_n \sim \mu^{*n}$ and

$$\sqrt{n} \cdot \mu^{*n} \to \frac{\operatorname{vol}_{\mathbb{R}}}{\sqrt{2\pi\sigma^2}}.$$

Local limit theorem for groups actions $G \curvearrowright X$?

Let μ be a probability measure on G. Then

 $\mu^{*n}.\delta_{x_0}$

is the distribution of the Y_{n,x_0} random walk after n steps starting at $x_0 \in X$.

Aim: Describe for $A \subset X$,

$$P[Y_{n,x_0} \in A] = (\mu^{*n} \cdot \delta_{x_0})(A) = \int 1_A(g.x_0) \, d\mu^{*n}(g) \cdot d\mu^{*n}(g) \cdot d\mu^{*n}(g)$$

Example: Isometric action of $\mathrm{SL}_2(\mathbb{R})$ on hyperbolic disc

$$\mathbb{D}=\{z\in\mathbb{C}\,:\,|z|<1\}\quad\text{ with metric }\quad 4\frac{dx^2+dy^2}{(1-(x^2+y^2))^2}.$$

For $g \in \left(\begin{smallmatrix} lpha & \overline{eta} \\ eta & \overline{lpha} \end{smallmatrix}
ight) \in \mathrm{SU}(1,1) \cong \mathrm{SL}_2(\mathbb{R})$ and $x \in \mathbb{D}$,

$$g.x = \frac{\alpha x + \overline{\beta}}{\beta x + \overline{\alpha}}$$

 $\operatorname{SL}_2(\mathbb{R}) \curvearrowright \mathbb{D}$ and consider $\mu = \frac{1}{2}(\delta_{g_1} + \delta_{g_2})$ for $g_1, g_2 \in \operatorname{SL}_2(\mathbb{R})$.

Figure: Support of $\mu^{*10}.0$.

- G group (locally compact Hausdorff).
- X locally compact Hausdorff space with Borel measure vol_X .
- $G \curvearrowright X$ continuously, transitively and measure-preservingly.
- μ compactly supported, symmetric (i.e. $\mu = \mu^{-1}$) and aperiodic (i.e. $\operatorname{supp}(\mu) \not\subset gH$ for H < G closed and $g \in G$) probability measure on G.

Local Limit Conjecture

There is a real sequence $(a_n)_{n\geq 1}$ such that for every $x_0 \in X$ there is a continuous function ψ_{μ,x_0} on X satisfying

$$a_n \cdot (\mu^{*n} \cdot \delta_{x_0}) \to \psi_{\mu, x_0} \cdot \operatorname{vol}_X \quad \text{as } n \to \infty.$$
 (1)

- Important cases: X = G or X has finite volume.
- When is ψ_{μ,x0} constant?
- Error rates for (1)? Need number theoretic input.
- Analogy: Ergodic Theorem. (1) implies ratio ergodic theorem.

The local limit theorems are known in the following cases:

- Compact groups (Ito-Kawada 1940).
- \mathbb{R}^d and \mathbb{Z}^d .
- Simply connected nilpotent groups (Breuillard 2005, Diaconis-Hough 2021, Breuillard-Bénard 2023).
- $\operatorname{Isom}(\mathbb{R}^d) \curvearrowright \mathbb{R}^d$ (Varjú 2015, Lindenstrauss-Varjú 2016).
- Discrete ameanable groups (Avez 1973).
- Free group (Lalley 1993), Discrete hyperbolic group (Gouëzel 2014).

In all the ameanable cases, the limit measure is the Haar measure.

Theorem (Bougerol 1982)

- G non-compact semisimple Lie group with finite center.
- μ non-degenerate (i.e semi-group generated by support is dense in G)
- μ spread out (i.e $\mu^{*n} \not\perp \operatorname{vol}_{G}$ for some $n \geq 1$)

Then there is a continuous function ψ_{μ} on G depending on μ such that

$$\frac{n^{\ell/2}}{\sigma^n}\mu^{*n} \to \psi_\mu \cdot \mathrm{vol}_G \tag{1}$$

as $n \to \infty$, where $\ell \in \mathbb{Z}_{\geq 1}$ depends on G and $\sigma = ||\lambda_G(\mu)|| < 1$.

A finitely supported probability measure is never spread out.

Theorem (K. 2022)

(1) holds on associated symmetric space X = G/K for some finitely supported non-degenerate measures on G.

Method: Harmonic Analysis on symmetric space.

Consider an Iwasawa decomposition G = KAN with associated minimal parabolic P = MAN. Denote

X = G/K the associated symmetric space, and $\Omega = G/P = K/M$ the (Furstenberg) boundary.

Denote by $\rho_0: G \to U(L^2(\Omega))$ the associated unitary Koopman representation of the G action on the boundary Ω .

Consider

$$S_0=
ho_0(\mu)=\int
ho_0(g)\,d\mu(g).$$

 S_0 may be understood as the Fourier transform of μ at 0.

We reduce the local limit theorem on X to understanding spectral properties of S_0 .

Definition

A bounded operator $S : \mathcal{H} \to \mathcal{H}$ on a Hilbert space is called **quasicompact**, if

$$ho_{ ext{ess}}(\mathcal{S}) = \sup_{\lambda \in \sigma(A) \setminus \sigma_{ ext{disc}}(\mathcal{A})} |\lambda| <
ho(\mathcal{S}) = \sup_{\lambda \in \sigma(\mathcal{A})} |\lambda|.$$

Theorem (K. 2022)

Let μ be a non-degenerate (i.e. $\langle \operatorname{supp}(\mu) \rangle$ is dense in G) probability measure on G with finite second moment. Assume that S_0 is quasicompact. Then there is a continuous function ψ_{μ} on G depending on μ such that for all $f \in C_c^{\infty}(X)$,

$$\lim_{n\to\infty}\frac{n^{\ell/2}}{\sigma^n}\int f(g.x_0)\mu^{*n}(g) = \int f(g.x_0)\psi_{\mu}(g)\,d\mathrm{vol}_G(g)$$

for all $x_0 \in X$ where $\ell \in \mathbb{Z}_{\geq 1}$ depends on G and $\sigma = ||S_0||$.

Write $\mathfrak{a} = \text{Lie}(A)$. For $r \in \mathfrak{a}^*$ denote by $\rho_r : G \to U(L^2(\Omega))$ the *r*-principal series representation of *G*, i.e. for $f \in L^2(\Omega)$, $g \in G$ and $\omega \in \Omega$,

$$(\rho_r(g)f)(\omega) = \left(\frac{dg.\mathrm{vol}_\Omega}{d\mathrm{vol}_\Omega(\omega)}\right)^{\frac{1}{2}-i\cdot r} f(g^{-1}.\omega).$$

Then for $f \in C^{\infty}_{c}(X)$, $r \in \mathfrak{a}^{*}$ and $\omega \in \Omega$ define

$$\widehat{f}(r,\omega) = (
ho_{-r}(f)1)(\omega) = \int_{\mathcal{G}} f(g)(
ho_{-r}(g)1)(\omega) d\mathrm{vol}_{\mathcal{G}}(g).$$

Then for $x \in X$, we have a Fourier inversion formula

$$f(x) = \int_{\mathfrak{a}^*} \int_{\Omega} \widehat{f}(r,\omega) (
ho_r(g)\mathbf{1})(\omega) d\mathrm{vol}_{\Omega}(\omega) d
u_{\mathrm{sph}}(r).$$

For a probability measure μ on G and $r \in \mathfrak{a}^*$,

$$S_r =
ho_r(\mu) = \int
ho_r(g) \, d\mu(g).$$

Then for $x_0 = h_0.e \in X$ and $f \in C_c^{\infty}(X)$,

$$\int f(g.x_0) d\mu^{*n}(g) = \int_{\mathfrak{a}^*} \int_{\Omega} \widehat{f}(r,\omega) (S_r^n \rho_r(h_0) 1)(\omega) d\mathrm{vol}_{\Omega}(\omega) d\nu_{\mathrm{sph}}(r).$$

We need to understand spectral properties of S_r .

It follows from S_0 being quasicompact:

- (1) Perron-Frobenius: $\lambda \in \sigma(S_0)$ with $|\lambda| = ||S_0||$ implies $\lambda = ||S_0||$.
- (2) S_r quasicompact for small r.
- (3) $\rho(S_r) < ||S_0||$ for $r \neq 0$.

It holds

$$\psi_{\mu}(g) = \langle \eta_0, \rho_0(g) \eta'_0 \rangle$$

for suitably normalized functions $\eta_0, \eta'_0 \in L^2(\Omega)$ with $S_0\eta_0 = ||S_0||\eta_0$ and $S_0^*\eta'_0 = ||S_0||\eta'_0$.

How to understand spectral properties of S_0 ?

If $\mu = \frac{1}{2}(\delta_{g_1} + \delta_{g_2})$ then $S_0 = \frac{1}{2}(\rho_0(g_1) + \rho_0(g_2))$.

We can understand S_0 in some cases based on the Bourgain-Gamburd (2008) method, generalized to non-compact groups initially by Bourgain (2012) and further generalized by Boutonnet-Ioana-Salehi Golsefidy (2017).

Interlude: Random Walks on Compact Groups

Random Walks on Compact Groups

Local Limit Theorem (Ito-Kawada 1940)

Let G be a compact group and μ be an aperiodic probability measure on G. Then as $n \to \infty,$

 $\mu^{*n} \to \operatorname{vol}_{\mathcal{G}}.$

Denote $\lambda_G(\mu) : L^2(G) \to L^2(G)$ given for $f \in L^2(G)$ and $x \in G$ by $(\lambda_G(\mu)f)(x) = \int f(g^{-1}x) d\mu(g).$

Theorem (Bourgain-Gamburd 2008, Benoist-de Saxcé 2015)

- G compact connected simple Lie group
- μ aperiodic symmetric probability measure
- Assume $\operatorname{Ad}(\operatorname{supp}(\mu)) \subset \operatorname{GL}_d(\overline{\mathbb{Q}})$

Then $\lambda_G(\mu)$ is quasicompact. Moreover, there is $\theta > 0$ depending on μ such that for $f \in \text{Lip}(G)$,

$$\int f(g) d\mu^{*n} = \int f d\operatorname{vol}_{G} + O_{\mu}(\max(\operatorname{Lip}(f), ||f||_{\infty})e^{-\theta n}).$$

Random Walks on Compact Groups

G compact connected simple Lie group.

Definition

A measure μ on G satisfying for n large enough,

$$\sup_{H < G} \mu^{*n}(B_{e^{-c_1 n}}(H)) \le e^{-c_2 n}$$

for some $c_1, c_2 > 0$ is called weakly Diophantine or (c_1, c_2) -Diophantine.

Theorem (Benoist-de Saxcé 2015)

- μ aperiodic symmetric probability measure
- Assume $\operatorname{Ad}(\operatorname{supp}(\mu)) \subset \operatorname{GL}_d(\overline{\mathbb{Q}})$

Then μ is weakly Diophantine.

Random Walks on Compact Groups

Bourgain-Gamburd Method: Understand random walk at scale $\delta >$ 0: For a measure $\nu,$ denote

$$u_{\delta}(x) = rac{
u(B_{\delta}(x))}{\operatorname{vol}_{G}(B_{\delta}(e))}.$$

Measures the *dimension* of μ at scale δ .

Aim: Show $(\mu^{*n})_{\delta}(x) \approx 1$ for $n \geq C \log \frac{1}{\delta}$.

High dimension is enough: One shows, using that μ is weakly Diophantine,

$$||(\mu^{*n})_{\delta}||_{\infty} \leq \delta^{-\frac{1}{4}}$$

for $n \ge C \log \frac{1}{\delta}$.

Main engine: Sum product theorem by Erdös and Szemeredi: There is $\varepsilon > 0$ such that for any finite $A \subset \mathbb{R}$,

$$|A+A|+|A\cdot A|\gg |A|^{1+\varepsilon}.$$

Notation:

 ${\boldsymbol{G}}$ connected ${\boldsymbol{\mathsf{simple}}}$ non-compact Lie group with finite center

X = G/K associated symmetric space

 μ probability measure on ${\it G}$

$$S_0=
ho_0(\mu)=\int
ho_0(g)\,d\mu(g).$$

To apply Bourgain-Gamburd method we need

- $\operatorname{supp}(\mu) \subset B_{\varepsilon}(e)$,
- and strong Diophantine properties.

Definition

Let $c_1, c_2, \varepsilon > 0$. μ is called (c_1, c_2, ε) -Diophantine if

- $\operatorname{supp}(\mu) \subset B_{\varepsilon}(e).$
- μ is $(c_1 \log \frac{1}{\varepsilon}, c_2 \log \frac{1}{\varepsilon})$ -Diophantine, i.e. for *n* large enough,

$$\sup_{H < G} \mu^{*n}(B_{\varepsilon^{c_1 n}}(H)) \leq \varepsilon^{c_2 n}.$$

Bourgain (2012) and Boutonnet-Ioana-Salehi Golsefidy 2017: Strong flattening results for these measures:

$$||(\mu^{*n})_{\delta}||_{\infty} \leq \delta^{-\gamma}$$

for $n \geq C_{\gamma} \frac{\log \frac{1}{\delta}}{\log \frac{1}{\varepsilon}}$.

There are many examples of finitely supported (c_1, c_2, ε) -Diophantine probability measures.

Boutonnet-Ioana-Salehi Golsefidy (2017)

- $\Gamma < G$ be a countable dense subgroup.
- $\operatorname{Ad}(\Gamma) \subset \operatorname{GL}_d(\overline{\mathbb{Q}}).$

Then there exist $c_1, c_2 > 0$ such that for every $\varepsilon_0 > 0$ there is $0 < \varepsilon < \varepsilon_0$ and a finitely supported symmetric measure μ satisfying

- $\operatorname{supp}(\mu) \subset \mathsf{\Gamma} \cap B_{\varepsilon}(e)$, and
- μ is (c_1, c_2, ε) -Diophantine.

Theorem (K. 2022)

Let $c_1, c_2 > 0$. Then every symmetric and (c_1, c_2, ε) -Diophantine probability measure μ for small enough ε (depending on c_1, c_2 and G) satisfies that

 $S_0 = \rho_0(\mu)$ is quasicompact.

In particular, the local limit theorem holds on X.

Proof uses flattening and further techniques from Bourgain (2012) or Boutonnet-Ioana-Salehi Golsefidy (2017).

Figure: Distribution of Y_{10} .0.

There is a unique μ -stationary probability measure ν_F on $\Omega = G/P$ (i.e. $\mu * \nu_F = \nu_F$) called the Furstenberg measure of μ .

Question: Kaimanovich-Le Prince (2011)

Is the Furstenberg measure of a finitely supported measure always singular to vol_X ?

Answer: No:

- Bárány–Pollicott-Simon (2012): Probabilistic Construction.
- Bourgain (2012): Explicit Construction.

Theorem (Léquen 2022, independently K. 2022)

Let $c_1, c_2 > 0$ and $m \in \mathbb{Z}_{\geq 1}$. Then every symmetric and (c_1, c_2, ε) -Diophantine probability measure μ for small enough ε (depending on m, c_1, c_2 and G) has absolutely continuous Furstenberg measure with density in $C^m(\Omega)$.

Effective Equidistribution of Random Walks on Homogeneous Spaces (joint work with Wooyeon Kim)

Effective Equidistribution of Random Walks on Homogeneous Spaces

- *G* connected simple Lie group (with finite center).
- $X = G/\Gamma$ for Γ a lattice.
- $supp(\mu)$ generates dense semi-group of G.

Theorem (Special case of Benoist-Quint)

The Haar probability measure vol_X is the unique μ -stationary measure on X.

Corollary, Local limit theorem (Special case of Bénard 2022)

If μ symmetric and $\mathrm{supp}(\mu)$ is countable, then for all $x_0 \in X$, as $n \to \infty$,

$$\mu^{*n}.\delta_{x_0} \to \operatorname{vol}_X. \tag{1}$$

Open problem: Prove error rates for (1).

Effective Equidistribution of Random Walks on Homogeneous Spaces

Consider $ht: X \to \mathbb{R}_{\geq 1}$ a geometric height function of X:

- Measures how high $x \in X$ is in any cusp of X.
- $inj(x)^{-O(1)} \ll ht(x)$.
- If X is compact, then $ht \equiv 1$.

For $X = SL_2(\mathbb{R})/SL_2(\mathbb{Z})$ the height of $x \in X$ is the imaginary part of the corresponding point in the fundamental domain of $\mathbb{H}/SL_2(\mathbb{Z})$.

Using the flattening results and a novel argument passing from high dimension to effective equidistribution on X, we deduce:

Theorem (Wooyeon Kim + K. 2023)

Let $c_1, c_2 > 0$. Then every symmetric (c_1, c_2, ε) -Diophantine probability measure μ on G for small enough ε satisfies the following: There is $\theta = \theta(\Gamma, \mu) > 0$ such that for every bounded Lipschitz function $f \in \operatorname{Lip}(X)$,

$$\int f(g.x_0) d\mu^{*n}(g) = \int f d\operatorname{vol}_X + O_{\Gamma,\mu} \left((\operatorname{Lip}(f) + \operatorname{ht}(x_0) ||f||_{\infty}) e^{-\theta n} \right)$$

for all $x_0 \in X$ and $n \ge 1$.

We can prove effective density of $\mu^{*n} . \delta_{x_0}$ for a more general class of measures.

If $\operatorname{supp}(\mu) = S$, then

$$\operatorname{supp}(\mu^{*n}.\delta_{x_0}) = S^n.x_0.$$

Define for $x_0 \in X$,

 $\operatorname{diam}_{\varepsilon}(X, S, x_0) = \min\{n \ge 0 \ : \ S^n. x_0 \text{ is } \varepsilon \text{-dense in } \{\operatorname{ht} \le \varepsilon^{-1}\}\}.$

Theorem (Wooyeon Kim + K. 2023)

- $S \subset G$ symmetric set (i.e. $S = S^{-1}$) generating a dense subgroup of G
- $\operatorname{Ad}(S) \subset \operatorname{GL}_d(\overline{\mathbb{Q}})$

Then for $x_0 \in X$ and $\varepsilon > 0$,

$$\operatorname{diam}_{\varepsilon}(X, S, x_0) \ll_{\Gamma, S} \log \varepsilon^{-1} + \log \operatorname{ht}(x_0),$$

where the implied constant depends on Γ and S.

Proof uses that by Boutonnet-Ioana-Salehi Golsefidy 2017 there is (c_1, c_2, ε) -Diophantine probability measure μ for arbitrarily small ε with

 $\operatorname{supp}(\mu) \subset S^{\ell}.$

Then we apply effective equidistribution for μ .

Summary

For measures close to the identity and satisfying strong Diophantine properties, using flattening results for non-compact groups as initiated by Bourgain we understand:

- Furstenberg measure.
- Local limit theorem on symmetric space.
- Effective equidistribution on homogeneous space.

Thank you!

