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• G non-compact semisimple Lie group such as SL2(R).

• Open questions for random walks on G :
• Furstenberg measure absolutely continuous?
• Local limit theorem.
• Effective equidistribution on homogeneous spaces.

• Known if distribution is � volG

• Goal of talk: Understand for certain finitely supported measures.
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Plan of talk:

1. Introduction.

2. Local limit theorem on symmetric spaces.

3. Interlude: Random walks on compact groups (Bourgain-Gamburd
method).

4. Effective equidistribution on homogeneous spaces (joint work with
Wooyeon Kim)

3 / 36



Introduction: Random walks on R

Let Z1,Z2, . . . be i.i.d. random variables on R. Write

Yn = Z1 + . . .+ Zn.

Assume E [Zi ] = 0 and σ2 = E [Z 2
i ] <∞.

Central Limit Theorem: For all a, b ∈ R with a ≤ b,

lim
n→∞

P

[
a ≤ Yn√

n
≤ b

]
=

1√
2πσ2

∫ b

a

e
− x2

2σ2 dx .

Local Limit Theorem: If the distribution of Zi is non-lattice,

lim
n→∞

√
n · P[a ≤ Yn ≤ b] =

(b − a)√
2πσ2

.

Equivalent: If Zi ∼ µ, then Z1 + . . .+ Zn ∼ µ∗n and

√
n · µ∗n → volR√

2πσ2
.
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Introduction

Local limit theorem for groups actions G y X?

Let µ be a probability measure on G . Then

µ∗n.δx0

is the distribution of the Yn,x0 random walk after n steps starting at x0 ∈ X .

Aim: Describe for A ⊂ X ,

P[Yn,x0 ∈ A] = (µ∗n.δx0 )(A) =

∫
1A(g .x0) dµ∗n(g).
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Introduction

Example: Isometric action of SL2(R) on hyperbolic disc

D = {z ∈ C : |z | < 1} with metric 4
dx2 + dy 2

(1− (x2 + y 2))2
.

For g ∈ ( α β
β α

) ∈ SU(1, 1) ∼= SL2(R) and x ∈ D,

g .x =
αx + β

βx + α
.
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Introduction

SL2(R) y D and consider µ = 1
2
(δg1 + δg2 ) for g1, g2 ∈ SL2(R).

Figure: Support of µ∗10.0.
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Introduction

• G group (locally compact Hausdorff).

• X locally compact Hausdorff space with Borel measure volX .

• G y X continuously, transitively and measure-preservingly.

• µ compactly supported, symmetric (i.e. µ = µ−1) and aperiodic (i.e.
supp(µ) 6⊂ gH for H < G closed and g ∈ G) probability measure on G .

Local Limit Conjecture

There is a real sequence (an)n≥1 such that for every x0 ∈ X there is a
continuous function ψµ,x0 on X satisfying

an · (µ∗n.δx0 ) → ψµ,x0 · volX as n→∞. (1)

• Important cases: X = G or X has finite volume.

• When is ψµ,x0 constant?

• Error rates for (1)? Need number theoretic input.

• Analogy: Ergodic Theorem. (1) implies ratio ergodic theorem.
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Introduction

The local limit theorems are known in the following cases:

• Compact groups (Ito-Kawada 1940).

• Rd and Zd .

• Simply connected nilpotent groups (Breuillard 2005, Diaconis-Hough 2021,
Breuillard-Bénard 2023).

• Isom(Rd) y Rd (Varjú 2015, Lindenstrauss-Varjú 2016).

• Discrete ameanable groups (Avez 1973).

• Free group (Lalley 1993), Discrete hyperbolic group (Gouëzel 2014).

In all the ameanable cases, the limit measure is the Haar measure.
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Local Limit Theorem on Symmetric Spaces

10 / 36



Local Limit Theorem on Symmetric Spaces

Theorem (Bougerol 1982)

• G non-compact semisimple Lie group with finite center.

• µ non-degenerate (i.e semi-group generated by support is dense in G)

• µ spread out (i.e µ∗n 6⊥ volG for some n ≥ 1)

Then there is a continuous function ψµ on G depending on µ such that

n`/2

σn
µ∗n → ψµ · volG (1)

as n→∞, where ` ∈ Z≥1 depends on G and σ = ||λG (µ)|| < 1.

A finitely supported probability measure is never spread out.

Theorem (K. 2022)

(1) holds on associated symmetric space X = G/K for some finitely supported
non-degenerate measures on G .
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Local Limit Theorem on Symmetric Spaces

Method: Harmonic Analysis on symmetric space.

Consider an Iwasawa decomposition G = KAN with associated minimal
parabolic P = MAN. Denote

X = G/K the associated symmetric space, and

Ω = G/P = K/M the (Furstenberg) boundary.

Denote by ρ0 : G → U(L2(Ω)) the associated unitary Koopman representation
of the G action on the boundary Ω.

Consider

S0 = ρ0(µ) =

∫
ρ0(g) dµ(g).

S0 may be understood as the Fourier transform of µ at 0.

We reduce the local limit theorem on X to understanding spectral properties of
S0.
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Local Limit Theorem on Symmetric Spaces

Definition

A bounded operator S : H → H on a Hilbert space is called quasicompact, if

ρess(S) = sup
λ∈σ(A)\σdisc(A)

|λ| < ρ(S) = sup
λ∈σ(A)

|λ|.

Theorem (K. 2022)

Let µ be a non-degenerate (i.e. 〈supp(µ)〉 is dense in G) probability measure
on G with finite second moment. Assume that S0 is quasicompact. Then there
is a continuous function ψµ on G depending on µ such that for all f ∈ C∞c (X ),

lim
n→∞

n`/2

σn

∫
f (g .x0)µ∗n(g) =

∫
f (g .x0)ψµ(g) dvolG (g)

for all x0 ∈ X where ` ∈ Z≥1 depends on G and σ = ||S0||.
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Local Limit Theorem on Symmetric Spaces

Write a = Lie(A). For r ∈ a∗ denote by ρr : G → U(L2(Ω)) the r -principal
series representation of G , i.e. for f ∈ L2(Ω), g ∈ G and ω ∈ Ω,

(ρr (g)f )(ω) =

(
dg .volΩ
dvolΩ(ω)

) 1
2
−i·r

f (g−1.ω).

Then for f ∈ C∞c (X ), r ∈ a∗ and ω ∈ Ω define

f̂ (r , ω) = (ρ−r (f )1)(ω) =

∫
G

f (g)(ρ−r (g)1)(ω) dvolG (g).

Then for x ∈ X , we have a Fourier inversion formula

f (x) =

∫
a∗

∫
Ω

f̂ (r , ω)(ρr (g)1)(ω) dvolΩ(ω)dνsph(r).
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Local Limit Theorem on Symmetric Spaces

For a probability measure µ on G and r ∈ a∗,

Sr = ρr (µ) =

∫
ρr (g) dµ(g).

Then for x0 = h0.e ∈ X and f ∈ C∞c (X ),∫
f (g .x0) dµ∗n(g) =

∫
a∗

∫
Ω

f̂ (r , ω)(Sn
r ρr (h0)1)(ω) dvolΩ(ω)dνsph(r).

We need to understand spectral properties of Sr .
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Local Limit Theorem on Symmetric Spaces

It follows from S0 being quasicompact:

(1) Perron-Frobenius: λ ∈ σ(S0) with |λ| = ||S0|| implies λ = ||S0||.
(2) Sr quasicompact for small r .

(3) ρ(Sr ) < ||S0|| for r 6= 0.

It holds
ψµ(g) = 〈η0, ρ0(g)η′0〉

for suitably normalized functions η0, η
′
0 ∈ L2(Ω) with S0η0 = ||S0||η0 and

S∗0 η
′
0 = ||S0||η′0.
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Local Limit Theorem on Symmetric Spaces

How to understand spectral properties of S0?

If µ = 1
2
(δg1 + δg2 ) then S0 = 1

2
(ρ0(g1) + ρ0(g2)).

We can understand S0 in some cases based on the Bourgain-Gamburd (2008)
method, generalized to non-compact groups initially by Bourgain (2012) and
further generalized by Boutonnet-Ioana-Salehi Golsefidy (2017).
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Interlude:
Random Walks on Compact Groups
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Random Walks on Compact Groups

Local Limit Theorem (Ito-Kawada 1940)

Let G be a compact group and µ be an aperiodic probability measure on G .
Then as n→∞,

µ∗n → volG .

Denote λG (µ) : L2(G)→ L2(G) given for f ∈ L2(G) and x ∈ G by

(λG (µ)f )(x) =

∫
f (g−1x) dµ(g).

Theorem (Bourgain-Gamburd 2008, Benoist-de Saxcé 2015)

• G compact connected simple Lie group

• µ aperiodic symmetric probability measure

• Assume Ad(supp(µ)) ⊂ GLd(Q)

Then λG (µ) is quasicompact. Moreover, there is θ > 0 depending on µ such
that for f ∈ Lip(G),∫

f (g) dµ∗n =

∫
f dvolG + Oµ(max(Lip(f ), ||f ||∞)e−θn).
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Random Walks on Compact Groups

G compact connected simple Lie group.

Definition

A measure µ on G satisfying for n large enough,

sup
H<G

µ∗n(Be−c1n (H)) ≤ e−c2n

for some c1, c2 > 0 is called weakly Diophantine or (c1, c2)-Diophantine.

Theorem (Benoist-de Saxcé 2015)

• µ aperiodic symmetric probability measure

• Assume Ad(supp(µ)) ⊂ GLd(Q)

Then µ is weakly Diophantine.
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Random Walks on Compact Groups

Bourgain-Gamburd Method: Understand random walk at scale δ > 0: For a
measure ν, denote

νδ(x) =
ν(Bδ(x))

volG (Bδ(e))
.

Measures the dimension of µ at scale δ.

Aim: Show (µ∗n)δ(x) ≈ 1 for n ≥ C log 1
δ

.

High dimension is enough: One shows, using that µ is weakly Diophantine,

||(µ∗n)δ||∞ ≤ δ−
1
4

for n ≥ C log 1
δ

.

Main engine: Sum product theorem by Erdös and Szemeredi: There is ε > 0
such that for any finite A ⊂ R,

|A + A|+ |A · A| � |A|1+ε.
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Back to Local Limit Theorem on Symmetric Spaces
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Local Limit Theorem on Symmetric Spaces

Notation:

G connected simple non-compact Lie group with finite center

X = G/K associated symmetric space

µ probability measure on G

S0 = ρ0(µ) =

∫
ρ0(g) dµ(g).

23 / 36



Local Limit Theorem on Symmetric Spaces

To apply Bourgain-Gamburd method we need

• supp(µ) ⊂ Bε(e),

• and strong Diophantine properties.

Definition

Let c1, c2, ε > 0. µ is called (c1, c2, ε)-Diophantine if

• supp(µ) ⊂ Bε(e).

• µ is (c1 log 1
ε
, c2 log 1

ε
)-Diophantine, i.e. for n large enough,

sup
H<G

µ∗n(Bεc1n (H)) ≤ εc2n.

Bourgain (2012) and Boutonnet-Ioana-Salehi Golsefidy 2017: Strong flattening
results for these measures:

||(µ∗n)δ||∞ ≤ δ−γ

for n ≥ Cγ
log 1

δ

log 1
ε

.
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Local Limit Theorem on Symmetric Spaces

There are many examples of finitely supported (c1, c2, ε)-Diophantine
probability measures.

Boutonnet-Ioana-Salehi Golsefidy (2017)

• Γ < G be a countable dense subgroup.

• Ad(Γ) ⊂ GLd(Q).

Then there exist c1, c2 > 0 such that for every ε0 > 0 there is 0 < ε < ε0 and a
finitely supported symmetric measure µ satisfying

• supp(µ) ⊂ Γ ∩ Bε(e), and

• µ is (c1, c2, ε)-Diophantine.
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Local Limit Theorem on Symmetric Spaces

Theorem (K. 2022)

Let c1, c2 > 0. Then every symmetric and (c1, c2, ε)-Diophantine probability
measure µ for small enough ε (depending on c1, c2 and G) satisfies that

S0 = ρ0(µ) is quasicompact.

In particular, the local limit theorem holds on X .

Proof uses flattening and further techniques from Bourgain (2012) or
Boutonnet-Ioana-Salehi Golsefidy (2017).
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Local Limit Theorem on Symmetric Spaces

Figure: Distribution of Y10.0.

There is a unique µ-stationary probability measure νF on Ω = G/P (i.e.
µ ∗ νF = νF ) called the Furstenberg measure of µ.

27 / 36



Local Limit Theorem on Symmetric Spaces

Question: Kaimanovich-Le Prince (2011)

Is the Furstenberg measure of a finitely supported measure always singular to
volX?

Answer: No:

• Bárány–Pollicott-Simon (2012): Probabilistic Construction.

• Bourgain (2012): Explicit Construction.

Theorem (Léquen 2022, independently K. 2022)

Let c1, c2 > 0 and m ∈ Z≥1. Then every symmetric and (c1, c2, ε)-Diophantine
probability measure µ for small enough ε (depending on m,c1, c2 and G) has
absolutely continuous Furstenberg measure with density in Cm(Ω).
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Effective Equidistribution of Random Walks on
Homogeneous Spaces

(joint work with Wooyeon Kim)

29 / 36



Effective Equidistribution of Random Walks on Homogeneous Spaces

• G connected simple Lie group (with finite center).

• X = G/Γ for Γ a lattice.

• supp(µ) generates dense semi-group of G .

Theorem (Special case of Benoist-Quint)

The Haar probability measure volX is the unique µ-stationary measure on X .

Corollary, Local limit theorem (Special case of Bénard 2022)

If µ symmetric and supp(µ) is countable, then for all x0 ∈ X , as n→∞,

µ∗n.δx0 → volX . (1)

Open problem: Prove error rates for (1).
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Effective Equidistribution of Random Walks on Homogeneous Spaces

Consider ht : X → R≥1 a geometric height function of X :

• Measures how high x ∈ X is in any cusp of X .

• inj(x)−O(1) � ht(x).

• If X is compact, then ht ≡ 1.

For X = SL2(R)/SL2(Z) the height of x ∈ X is the imaginary part of the
corresponding point in the fundamental domain of H/SL2(Z).
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Effective Equidistribution of Random Walks on Homogeneous Spaces

Using the flattening results and a novel argument passing from high dimension
to effective equidistribution on X , we deduce:

Theorem (Wooyeon Kim + K. 2023)

Let c1, c2 > 0. Then every symmetric (c1, c2, ε)-Diophantine probability
measure µ on G for small enough ε satisfies the following:
There is θ = θ(Γ, µ) > 0 such that for every bounded Lipschitz function
f ∈ Lip(X ),∫

f (g .x0) dµ∗n(g) =

∫
f dvolX + OΓ,µ

(
(Lip(f ) + ht(x0)||f ||∞)e−θn

)
for all x0 ∈ X and n ≥ 1.
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Effective Equidistribution of Random Walks on Homogeneous Spaces

We can prove effective density of µ∗n.δx0 for a more general class of measures.

If supp(µ) = S , then
supp(µ∗n.δx0 ) = Sn.x0.

Define for x0 ∈ X ,

diamε(X , S , x0) = min{n ≥ 0 : Sn.x0 is ε-dense in {ht ≤ ε−1}}.

33 / 36



Effective Equidistribution of Random Walks on Homogeneous Spaces

Theorem (Wooyeon Kim + K. 2023)

• S ⊂ G symmetric set (i.e. S = S−1) generating a dense subgroup of G

• Ad(S) ⊂ GLd(Q)

Then for x0 ∈ X and ε > 0,

diamε(X , S , x0)�Γ,S log ε−1 + log ht(x0),

where the implied constant depends on Γ and S .

Proof uses that by Boutonnet-Ioana-Salehi Golsefidy 2017 there is
(c1, c2, ε)-Diophantine probability measure µ for arbitrarily small ε with

supp(µ) ⊂ S`.

Then we apply effective equidistribution for µ.
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Summary

For measures close to the identity and satisfying strong Diophantine properties,
using flattening results for non-compact groups as initiated by Bourgain we
understand:

• Furstenberg measure.

• Local limit theorem on symmetric space.

• Effective equidistribution on homogeneous space.
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Thank you!
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