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G non-compact semisimple Lie group such as SL»(R).
Open questions for random walks on G:

e Furstenberg measure absolutely continuous?
e Local limit theorem.
e Effective equidistribution on homogeneous spaces.

Known if distribution is < volg

Goal of talk: Understand for certain finitely supported measures.

2/36



Plan of talk:
1. Introduction.
2. Local limit theorem on symmetric spaces.

3. Interlude: Random walks on compact groups (Bourgain-Gamburd
method).

4. Effective equidistribution on homogeneous spaces (joint work with
Wooyeon Kim)
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Introduction: Random walks on R

Let Z1, 2>, ... be i.i.d. random variables on R. Write

Yo=241+4+...+ Z,.
Assume E[Zj] =0 and 0 = E[Z}] < oo.

Central Limit Theorem: For all a,b € R with a < b,

Ya
lim P la< <b e E? dx.
n—o0 |: - \/ﬁ - :| ,/271-0-2
Local Limit Theorem: If the distribution of Z; is non-lattice,
(b—a)

lim /n-Pla<Y,<b]l= .
n—»oof [a < ] V2mo?

Equivalent: If Z; ~ pu, then Zy + ...+ Z, ~ p*" and

. volg
Vinept — .
V2mo?
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Introduction

Local limit theorem for groups actions G ~ X7
Let i be a probability measure on G. Then
[T
is the distribution of the Y, s, random walk after n steps starting at xo € X.

Aim: Describe for A C X,

P[Yo € Al = (1""5)(A) = / 14(g.x0) dpi""(g).
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Introduction

Example: Isometric action of SLy(R) on hyperbolic disc

. . dx? + dy?
D={zeC: |z| <1} with metric 4m.
For g € (52) € SU(1,1) 2 SLy(R) and x € D,

= ax—i—ﬁ
T Bx+a’
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Introduction

SL2(R) ~ D and consider yu = 3(8g, + 0g,) for g1, g € SL2(R).

Figure: Support of 1*10.0.
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Introduction

e G group (locally compact Hausdorff).
e X locally compact Hausdorff space with Borel measure volx.
e G ~ X continuously, transitively and measure-preservingly.

e 1 compactly supported, symmetric (i.e. 4 = ') and aperiodic (i.e.
supp(p) ¢ gH for H < G closed and g € G) probability measure on G.

Local Limit Conjecture

There is a real sequence (a,)s>1 such that for every xo € X there is a
continuous function ¥, , on X satisfying

an - (W".0x) — Ypux - volx as n — oco. (1)

e Important cases: X = G or X has finite volume.
e When is 1), constant?
e Error rates for (1)? Need number theoretic input.

e Analogy: Ergodic Theorem. (1) implies ratio ergodic theorem.
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Introduction

The local limit theorems are known in the following cases:
e Compact groups (lto-Kawada 1940).
e RY and Z°.
e Simply connected nilpotent groups (Breuillard 2005, Diaconis-Hough 2021,
Breuillard-Bénard 2023).

o Tsom(RY) ~ R (Varjd 2015, Lindenstrauss-Varji 2016).
e Discrete ameanable groups (Avez 1973).
e Free group (Lalley 1993), Discrete hyperbolic group (Gouézel 2014).

In all the ameanable cases, the limit measure is the Haar measure.
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Local Limit Theorem on Symmetric Spaces
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Local Limit Theorem on Symmetric Spaces

Theorem (Bougerol 1982)

e G non-compact semisimple Lie group with finite center.
e 1 non-degenerate (i.e semi-group generated by support is dense in G)
e 1 spread out (i.e u*" L volg for some n > 1)

Then there is a continuous function 1, on G depending on p such that

nt?

p" = - vole (1)

0-"
as n — 0o, where ¢ € Z>; depends on G and o = ||Ag(p)|| < 1.

A finitely supported probability measure is never spread out.

Theorem (K. 2022)

(1) holds on associated symmetric space X = G/K for some finitely supported
non-degenerate measures on G.

11/36



Local Limit Theorem on Symmetric Spaces

Method: Harmonic Analysis on symmetric space.

Consider an Iwasawa decomposition G = KAN with associated minimal
parabolic P = MAN. Denote

X=G/K the associated symmetric space, and
Q=G/P=K/M the (Furstenberg) boundary.

Denote by po : G — U(L*(RQ)) the associated unitary Koopman representation
of the G action on the boundary Q.

Consider

So= (k) = [ mle) du(e).
So may be understood as the Fourier transform of p at 0.

We reduce the local limit theorem on X to understanding spectral properties of
So.
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Local Limit Theorem on Symmetric Spaces

A bounded operator S : H — H on a Hilbert space is called quasicompact, if

pess(s) = sup |)\| < p(S) = sup ‘)\l
A€o (A)\aaisc(A) AEo(A)

Theorem (K. 2022)

Let 1 be a non-degenerate (i.e. (supp(u)) is dense in G) probability measure
on G with finite second moment. Assume that Sy is quasicompact. Then there
is a continuous function 1, on G depending on p such that for all f € C2°(X),

/2
im "2 [ fleso)n™ () = [ flex)ule) dvole(e)

n—o0o

for all xo € X where ¢ € Z>1 depends on G and o = ||Sol|.
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Local Limit Theorem on Symmetric Spaces

Write a = Lie(A). For r € a* denote by p, : G — U(L*()) the r-principal
series representation of G, i.e. for f € [*(Q), g € G and w € Q,

dg.volg

1
5—ir
_ . -1
(@) = (F4592)" g,
Then for f € CZ°(X), r € a* and w € Q define

F(r,w) = (p—r(F)1)(w) = /f _(&)1)(w) dvole(g).

Then for x € X, we have a Fourier inversion formula

700 = [ [ Frw)(on(e)1)(w) dvola(e)duipn(r)
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Local Limit Theorem on Symmetric Spaces

For a probability measure y on G and r € a*,

5- =) = [ oe) dute)

Then for xp = hp.e € X and f € CZ°(X),

/ F(gx0) dyi™(g) = / * / F(r, w)(57 pr (ho)1) (w) dvola(w)dvapn (r).

We need to understand spectral properties of S,.
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Local Limit Theorem on Symmetric Spaces

It follows from Sp being quasicompact:

(1) Perron-Frobenius: A € o(So) with [A| = [|So|| implies A = |[|So]|.
(2) S, quasicompact for small r.

(3) p(S:) < |ISol| for r £0.

It holds
Vu(8) = (1o, po(&)o)

for suitably normalized functions 70,75 € L*() with Sono = ||So||70 and
Somo = [ Sol[mo-
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Local Limit Theorem on Symmetric Spaces

How to understand spectral properties of Sp?

If j1 = 3(de, + Jg,) then So = 3(po(g1) + po(g2))-

We can understand Sp in some cases based on the Bourgain-Gamburd (2008)
method, generalized to non-compact groups initially by Bourgain (2012) and
further generalized by Boutonnet-loana-Salehi Golsefidy (2017).
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Interlude:
Random Walks on Compact Groups
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Random Walks on Compact Groups
Local Limit Theorem (lto-Kawada 1940)

Let G be a compact group and p be an aperiodic probability measure on G.
Then as n — oo,
w" — volg.

Denote Ag(u) : L>(G) — L?(G) given for f € L?(G) and x € G by

(a(N) = [ Flg™x) du(e).

Theorem (Bourgain-Gamburd 2008, Benoist-de Saxcé 2015)

e G compact connected simple Lie group
e 4 aperiodic symmetric probability measure
e Assume Ad(supp(p)) C GL4(Q)

Then Ag(u) is quasicompact. Moreover, there is § > 0 depending on p such
that for f € Lip(G),

/f(g) du*" = /fdvolg + O, (max(Lip(f), ||| )e™"").
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Random Walks on Compact Groups

G compact connected simple Lie group.

A measure p on G satisfying for n large enough,
sup p*"(By=an(H)) < e 2"
H<G

for some c1, ¢ > 0 is called weakly Diophantine or (c1, c;)-Diophantine.

Theorem (Benoist-de Saxcé 2015)

e 1 aperiodic symmetric probability measure
e Assume Ad(supp(p)) C GL4(Q)
Then p is weakly Diophantine.
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Random Walks on Compact Groups

Bourgain-Gamburd Method: Understand random walk at scale § > 0: For a
measure v, denote
v(Bs(x))

vo(x) = vole(Bs(e))’

Measures the dimension of p at scale 6.

Aim: Show (u*")s(x) ~ 1 for n > Clog }.

High dimension is enough: One shows, using that p is weakly Diophantine,
102"l < 674

for n > Clog %.

Main engine: Sum product theorem by Erdés and Szemeredi: There is € > 0
such that for any finite A C R,

A+ Al +]A-A > AN
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Back to Local Limit Theorem on Symmetric Spaces
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Local Limit Theorem on Symmetric Spaces

Notation:
G connected simple non-compact Lie group with finite center
X = G/K associated symmetric space

1 probability measure on G

So = poli) = / po(g) du(g).
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Local Limit Theorem on Symmetric Spaces

To apply Bourgain-Gamburd method we need

e supp(p) C B:(e),
e and strong Diophantine properties.

Let c1, 2, > 0. p is called (c1, @, €)-Diophantine if
e supp(u) C B:(e).

e uis (cilog %, o log %)—Diophantine, i.e. for n large enough,

sup 1*"(Buan(H)) < 2",
H<G

Bourgain (2012) and Boutonnet-loana-Salehi Golsefidy 2017: Strong flattening
results for these measures:

1()sllo0 <677

log 1
forn> C,—=%¢.
- log z
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Local Limit Theorem on Symmetric Spaces

There are many examples of finitely supported (ci, ¢, €)-Diophantine
probability measures.

Boutonnet-loana-Salehi Golsefidy (2017)

e [ < G be a countable dense subgroup.
e Ad(I) C GL4(Q).

Then there exist c1, o > 0 such that for every g9 > 0 there is 0 < € < g9 and a
finitely supported symmetric measure p satisfying

e supp(p) C I'N B:(e), and

e u is (ci1, &, e)-Diophantine.
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Local Limit Theorem on Symmetric Spaces

Theorem (K. 2022)

Let c1,c2 > 0. Then every symmetric and (ci, ¢, €)-Diophantine probability
measure y for small enough e (depending on ci1, c; and G) satisfies that

So = po(p) is quasicompact.
In particular, the local limit theorem holds on X.

Proof uses flattening and further techniques from Bourgain (2012) or
Boutonnet-loana-Salehi Golsefidy (2017).
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Local Limit Theorem on Symmetric Spaces

Figure: Distribution of Yi0.0.

There is a unique p-stationary probability measure v on Q = G/P (i.e.
u* vp = vp) called the Furstenberg measure of p.
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Local Limit Theorem on Symmetric Spaces

Question: Kaimanovich-Le Prince (2011)

Is the Furstenberg measure of a finitely supported measure always singular to
Vle?

Answer: No:
e Bdrany—Pollicott-Simon (2012): Probabilistic Construction.
e Bourgain (2012): Explicit Construction.

Theorem (Léquen 2022, independently K. 2022)

Let c1,c2 > 0 and m € Z>1. Then every symmetric and (ci, ¢, €)-Diophantine
probability measure y for small enough ¢ (depending on m,c1, 2 and G) has
absolutely continuous Furstenberg measure with density in C™(2).

28/36



Effective Equidistribution of Random Walks on

Homogeneous Spaces
(joint work with Wooyeon Kim)
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Effective Equidistribution of Random Walks on Homogeneous Spaces

e G connected simple Lie group (with finite center).
e X = G/I forT a lattice.

e supp(u) generates dense semi-group of G.

Theorem (Special case of Benoist-Quint)

The Haar probability measure volx is the unique p-stationary measure on X.

Corollary, Local limit theorem (Special case of Bénard 2022)

If & symmetric and supp(u) is countable, then for all xo € X, as n — oo,

w65 — volx. (1)

Open problem: Prove error rates for (1).
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Effective Equidistribution of Random Walks on Homogeneous Spaces

Consider ht : X — R>; a geometric height function of X:
e Measures how high x € X is in any cusp of X.
e inj(x)" %M « ht(x).
e If X is compact, then ht = 1.

For X = SL2(R)/SL2(Z) the height of x € X is the imaginary part of the
corresponding point in the fundamental domain of H/SL>(Z).
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Effective Equidistribution of Random Walks on Homogeneous Spaces

Using the flattening results and a novel argument passing from high dimension
to effective equidistribution on X, we deduce:

Theorem (Wooyeon Kim + K. 2023)
Let c1, 2 > 0. Then every symmetric (c1, ¢z, £)-Diophantine probability
measure p on G for small enough ¢ satisfies the following:
There is 6 = 6(T', ) > 0 such that for every bounded Lipschitz function
f € Lip(X),
[ flex)du(e) = [ f dvolu+ O ((Lin(f) + b Fll)e ™)

for all xo € X and n > 1.
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Effective Equidistribution of Random Walks on Homogeneous Spaces

We can prove effective density of 11*".d,, for a more general class of measures.

If supp(p) = S, then
supp(p*".0x) = S".x0.

Define for xg € X,

diam. (X, S, x0) = min{n >0 : S".xg is e-dense in {ht < e '}}.
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Effective Equidistribution of Random Walks on Homogeneous Spaces

Theorem (Wooyeon Kim + K. 2023)

e S C G symmetric set (i.e. S = S~!) generating a dense subgroup of G

e Ad(S) € GL4(Q)
Then for xo € X and € > 0,

diam.(X, S, x0) <r,s loge™" + log ht(xo),
where the implied constant depends on I and S.

Proof uses that by Boutonnet-loana-Salehi Golsefidy 2017 there is
(c1, €2, €)-Diophantine probability measure p for arbitrarily small e with

supp(u) C S°.

Then we apply effective equidistribution for .
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Summary

For measures close to the identity and satisfying strong Diophantine properties,
using flattening results for non-compact groups as initiated by Bourgain we
understand:

e Furstenberg measure.
e Local limit theorem on symmetric space.

o Effective equidistribution on homogeneous space.
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Thank you!
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