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On periodic billiard trajectories in regular polygons and simple closed
geodesics on the tetrahedron, cube and octahedron

Theorem 2.For the launching angle α of a periodic billiard

trajectory in a regular polygon with edge number n and ai ∈ Z;

bi ∈ Z it applies:

tan(α) =

n−1∑
i=0

ai · sin(i · 2·π
n )

n−1∑
i=0

bi · cos(i · 2·π
n )

(1)

The symmetric properties of the sine and cosine imply a simplifica-

tion of Theorem 2 for certain regular polygons. However, the angle

condition from Theorem 2 is necessary, but it is not proven that it

is sufficient, which means that there might exist angles which meet

the condition of Theorem 2, but are not angles of periodic billiard

trajectories. Only for the regular polygons with 3,4 or 6 edges do

we know that the condition of Theorem 2 is definitely sufficient. A

property of those regular polygons is that they tessellate the plane.

Therefore we are able to locate all elements of the set Kp.

Periodic billiard trajectories in the cube

We can transfer the approach of periodic billiard trajectories in

regular polygons. We can define the set Kp for the cube and subse-

quently prove Theorem 1 for the cube. As the square tessellates the

plane, the cube fills the 3-dimensional space. This implies that a

billiard trajectory in the cube is periodic, if and only if the launch-

ing vector is a multiple of a vector which consits of integers. You

can see above some periodic billiard trajectories inside the cube.

Geodesics on platonic solids

If we unfold the surface of a platonic solid to the 2-dimensional

plane, we get a net consisting of regular polygons. With this ap-

proach we can investigate a curve on the surface of a platonic solid

by considering the net-depiction of the curve. A curve which forms

a straight line in the net is called a geodesic. Since every straight

line in the net is the net-depiction of a billiard trajectory in a regular

polygon, we have a link between geodesics and billiard trajectories.

A geodesic is called closed if it reapeats itself - like a periodic billiard

trajectory. In fact, a geodesic is closed if and only if the set Kp of

the net-decpiction of the geodesic is not empty. Figure 4 shows a

closed geodesic and the corresponding net.

Figure 4

A closed geodesic is called simple if it does not intersect with itself,

as we can see in the pictures above. Figure 4 shows a non-simple

closed geodesic. Now we can ask the question: Can we classify all

simple closed geodesics on the tetrahedron, cube and octahedron?

Let’s examine the tetrahedron. We label the four vertices of the

tetrahedron with A,B,C and D. Without loss of generality, we

say that the geodesic starts on the edge AB and proceeds into the

face ABC. Considering the tesselation of the plane by the regular

triangle, it turns out that there is only one way to label the vertices

of the tesselation with A,B,C and D in such a way, that if you

fold every trajectory in the tesselation back to the tetrahedron, the

vertices of the tesselation match with the vertices of the tetrahedron.

(This doesn’t hold for the other platonic solids) (Figure 5)

Figure 5

This labeled tesselation (Figure 5) has an interesting property: Ev-

ery identically labeled triangle is either parallel, or parallel when

rotated by π. Therefore it follows that all segments of a geodesic on

one face of the tetrahedron are parellel to each other. This implies

that every closed geodesic is simple and therefore there exist simple

closed geodesics of arbitrarily large length.

On the cube and the octahedron the situation is different. In order

to classify all simple closed geodesics Theorem 3 is fundamental.

Theorem 3. If a closed geodesic on the cube or octahedron

intersects one edge at two different points, it follows that the

closed geodesic is not simple.

This is proven by showing algebraically that a certain geometric

property applies for all closed geodesics with the property of Theo-

rem 3. Figure 4 depicts an example of Theorem 3.

The cube and the octahedron have 12 edges. Following from Theo-

rem 3, if a closed geodesic has more than 12 segments, it can’t be

simple, because if it had more than 12 segments, it would interect

with an edge at two different points.


