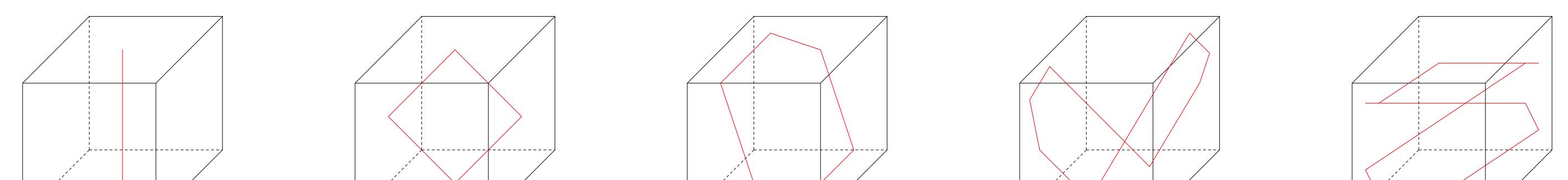
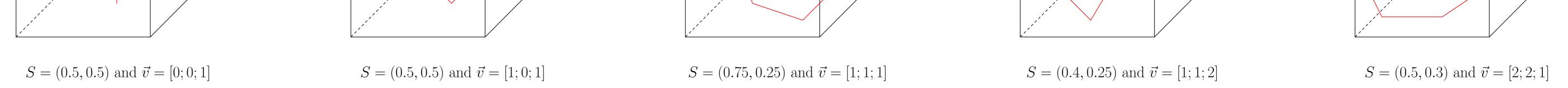
$\mid m \mid$

On periodic billiard trajectories in regular polygons and simple closed geodesics on the tetrahedron, cube and octahedron

Periodic billiard trajectories in the cube

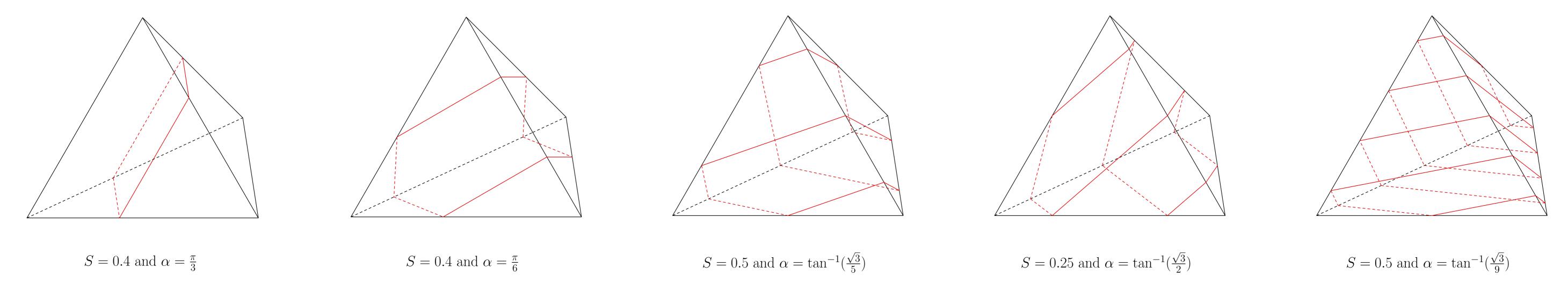
nA billiard trajectory in the cube is periodic if and only if for the launching vector with $m, n \in \mathbb{Z}, o \in \mathbb{N}_{\neq 0}$ and $u \in \mathbb{R}_{>0}$ the following applies: $\vec{v} = u \cdot i$





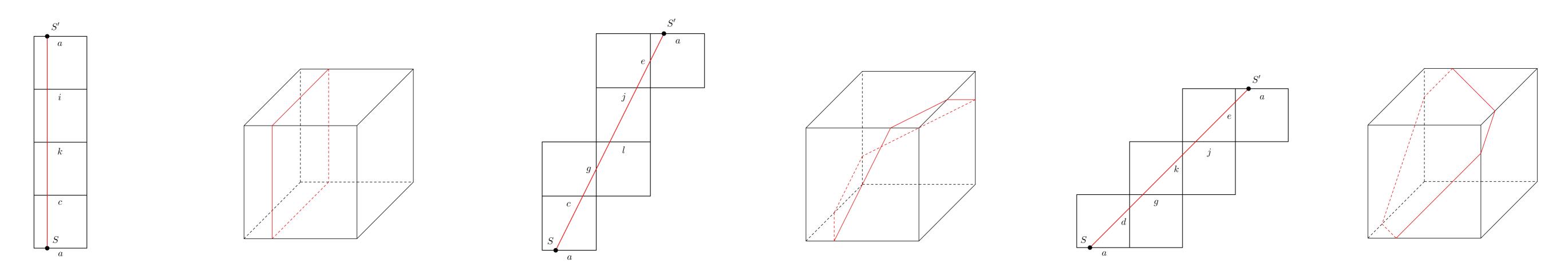
Simple closed geodesics on the tetrahedron, cube and octahedron

Tetrahedron: A geodesic on the tetrahedron is simple and closed if and only if the launching angle is a product of $\sqrt{3}$ and a rational number.



Cube: A simple closed geodesic on the cube belongs to one of the following classes:

Class	α	Length
(1)	$\frac{\pi}{2}$	4
(2)	$\tan^{-1}(2)$ oder $\tan^{-1}(\frac{1}{2})$	$2\sqrt{5}$
(3)	$\frac{\pi}{4}$	$3\sqrt{2}$



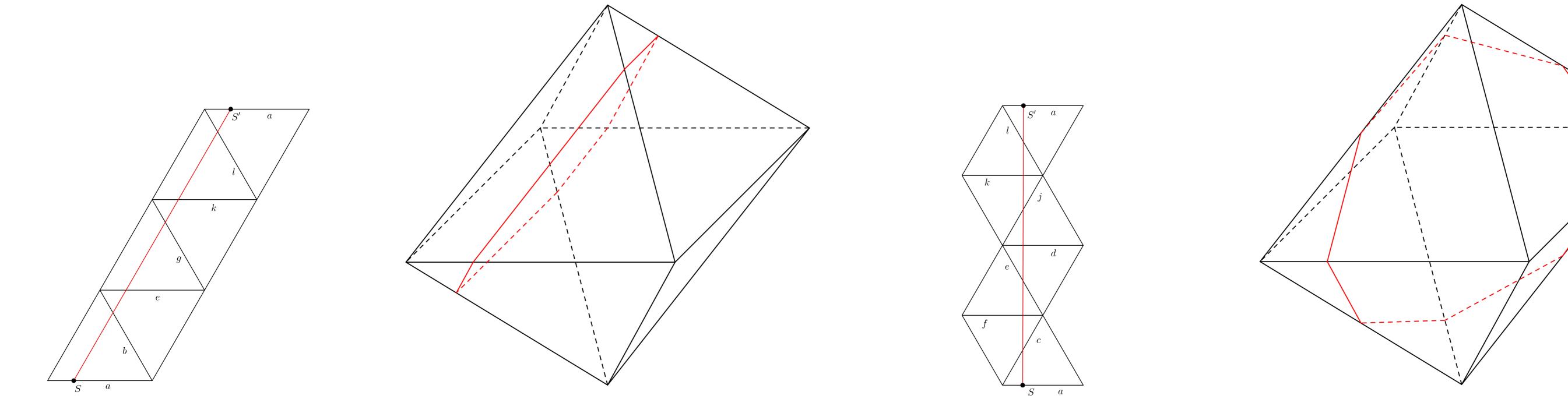
Class (1): $\alpha = \frac{\pi}{2}$ and length of 4

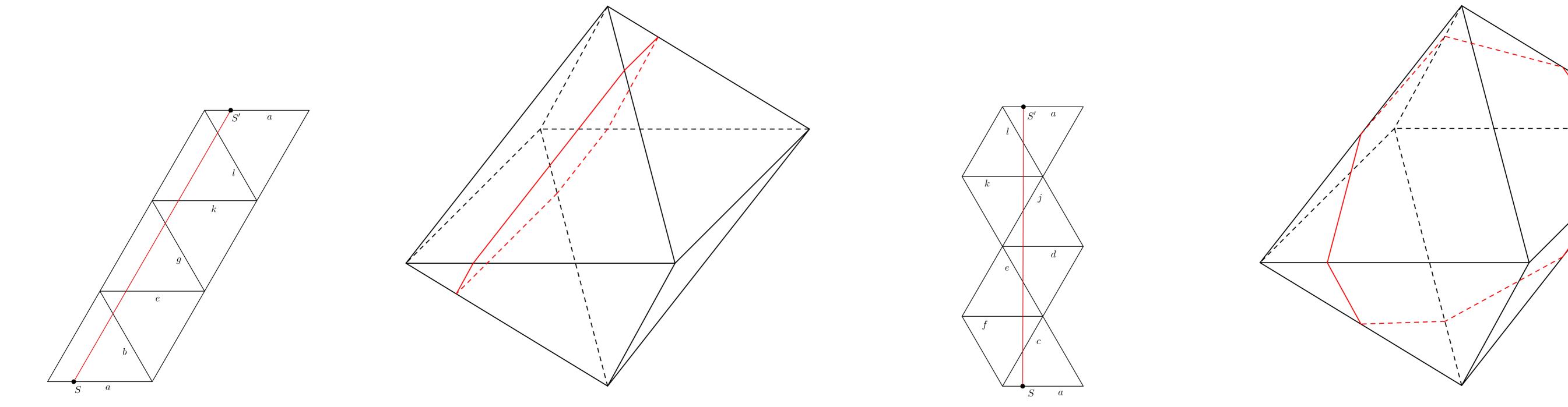
Class (2): $\alpha = \tan^{-1}(2)$ or $\tan^{-1}(\frac{1}{2})$ and length of $2\sqrt{5}$

Class (3): $\alpha = \frac{\pi}{4}$ and length of $3\sqrt{2}$

Octahedron: A simple closed geodesic on the octahedron belongs to one of the following classes:

Class	α	Length
(1)	$\frac{\pi}{3}$	3
(2)	$\frac{\pi}{2}$ or $\frac{\pi}{6}$	$2\sqrt{3}$





Class (1): $\alpha = \frac{\pi}{3}$ and length of 3

Class (2): $\frac{\pi}{2}$ or $\frac{\pi}{6}$ and length of $2\sqrt{3}$